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Abstract

Meta-analyses that synthesize statistical evidence across studies have become important

analytical tools for genetic studies. Inspired by the success of genome-wide association

studies of the genetic main effect, researchers are searching for gene × environment inter-

actions. Confounders are routinely included in the genome-wide gene × environment inter-

action analysis as covariates; however, this does not control for any confounding effects

on the results if covariate × environment interactions are present. We carried out simula-

tion studies to evaluate the robustness to the covariate × environment confounder for

meta-regression and joint meta-analysis, which are two commonly used meta-analysis

methods for testing the gene × environment interaction or the genetic main effect and

interaction jointly. Here we show that meta-regression is robust to the covariate × environ-

ment confounder while joint meta-analysis is subject to the confounding effect with inflated

type I error rates. Given vast sample sizes employed in genome-wide gene × environment

interaction studies, non-significant covariate × environment interactions at the study level

could substantially elevate the type I error rate at the consortium level. When covariate ×
environment confounders are present, type I errors can be controlled in joint meta-analysis

by including the covariate × environment terms in the analysis at the study level. Alterna-

tively, meta-regression can be applied, which is robust to potential covariate × environ-

ment confounders.

Introduction

Genome-wide association studies (GWASs) have achieved considerable success in recent

years. Approximately 24,000 associations between single nucleotide polymorphisms (SNPs)

and complex diseases or traits have been identified [1]. For blood pressure or hypertension

traits, more than 60 genomic loci have been discovered, most of which are novel [2]. These

findings provide insight into the pathogenesis of common complex diseases, potential

targets for pharmacotherapy, as well as clues for precision medicine [3]. Because of the

large number of SNPs under statistical testing and small effect sizes for loci of interest, col-

laborative consortia have been established by studies to achieve sample sizes necessary for
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discovery and replication. Genetic main effects have been estimated in contributing studies,

the results of which were then combined at the consortium level. Meta-analyses methods for

synthesizing statistical evidence across studies have become important analytical tools for

genetic studies [4].

Inspired by the success of GWASs of genetic main effect, researchers are looking for evi-

dence of gene × environment (G×E) interactions [5]. The genome-wide gene × environment

interaction (GWEI) study turned out to be more challenging [6] and the results are limited. In

a GWEI study of genetic interactions with body mass index (BMI) for fasting insulin and glu-

cose, six novel loci were identified with genome-wide significance [7]. The regression coeffi-

cients of the SNP main effects and SNP×BMI interactions were estimated in studies, while

accounting for their covariance. Joint meta-analysis (JMA) was used to test the SNP main

effects and interactions simultaneously [8, 9]. In another JMA of SNP and SNP × smoking

interaction for pulmonary function, three novel loci were identified [10]. In a genome-wide

assessment of SNP × age interactions for blood pressure traits, two novel loci were discovered

[11]. Samples were first stratified into six 10-year age bins in each study. The SNP main effects

were estimated in strata, as in GWAS. Meta-regression (MR) was then used at the consortium

level to conduct the joint test of SNP main effects and SNP × age interactions [12]. More

recently, a genome-wide study of SNP × age, SNP × gender, and SNP × age × gender interac-

tions on body size and shape traits was reported [13]. Study-specific GWASs were conducted

by four strata (men< 50 y, men> 50 y, women< 50 y, and women> 50 y) and meta-analyses

of SNP main effects were also carried out by strata. Four significant loci were novel in the

SNP × age interaction test for BMI when comparing meta-results between age strata, and 17

were novel in the SNP × gender interaction test for the waist-to-hip ratio. Although BMI, age,

and gender are not environmental in a strict sense, they represent particular genetic and envi-

ronmental contexts that modulate genetic effects.

From a methodologic perspective, GWEI studies are subject to different types of confound-

ing factors [6, 14–16]. In particular, covariate × environment (C×E) interactions are routinely

ignored in current GWEI analyses, which might confound the results [15]. In this work, we

carried out simulation studies to determine robustness of the MR and JMA, two commonly

used meta-analysis methods for testing interactions or genetic main effects and interactions

jointly, to the confounding effects due to the lack of awareness the of C×E interactions.

Methods

Meta-regression

MR is a robust, general, and powerful meta-analysis method for conducting GWEI analysis at

the consortium level [12] for the following reasons: 1) MR can be used in cases with dichoto-

mous or continuous environmental exposures; 2) MR can be used for testing interactions

only, joint testing of genetic main effects and interactions, or testing of marginal genetic main

effects; 3) MR can be used to investigate interactions in linear or non-linear forms without

requiring additional analyses at the study level; and 4) MR is simple for implementation,

so that any study with a conventional GWAS analysis pipeline can contribute to the GWEI

analysis.

For continuous environmental exposure, samples are first stratified into groups according

to the environmental measurements at each study. SNP main effects for quantitative traits can

be estimated at the stratum level using the following linear regression,

Y ¼ b0 þ bGGþ bEE þ bCC þ ε; ð1Þ

where Y is the trait of interest, G is the code of the SNP (e.g., the number of reference allele
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when testing additive genetic effects), E is the environmental measurement, and C is the covar-

iate. Additional covariates may be included in the model if necessary.

Suppose that b̂Gi and êi are the estimated genetic main effect and standard error, respec-

tively, and �Ei is the average environmental measurement of the i-th stratum, where i = 1,2,� � �,

N, and N is the number of strata contributing to the meta-analysis. Linear MR formulates the

environment-dependent genetic effect βG as follows:
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The one degree of freedom (1 df) test of interaction is based on the test of slope γ1. Under

the null hypothesis H0: γ1 = 0, test statistics ĝ1=O2;2 follows a Z distribution. The two degrees

of freedom (2 df) joint test of genetic main effect and interaction is based on the joint test of

intercept γ0 and slope γ1. Under the null hypothesis H0: γ0 = γ1 = 0, test statistics γ̂T
O
� 1γ̂ fol-

lows a 2 df chi-square distribution.

The marginal genetic main effect can be tested as follows:
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In this case, the solution is equivalent to that of the inverse variance meta-analysis method

and the test is based on the test of γ0.

Joint meta-analysis

For JMA, GWEI analyses are carried out at the study level using linear regression [8, 9], which

estimates genetic main effects and interaction jointly, as follows:

Y ¼ b0 þ bGGþ bIG� E þ bEE þ bCC þ ε: ð4Þ

Each study reports the estimated genetic effect b̂Gi, interaction effect b̂Ii and the covariance

matrix Ŝi, where i = 1,2,� � �,M, and M is the number of studies. At the consortium level, JMA

combines statistical evidence by solving the following multivariate generalized least squares
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equation:
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where ϵi follows a bivariate normal distribution with a zero mean and covariance matrix Ŝi,
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The interaction test is based on the test statistics b̂I=F2;2 which follows a Z distribution. The

joint test of the genetic main effect and interaction is based on the 2 df chi-square statistics

bβ
T
F� 1bβ.

Covariate × environment confounder

SNPs that are associated with the covariates, but not the trait of interest, may be significant in

genetic association studies simply due to the correlations between the trait and covariates.

This type of confounding effects can be effectively controlled by including confounders in the

regression model when studying genetic main effects. Confounders, such as age, gender, and

principal components [17], are routinely included in the GWAS analysis as covariates. How-

ever, covariates may confound the test of the G×E effect through interactions between covari-

ates and the environmental variable [15], which are largely ignored in GWEI studies.

Suppose that a quantitative trait Y depends on a genetic effect G, an environmental variable

E, a covariate C, a G×E interaction, and a C×E interaction, as follows:

Y ¼ b0 þ bGGþ bIG� E þ bEE þ bCC þ bC�EC � E þ ε; ð6Þ

Assume that only the main effect of the covariate is controlled in the G×E interaction analy-

sis, thus association analysis is carried out by solving the following model without accounting

for the C×E interaction:

Y ¼ b
�

0
þ b

�

GGþ b
�

I G� E þ b
�

EE þ b
�

CC þ ε:
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In this case, the estimated interaction effect would be biased by the C×E interaction, as fol-

lows [15]:

b
�

I ¼ bI þ bC�E
sCG

s2
G

:

Here, σCG is the covariance between C and G, and s2
G is the variance of G. Statistical evi-

dence of the interaction effect comes from two sources: the genuine interaction effect, if it

exists; and the C×E interaction. Depending on whether signs of βI and βC×EσCG are the same

or opposite, the statistical power of detecting the G×E interaction could be higher or lower.

Even though the C×E confounder may enhance the detection under some scenarios, it should

be controlled for because the increased statistical evidence comes from the artifact of model

miss-specification.

If a null SNP is tested with the miss-specified model, the G×E interaction could be signifi-

cant if the SNP is confounded with the covariate, therefore causes a false-positive. For example,

there might be population stratification in the study samples, and sub-populations might

respond differently to the environmental variable, i.e., a population × environment interaction

might exist. Including environmental variable and principle components in the analysis will

control the environmental and population effects, but not their interaction. For those SNPs

showing different allele frequencies among sub-populations, they would demonstrate G×E

effects simply due to the uncontrolled population × environment interaction. In the following

section, we examined the robustness of MR and JMA to such C×E confounder.

Results

We conducted simulations to study type I errors and the statistical power of MR and JMA in

the presence of a C×E confounding effect. Evaluations of MR and JMA for the case without

C×E confounders have been described elsewhere [9, 12]. In brief, type I errors of the two meth-

ods are well controlled when the C×E confounder does not exist [9, 12]. The statistical power

of MR is slightly less than that of JMA because of the stratification of the environmental vari-

able [12]. For the purpose of comparison, we also included the results from a mega-analysis,

which is based on the pooled individual-level data from all contributing studies. Although the

mega-analysis is hardly implemented in GWEI studies due to various heterogeneities or con-

sent restrictions of studies, it provides a benchmark to examine the efficiency of the meta-anal-

ysis methods [18].

We simulated 50 studies each with 1000 unrelated individuals. The simulation included a

continuous environmental variable E and a covariate C, both of which follow a standard nor-

mal distribution, and a quantitative trait Y. The trait Y relates to the environmental variable E
and covariate C in the following way:

Y ¼ bEE þ bCC þ bC�EC � E þ ε:

Environmental term βEE and covariate term βCC each explain 10% of the variation in Y.

The C×E interaction term accounts for 0.1% of variance of Y. The random error ε is also nor-

mally distributed. C, E and ε are generated by the rnom function in R [19], and βE, βC, and

βC×E are chosen as square roots of the variances of the corresponding terms. The error variance

is chosen such that the trait variance equals 1. A common SNP is simulated to be confounded

with the covariate C. The SNP has a minor allele frequency (MAF) f1 for samples with a C< 0

and a f2 for a C� 0, This mimics the situation that there is population stratification in samples,

C is a principal component derived from genome-wide markers, and the SNP is population-
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informative. Clearly, the SNP is under the null hypothesis having no genetic main effect or

G×E interaction effect for trait Y.

Robustness of meta-regression to the covariate × environment

confounder

When conducting MR analyses, we divided samples into five strata for each study according to

the environmental measurements, each consisting of 200 individuals. The genetic main effect

of the SNP was estimated using regression model (1). With the estimated genetic main effect,

standard error, and average environmental measurement from each stratum, we performed

MR analyses of the 1 df interaction test and 2 df joint test based on Eq (2).

In JMA, we employed interaction model (4) for the analyses at the study level. The esti-

mated genetic effects, interaction effects, and the covariance matrix were combined using Eq

(5). In mega-analyses, we pooled samples of studies under analyses, and carried out the 1 df

interaction test and 2 df joint test based on regression model (4).

In this set of analyses, we did not control for the C×E interaction, therefore all analyses are

subject to the C×E confounding effect. The analyses were conducted with 1000 replications,

empirical type I error rates for the 1 df interaction test and 2 df joint test were evaluated for

meta-analyses with 10, 20, 30, 40, and 50 studies. Type I error rates of analyzing a single study

were also examined. The results for f1 = 0.3 and f2 = 0.1 are shown in Fig 1. Full results for dif-

ferent allele frequencies and different effect sizes of the C×E interaction are presented in the

S1–S10 Figs.

It can be seen that MR is robust to the C×E confounder. Empirical type I error rates of the

interaction test and joint test behave well for different effect sizes of the C×E interaction,

extents of confounding between the covariate and SNP, and sample sizes. JMA and mega-anal-

ysis, however, are negatively impacted by the C×E confounding effect with inflated type I error

rates when f1 6¼ f2. The inflation is larger, when the effect size of the C×E interaction is larger,

|f1 − f2| is increased, or the sample size becomes larger. The inflation shares the same trend for

both the interaction test and the joint test. The latter test is slightly less than the former because

the 2 df test has a higher threshold for statistical significance. The type I error rates for JMA

and the mega-analysis were close for all scenarios, suggesting that all of the C×E confounding

effects are carried over from the study level to the consortium level and included in the meta-

statistics. When f1 equals f2, type I error rates of the two methods are close to the pre-set nomi-

nal value of 0.05 because the SNP is not confounded with the covariate, see Fig 2.

In GWEI analyses, contributing studies are commonly from different types of designs and

with different sampling methods, and not all studies may experience the C×E confounding

effect. We carried out another set of simulations, in which half of the studies were assumed to

have been subjected to the C×E confounding effect, whereas the others were with βC×E set to

zero. The results for f1 = 0.3 and f2 = 0.1 are shown in Fig 3, and more results are presented in

S11–S15 Figs. Obviously, the inflation of type I errors for JMA becomes smaller compared

with that in Fig 1. This is because only the studies with C×E effects contributed to the inflation.

Robustness of analyses of genetic main effects

Based on the same simulated data sets, we evaluated the robustness of testing the genetic

main effects to the C×E confounder. For MR, the genetic main effect was synthesized using

model (3) without additional analyses at the study level. Because JMA does not provide a

test of marginal genetic main effects, we compared with the results from an inverse variance

meta-analysis method. We estimated genetic main effects of the SNP at each study using

model (1). The estimated genetic main effect and standard error were combined with the

Robustness and meta-analyses and gene × environment interactions
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inverse variance meta-analysis method. Mega-analysis of the genetic main effects was also

carried out based on model (1). Empirical type I error rates for testing the SNP main effect

are shown in Fig 4.

All of the three analyses were robust to the C×E confounding effect. Although the SNP is

confounded with covariate C and C×E interaction exists for the simulated trait, it appears that

including C in the model is sufficient to control for all of the confounding effects. This agrees

with the experiences from GWAS, in which all potential interactions are routinely ignored in

the analysis of the genetic main effects.

Accounting for the covariate × environment interaction

To prevent the GWEI study from possible C×E confounding effects, a “simple” solution has

been suggested [15], that is, including all potential C×E interaction terms in the analysis. Fol-

lowing this recommendation, we re-analyzed the simulated data sets. For JMA, we added the

C×E interaction in the analyses at the study level to control for the confounding effect. For

MR, we also added the C×E interaction in the analyses, even though unnecessary. The same

term was included in the mega-analysis as well. The results are shown in Fig 5. All type I error

rates now behave normally, which proves the effectiveness of the solution. For MR, results

with and without including the C×E interaction in the model are about the same.

Fig 1. Tests of interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.1. MR_I: MR test of

interaction; MR_G&I: MR joint test of the genetic main effect and interaction; JMA_I: JMA test of interaction;

JMA_G&I: JMA joint test of the genetic main effect and interaction; MEGA_I: mega-analysis test of

interaction; and MEGA_G&I: mega-analysis joint test of the genetic main effect and interaction.

https://doi.org/10.1371/journal.pone.0171446.g001
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Statistical power of meta-analysis methods for testing the

gene × environment interaction

In MR, samples are stratified into groups according to the environmental measurements. The

analysis of genetic main effects by strata essentially overlooks the information on the G×E

interaction within the stratum. Statistical evidence of the interaction comes solely from the dif-

ferences in genetic main effects across strata. The loss of information could be substantial if

variations of the environmental variable are large within the strata, thus diminishing the

power of detecting the G×E interaction. This loss of information could be alleviated by choos-

ing a finer stratification scheme.

We simulated a causal SNP that is associated with the trait Y, as in model (6). The genetic

main effect of the SNP, together with the G×E interaction, accounts for 0.1% of trait variance.

The environmental effect, covariate effect, and the C×E interaction are the same as in the pre-

vious simulation. The SNP has a MAF of 0.3 and the genetic main effect and interaction effect

take one-half of the total genetic variance each. MR analyses were conducted in two ways, as

follows: dividing the samples of each study into 5 strata; and dividing the samples of each

study into 10 strata. The C×E interaction term was included in the JMA and mega-analysis to

control for the confounding effect. Fig 6 shows statistical powers of detecting the SNP with the

Fig 2. Tests of interaction without controlling for the C×E confounder, f1 = f2 = 0.3. MR_I: MR test of

interaction; MR_G&I: MR joint test of the genetic main effect and interaction; JMA_I: JMA test of interaction;

JMA_G&I: JMA joint test of the genetic main effect and interaction; MEGA_I: mega-analysis test of

interaction; and MEGA_G&I: mega-analysis joint test of the genetic main effect and interaction.

https://doi.org/10.1371/journal.pone.0171446.g002
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1 df interaction test and 2 df joint test. More results for different combinations of the genetic

main effect and interaction effect are presented in the S26–S30 Figs.

JMA and mega-analysis have essentially the same powers for both the 1 df interaction test

and 2 df joint test. Thus, almost all information about the G×E interaction contained in the

summary statistics of each study is combined into the meta-statistics efficiently. For the MR of

5 strata at each study, small power losses can be observed for the results with 10 studies. Com-

pared with the mega-analysis, power losses for the 1 df interaction test and 2 df joint test were

approximately 6.1% and 3.1%, respectively. When stratifying samples into 10 groups for each

study, power losses were reduced to 4.2% and 2.0% for the two tests. The power losses became

much smaller when analyzing 20 or more studies.

Discussion

According to the simulation studies, MR demonstrates robustness to the C×E confounder,

while JMA is subject to the confounding effect. There are two major differences between the

two approaches. One is that samples were stratified according to the environmental variable

and the association analysis is conducted at the stratum level in MR. Because the covariate

is adjusted by stratum, most of the C×E variance is eliminated before the meta-analysis.

Fig 3. Tests of interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.1; confounder is

present in half of the studies. MR_I: MR test of interaction; MR_G&I: MR joint test of the genetic main effect

and interaction; JMA_I: JMA test of interaction; JMA_G&I: JMA joint test of the genetic main effect and

interaction; MEGA_I: mega-analysis test of interaction; and MEGA_G&I: mega-analysis joint test of the

genetic main effect and interaction.

https://doi.org/10.1371/journal.pone.0171446.g003
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Variation of the environmental exposure within the stratum is small, hence the residual C×E

effect is limited. The association analysis of JMA was conducted at the study level with a full

range of the environmental variable and was subject to the total effect of the C×E interaction.

The other difference is that the genetic main effects were estimated at the stratum level in MR,

while both genetic main effect and interaction were estimated in JMA. As shown in Fig 4, esti-

mating marginal genetic main effects is robust to the C×E confounder, as long as the main

effect of the covariate is included in the model; however, joint estimation of the genetic main

effect and interaction could be confounded by the C×E interaction if it is not accounted for

appropriately.

In the current GWEI studies, the genetic main effect and interaction are commonly esti-

mated with covariates included in the model leaving possible C×E interactions uncontrolled.

The effect sizes of the C×E interactions may be small and the interactions may not even be

significant at the study level; however, given the vast sample sizes of the consortium-type of

GWEI studies, small confounding effects could be carried over to the meta-analysis, and final

results might suffer from the biases and false positives due to the C×E interactions. In our

simulations, with the 0.1% effect size of the C×E interaction and sample size of 1000 for each

study, only about 10 out of 50 studies showed statistical significance at the 0.05 level for the

C×E interaction effect. The type I error rates increased slightly to 0.06 at the study level for

both the interaction test and joint test; however, as shown in Fig 1, if the confounding effect is

Fig 4. Tests of genetic main effect without controlling for the C×E confounder, f1 = 0.3, f2 = 0.1. MR_G:

MR test of the genetic main effect; IV_G: inverse variance test of the genetic main effect; and MEGA_G:

mega-analysis test of the genetic main effect.

https://doi.org/10.1371/journal.pone.0171446.g004
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not properly controlled for, type I error rates increase to 0.56 and 0.45 for the interaction and

joint tests, respectively, when results from 50 studies are combined. Therefore, the C×E con-

founder has to be controlled properly when employing the JMA analysis. Alternatively, a

robust method, such as MR, has to be used.

For GWEI studies based on JMA, it is common that multiple covariates are correlated with

the trait of interest and multiple C×E interactions may need to be included in the analyses.

Otherwise, results would be subject to the C×E confounding effect if one of the C×E confound-

ers is left unaccounted for. In practice, there is usually a lack of information at the consortium

level about what C×E interactions should be included in the analysis of which studies due to

the heterogeneities of participating studies. In addition, potential C×E interactions may not

even be significant in many studies. This results in a difficult decision when preparing the anal-

ysis plan. Note that the association analysis of MR is conducted by stratum, and all possible

C×E interaction effects are eliminated implicitly at the strata level without requiring such

information. It applies well to the case that different studies may need to adjust different sets of

C×E interactions.

When evaluating the robustness of meta-analyses to a C×E confounder, we used the covariate

that indicates population stratification. We showed the inflation of type I error for population

informative SNPs when C×E interaction exists. As demonstrated in many GWAS literature,

Fig 5. Tests of interaction with controlling for the C×E confounder, f1 = 0.3, f2 = 0.1. MR_I: MR test of

interaction; MR_G&I: MR joint test of the genetic main effect and interaction; JMA_I: JMA test of interaction;

JMA_G&I: JMA joint test of the genetic main effect and interaction; MEGA_I: mega-analysis test of

interaction; and MEGA_G&I: mega-analysis joint test of the genetic main effect and interaction.

https://doi.org/10.1371/journal.pone.0171446.g005
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such population stratification is modest in samples of European ancestry, therefore, the con-

founding effect of population × environment interaction would be modest as well. For covariates

such as age or gender, it is rare to see autosomal SNPs having covariate-dependent allele fre-

quencies. As a result, even if C×E interaction exists, it will not affect the results because SNPs are

not confounded with these covariates. This corresponds to the case when f1 = f2 as demonstrated

in Fig 2.

Robust standard errors are provided in many GWAS software packages, such as ProbABEL

[20], in order to avoid the influence of potential heteroscedasticity or outliers. We conducted

another set of analyses based on the robust variance and covariance matrix of “HC3” type that

is implemented in the sandwich package of R [21]. The results are presented in S31–S35 Figs,

which are essentially the same as the results based on the ordinary least squares estimator.

Since such robust approach does not address the C×E confounding effect, interaction analyses

robust to the heteroscedasticity and outliers without accounting for the C×E interaction are

still subject to the inflation of type I error.

Choosing the number of strata for MR is a trade-off among statistical power, analysis

complexity and spectrum of allele frequency. Obviously, the number of the analyses at the

study level is linearly related to the number of strata. We showed in the Results section that

Fig 6. Statistical power of tests of interaction,R2

G ¼ 0:05%;R2

I ¼ 0:05%. MR5_I: MR test of interaction

with 5 strata within each study; MR5_G&I: MR joint test of the genetic main effect and interaction with 5 strata

within each study; MR10_I: MR test of interaction with 10 strata within each study; MR10_G&I: MR joint test of

the genetic main effect and interaction with 10 strata within each study; JMA_I: JMA test of interaction;

JMA_G&I: JMA joint test of the genetic main effect and interaction; and MEGA_I: mega-analysis test of

interaction; and MEGA_G&I: mega-analysis joint test of the genetic main effect and interaction.

https://doi.org/10.1371/journal.pone.0171446.g006
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finer stratification scheme provides greater statistical power; however, dividing samples into

too many strata will not only increase the analysis burden, but also decrease the sample sizes

of the strata. For less-frequent SNPs, the minor allele counts may become so low that stable

statistical inference cannot be guaranteed. For example, to ensure minor allele counts to be

larger than 20 for SNPs with MAFs larger than 5%, sample sizes of strata should be larger

than 200. When applying MR in GWEI studies, a coarse stratification scheme can be chosen

for studies with small sample sizes and fine stratification can be used for studies with large

sample sizes.

Keller suggested another scenario in which the covariate may confound the interaction

analysis [15]. When the covariate is correlated with the environmental variable and the covari-

ate interacts with the SNP, statistical evidence of the G×E interaction could come from the cor-

relation between the covariate and environmental variable. In such cases, the gene × covariate

term should be included in the model to produce an unbiased estimate of the G×E effect. Both

the MR and JMA are subject to this type of confounding effect; however, any significant SNPs

detected because of this kind of confounding effect are under the alternative hypothesis, and

are therefore genuine. It is the “interaction with whom” that is under question. Caution has to

be taken when interpreting the interactions discovered by usual models without accounting

for the gene × covariate (G×C) interaction. Post hoc analysis that includes G×C in the model

can be carried out for those significant results.

Supporting information

S1 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.1, and

R2

C�E ¼ 0:1%.

(PNG)

S2 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.2, and

R2

C�E ¼ 0:1%.

(PNG)

S3 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.3, and

R2

C�E ¼ 0:1%.

(PNG)

S4 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.4, and

R2

C�E ¼ 0:1%.

(PNG)

S5 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.5, and

R2

C�E ¼ 0:1%.

(PNG)

S6 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.1, and

R2

C�E ¼ 1%.

(PNG)
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S7 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.2, and

R2

C�E ¼ 1%.

(PNG)

S8 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.3, and

R2

C�E ¼ 1%.

(PNG)

S9 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.4, and

R2

C�E ¼ 1%.

(PNG)

S10 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.5, and

R2

C�E ¼ 1%.

(PNG)

S11 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.1, and

R2

C�E ¼ 0:1%; confounder is present in half of the studies.

(PNG)

S12 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.2, and

R2

C�E ¼ 0:1%; confounder is present in half of the studies.

(PNG)

S13 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.3, and

R2

C�E ¼ 0:1%; confounder is present in half of the studies.

(PNG)

S14 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.4, and

R2

C�E ¼ 0:1%; confounder is present in half of the studies.

(PNG)

S15 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.5, and

R2

C�E ¼ 0:1%; confounder is present in half of the studies.

(PNG)

S16 Fig. Type I error rates of tests of the genetic main effect without controlling for the

C×E confounder, f1 = 0.3, f2 = 0.1, and R2

C�E ¼ 0:1%.

(PNG)

S17 Fig. Type I error rates of tests of the genetic main effect without controlling for the

C×E confounder, f1 = 0.3, f2 = 0.2, and R2

C�E ¼ 0:1%.

(PNG)
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S18 Fig. Type I error rates of tests of the genetic main effect without controlling for the

C×E confounder, f1 = 0.3, f2 = 0.3, and R2

C�E ¼ 0:1%.

(PNG)

S19 Fig. Type I error rates of tests of the genetic main effect without controlling for the

C×E confounder, f1 = 0.3, f2 = 0.4, and R2

C�E ¼ 0:1%.

(PNG)

S20 Fig. Type I error rates of tests of the genetic main effect without controlling for the

C×E confounder, f1 = 0.3, f2 = 0.5, and R2

C�E ¼ 0:1%.

(PNG)

S21 Fig. Type I error rates of the tests of interaction and joint tests of the genetic main effect

and interaction with controlling for the C×E confounder, f1 = 0.3, f2 = 0.1, and R2

C�E ¼ 0:1%.

(PNG)

S22 Fig. Type I error rates of the tests of interaction and joint tests of the genetic main

effect and interaction with controlling for the C×E confounder, f1 = 0.3, f2 = 0.2, and

R2

C�E ¼ 0:1%.

(PNG)

S23 Fig. Type I error rates of the tests of interaction and joint tests of the genetic main effect

and interaction with controlling for the C×E confounder, f1 = 0.3, f2 = 0.3, and R2

C�E ¼ 0:1%.

(PNG)

S24 Fig. Type I error rates of the tests of interaction and joint tests of the genetic main

effect and interaction with controlling for the C×E confounder, f1 = 0.3, f2 = 0.4, and

R2

C�E ¼ 0:1%.

(PNG)

S25 Fig. Type I error rates of the tests of interaction and joint tests of the genetic main

effect and interaction with controlling for the C×E confounder, f1 = 0.3, f2 = 0.5, and

R2

C�E ¼ 0:1%.

(PNG)

S26 Fig. Statistical power of tests of interaction and joint tests of the genetic main effect

and interaction, R2

G ¼ 0:1%; R2

I ¼ 0%, R2

C�E ¼ 0:1%, and MAF = 0.3.

(PNG)

S27 Fig. Statistical power of tests of interaction and joint tests of the genetic main effect

and interaction, R2

G ¼ 0:075%; R2

I ¼ 0:025%, R2

C�E ¼ 0:1%, and MAF = 0.3.

(PNG)

S28 Fig. Statistical power of tests of interaction and joint tests of the genetic main effect

and interaction, R2

G ¼ 0:05%; R2

I ¼ 0:05%, R2

C�E ¼ 0:1%, and MAF = 0.3.

(PNG)

S29 Fig. Statistical power of tests of interaction and joint tests of the genetic main effect

and interaction, R2

G ¼ 0:025%; R2

I ¼ 0:075%, R2

C�E ¼ 0:1%, and MAF = 0.3.

(PNG)

S30 Fig. Statistical power of tests of interaction and joint tests of the genetic main effect

and interaction, R2

G ¼ 0%; R2

I ¼ 0:1%, R2

C�E ¼ 0:1%, and MAF = 0.3.

(PNG)

Robustness and meta-analyses and gene × environment interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0171446 March 31, 2017 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s021
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s022
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s023
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s024
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s025
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s026
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s027
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s028
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s029
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171446.s030
https://doi.org/10.1371/journal.pone.0171446


S31 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.1, and

R2

C�E ¼ 0:1%; robust variance and covariance are used.

(PNG)

S32 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.2, and

R2

C�E ¼ 0:1%; robust variance and covariance are used.

(PNG)

S33 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.3, and

R2

C�E ¼ 0:1%; robust variance and covariance are used.

(PNG)

S34 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.4, and

R2

C�E ¼ 0:1%; robust variance and covariance are used.

(PNG)

S35 Fig. Type I error rates of tests of interaction and joint tests of the genetic main effect

and interaction without controlling for the C×E confounder, f1 = 0.3, f2 = 0.5, and

R2

C�E ¼ 0:1%; robust variance and covariance are used.

(PNG)
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