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ABSTRACT Anti-human immunodeficiency virus type 1 (HIV-1) nonneutralizing anti-
bodies (nnAbs) capable of antibody-dependent cellular cytotoxicity (ADCC) have
been identified as a protective immune correlate in the RV144 vaccine efficacy trial.
Broadly neutralizing antibodies (bNAbs) also mediate ADCC in cell culture and rely
on their Fc region for optimal efficacy in animal models. Here, we selected 9 mono-
clonal nnAbs and 5 potent bNAbs targeting various epitopes and conformations of
the gp120/41 complex and analyzed the potency of the two types of antibodies to
bind and eliminate HIV-1-infected cells in culture. Regardless of their neutralizing ac-
tivity, most of the selected antibodies recognized and killed cells infected with two
laboratory-adapted HIV-1 strains. Some nnAbs also bound bystander cells that may
have captured viral proteins. However, in contrast to the bNAbs, the nnAbs bound
poorly to reactivated infected cells from 8 HIV-positive individuals and did not medi-
ate effective ADCC against these cells. The nnAbs also inefficiently recognize cells in-
fected with 8 different transmitted-founder (T/F) isolates. The addition of a synthetic
CD4 mimetic enhanced the binding and killing efficacy of some of the nnAbs in an
epitope-dependent manner without reaching the levels achieved by the most po-
tent bNAbs. Overall, our data reveal important qualitative and quantitative differ-
ences between nnAbs and bNAbs in their ADCC capacity and strongly suggest that
the breadth of recognition of HIV-1 by nnAbs is narrow.

IMPORTANCE Most of the anti-HIV antibodies generated by infected individuals do
not display potent neutralizing activities. These nonneutralizing antibodies (nnAbs)
with antibody-dependent cellular cytotoxicity (ADCC) have been identified as a pro-
tective immune correlate in the RV144 vaccine efficacy trial. However, in primate
models, the nnAbs do not protect against simian-human immunodeficiency virus
(SHIV) acquisition. Thus, the role of nnAbs with ADCC activity in protection from in-
fection remains debatable. In contrast, broadly neutralizing antibodies (bNAbs) neu-
tralize a large array of viral strains and mediate ADCC in cell culture. We analyzed
the capacities of 9 nnAbs and 5 bNAbs to eliminate infected cells. We selected 18
HIV-1 strains, including virus reactivated from the reservoir of HIV-positive individu-
als and transmitted-founder isolates. We report that the nnAbs bind poorly to cells
infected with primary HIV-1 strains and do not mediate potent ADCC. Overall, our
data show that the breadth of recognition of HIV-1 by nnAbs is narrow.
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Broadly neutralizing antibodies (bNAbs) targeting the envelope of human immuno-
deficiency virus type 1 (HIV-1) are highly efficacious when passively administered in

vivo. The most active bNAbs protect against virus acquisition or dampen viral replica-
tion in humanized mice and in macaques (1–6). Clinical trials in viremic patients
revealed that 3BNC117 or VRC01, two bNAbs that target the CD4 binding site (CD4bs)
of the envelope, reduce viremia by up to 2.5 logs (7, 8). 3BNC117 and, to a lesser extent,
VRC01 can also delay viral rebound after antiretroviral treatment interruption (9, 10). A
vaccine that could generate such bNAbs is likely to be protective (11), yet this is a
challenging goal to achieve due to the rare elicitation of bNAbs during natural infection
(12) and the unprecedented level of affinity maturation observed in the most active
ones (13, 14).

The RV144 vaccine trial performed in Thailand achieved a modest, but significant,
31% protection (15). This is the only evidence of vaccine-induced protection against
HIV-1 acquisition to date. Protection was not associated with the presence of broadly
neutralizing antibodies in the serum of vaccinated persons but rather with anti-HIV-1
antibody-dependent cellular cytotoxicity (ADCC) activity in the absence of potentially
competing anti-HIV-1 IgA antibodies (16–19). This raised the interesting possibility that
non-broadly neutralizing but potent ADCC-mediating antibodies may have protective
potential.

Nonneutralizing monoclonal antibodies (nnAbs) bind to numerous regions of the
gp120/gp41 complex (20–22). Targeted epitopes include a gp41 immunodominant
domain (gp41ID) that corresponds to a buried loop under the gp120 trimer (23) and
different conformational CD4-induced (CD4i) epitopes revealed after Env binding to
CD4 (21, 22, 24). Prototypic examples of CD4i antibodies are A32, belonging to the
so-called cluster A antibodies and targeting the C1/C2 region, and 17b, targeting the
coreceptor binding site (CoRBS) (25, 26). Other nnAbs target the CD4bs or the V3 loop
of gp120, without preventing virus binding or entry of most HIV-1 strains (20, 27–29).
Of note, nnAbs and bNAbs display differential binding to native-like soluble HIV-1 Env
trimers, uncleaved Env proteins, and monomeric subunits (30). Moreover, the nnAbs
tested so far do not protect against simian-human immunodeficiency virus (SHIV)
acquisition in primate models, although they may marginally reduce viral loads or limit
the number of founder viruses in a fraction of treated animals (23, 31–39).

Several lines of evidence suggest that ADCC plays a protective role in the host
response to HIV-1 infection. For instance, viral escape has been reported for ADCC-
targeted epitopes, suggesting the existence of ADCC-related immune pressure on the
virus (40). Some but not all studies have correlated ADCC responses with lower viremia
(41–43), and HIV controllers display elevated ADCC activity (44, 45). Regarding the virus
itself, the accessory proteins Vpu and Nef decrease ADCC mediated by some mono-
clonal or polyclonal antibodies, likely by limiting the amount of Env at the surface of
infected cells (24, 46–51). Mutation of the internalization motif in the gp41 cytoplasmic
tail also increases Env surface exposure and susceptibility to ADCC (46). The kinetics of
HIV-1 suppression in infected individuals by passively administered 3BNC117 suggest
that the effects of the antibody are not limited to the neutralization of viral particles but
also include an acceleration of the clearance of infected cells (52). Consistently, optimal
therapeutic efficacy requires the Fc region of bNAbs (53–55).

It has been proposed that potent ADCC-mediating antibodies mainly target regions
of Env that are recognized by nonneutralizing antibodies (gp120 CD4i or gp41ID
epitopes) (21, 26, 50, 56–58). The ADCC activities mediated by nnAbs differ based on
the epitope that they recognize (56, 57, 59). Moreover, the addition of CD4 mimetics to
infected cells modifies the conformation of Env at the surface, allowing the exposure of
CD4i epitopes and sensitizing the cells to nonneutralizing monoclonal or polyclonal
antibodies (60–62). We and other demonstrated that a subset of bNAbs targeting the
CD4bs, the V3 and V1V2 loops, and the membrane-proximal external region of gp41
(MPER) also exert a high level of ADCC in culture (51, 59, 63, 64). This indicates that Env
epitopes can be targeted by antibodies with both neutralizing and ADCC functions. We
also showed that the landscape of Env epitope exposure at the surface of infected cells
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and the subsequent sensitivity to ADCC vary considerably between viral strains (63). It
is noteworthy that most of the studies regarding the ADCC activity of nnAbs in animal
models or in cell culture systems have been performed by using a relatively limited
number of different HIV-1 strains (24, 39, 49–51, 59, 60, 65–70). Moreover, the frequent
use of gp120-coated cells (26, 57, 68, 71, 72) as targets in ADCC assays is a convenient
tool, but it does not fully recapitulate the levels or conformation of Env at the surface
of infected cells. Indeed, levels of Env at the surface of cells infected with a wild-type
virus are relatively low. Moreover, the presence of CD4 may promote the transition of
recombinant Env toward an open state, which is not usually observed with HIV-1-
infected cells.

Here, we analyzed the ability of anti-HIV-1 nnAbs to perform ADCC in cell culture.
We selected a panel of nnAbs isolated from elite neutralizers and displaying high-
affinity binding to YU-2 gp140 trimers (20, 27–29). We performed a side-by-side
comparison of the abilities of these nnAbs and of several of the most potent bNAbs to
bind and kill infected cells through NK cell engagement. Almost all antibodies were
able to trigger ADCC of cells infected by laboratory-adapted strains. However, the
nnAbs were generally poorly active against primary HIV-1 reactivated from the reservoir
or against transmitted-founder (T/F) viruses.

RESULTS
Presentation of nonneutralizing and broadly neutralizing antibodies used in

this study. We and other previously isolated a large panel of anti-HIV-1 Env monoclonal
antibodies from elite neutralizers by the capture of a single memory B cell using a YU-2
gp140 bait (20, 27–29). Some of the antibodies displayed a broad neutralization profile
(such as 3BNC117 or 10-1074), whereas others were ineffective or poorly active in
neutralization assays (20, 27–29). Within this second category, we selected a panel of 9
nnAbs that bind with high affinity to canonical epitopes of the gp120/gp41 complex.
These epitopes include the linear immunodominant domain on gp41 (gp41ID) (4-20
and 5-25), the CD4bs (1-863 and 2-1262), the CD4i epitopes in the CoRBS (4-8 and 4-42),
and the variable loop 3 crown (V3c) (2-59, 10-188, and 11-340) (Table 1). In some of the
experiments, we used the well-characterized A32 antibody, which binds another CD4i
epitope localized in C1/C2 regions (22), as a control. All antibodies were cloned into the
same IgG1 backbone. As expected, the gp41ID-specific antibodies did not neutralize
the NL4.3 and NLAD8 strains or the CH058 T/F strain (Table 1). The other antibodies
showed neutralization of some tier 1 and, more rarely, tier 2 viruses (Table 1) (20,
27–29). For comparison purposes, we also selected 5 potent bNAbs with previously

TABLE 1 Epitope specificity and neutralization activity of the anti-HIV-1 monoclonal
antibodies used in this study

Antibody Epitope Reference

Neutralization IC50 (�g/ml)

NL4.3 NLAD8 CH058

nnAbs
5-25 gp41 immunodominant 20 �15 �15 �15
4-20 gp41 immunodominant 20 �15 �15 �15
4-42 CD4-induced CoRBS 20 0.1 �15 �15
4-8 CD4-induced CoRBS 20 1.1 �15 �15
2-1262 CD4 binding site 20 0.24 �15 �15
1-863 CD4 binding site 20 0.84 �15 �15
2-59 V3 crown 20 �15 �15 �15
10-188 V3 crown 28 �15 �15 �15
11-340 V3 crown 28 �15 �15 �15

bNAbs
3BNC117 CD4 binding site 29 0.05 0.1 0.1
NIH45-46 CD4 binding site 29 0.06 0.2 0.2
10-1074 N322-glycan supersite 27 �15 0.1 0.2
PGT128 N322-glycan supersite 73 �15 0.2 0.02
PG16 V1/V2 glycans 74 0.7 0.05 �15
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described ADCC activity (59, 63), targeting the CD4bs (3BNC117 and NIH45-46), the
N332/V3 loop (10-1074 and PGT128), and glycan-V1/V2 loops (PG16) (Table 1) (27, 29,
73, 74).

Binding and ADCC activity of nnAbs on cells infected with laboratory-adapted
HIV-1 strains NLAD8 and NL4.3. Strong antibody binding to HIV-1-infected cells is a
prerequisite for ADCC activity (63, 75). We first asked whether the selected antibodies
bound to T cells (CEM-NKR cell line) infected with the NLAD8 or NL4.3 reference strain.
All tested antibodies bound to the fraction of cells productively infected (Gag high)
with NLAD8 (Fig. 1A and B). Some of the nnAbs also bound to the fraction of Gag-low
or Gag-negative (Gag�) cells present in the culture. For instance, the anti-gp41ID
antibodies showed a “diagonal” population on Gag-low cells, while anti-CD4i antibod-
ies equally bound to Gag-positive (Gag�) and Gag� cells. In contrast, the bNAbs
efficiently bound to Gag� cells without staining the bystander cell population (Fig. 1A
and B). A similar profile of binding was observed with NL4.3-infected cells, except for

FIG 1 Antibody binding at the surface of cells infected with two HIV-1 reference strains. (A) CEM-NKR cells
infected with HIV-1 (NLAD8) were incubated with 15 �g/ml of anti-Env monoclonal antibodies. The levels
of antibody bound on infected (Gag-high) and bystander (Gag-low and Gag-negative) cells were then
evaluated by flow cytometry. Dead cells were excluded based on morphological criteria using side and
forward scatters. A representative dot plot of each indicated antibody is presented. (B) CEM-NKR cells
infected with HIV-1 (NLAD8 or NL4.3) were stained with the indicated antibodies, and the percentage of
antibody-positive cells was measured by flow cytometry. The heat map represents the mean percentage of
Ab� cells in infected (Gag-high) or bystander (Gag-negative/low) cells obtained from 3 independent
experiments.
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the three V3 loop-targeting nnAbs, which did not recognize this X4-tropic envelope
(Fig. 1B).

To further describe the binding of some antibodies to cells that do not express high
levels of Gag, we cocultivated infected cells with target cells for 2 h and stained the cells
with anti-Gag and anti-Env antibodies (Fig. 2). Low Gag staining was detected in a
fraction of target cells, representing viral particles being transferred from infected cells
to uninfected cells (76). The CD4i and gp41ID nnAbs bound to these Gag-low or
Gag-negative target cells (Fig. 2). These results confirmed that some nnAbs bind to
bystander uninfected cells that have captured HIV virions or that may be covered with
shed gp120, likely because binding to CD4 induced conformational changes exposing
the cryptic epitopes (61).

We then examined the ability of nnAbs to trigger ADCC against HIV-1-infected cells.
CEM-NKR cells infected with NLAD8 or NL4.3 were preincubated with the different
antibodies before coculture with primary NK cells for 4 h. We evaluated the disappear-
ance of Gag� target cells as a readout of ADCC activity (63). To facilitate comparisons,
all antibodies were tested at high concentrations (15 �g/ml) (59, 63). A typical exper-
iment showed that isotype control antibody mGO53 was inactive, whereas 5-25 and
PGT128 induced the disappearance of about half of the NLAD8-infected cells (Fig. 3A).
All nnAbs (except 4-8 and 10-188) and the 5 bNAbs induced ADCC against NLAD8-
infected cells (Fig. 3B). NL4.3-infected cells were also sensitive to ADCC (Fig. 3B). The
levels of ADCC were variable among the antibodies tested, ranging from 0% to 60%,
and were positively correlated with the extent of binding to infected cells (Fig. 3C).
Altogether, these data show that the majority of nnAbs tested bound to cells infected
with the two laboratory-adapted HIV-1 strains and induced their killing through ADCC,
displaying efficacies similar to those of bNAbs.

Activity of nnAbs against reactivated HIV-1-infected cells. Primary HIV-1 isolates
may be less sensitive to ADCC than laboratory-adapted strains (59, 63). To explore the

FIG 2 Binding of anti-Env antibodies to bystander cells. CEM-NKR donor cells infected with HIV-1 (NL4.3 strain) were cocultivated for
2 h with uninfected target CEM-NKR cells stained with a fluorescent dye. Cells were then stained for Gag and Env and analyzed by
flow cytometry. FSC, forward scatter. (A) Gating strategy for donor and target cells and levels of Gag and Env from one representative
experiment. (B) The frequency of target cells that become Gag� cells varies with the extent of infection of donor cells. (C) Levels
surface binding of the indicated anti-Env antibodies among Gag� target cells. mGO53 was used as a control.

ADCC by nnAbs and bNAbs Journal of Virology

April 2017 Volume 91 Issue 8 e02440-16 jvi.asm.org 5

http://jvi.asm.org


sensitivity of primary HIV-1 to nnAbs, we first measured the exposure of Env epitopes
at the surface of activated CD4 T cells isolated from patients’ blood. We selected
infected individuals under suppressive antiretroviral treatment (ART) (viral loads of �40
copies/ml) (Table 2). We used a viral outgrowth assay in which phytohemagglutinin
(PHA) treatment activates resting CD4� T cells and induces HIV-1 spread from latently
infected cells (63). HIV-1 Gag� cells began to be detected at days 7 to 12 postreacti-
vation in 8 individuals (not shown), and their numbers increased over time, indicating
that viruses were infectious. Cell surface Env expression was assessed with the panel of
nnAbs and bNAbs (Fig. 4). Representative stainings of cells from two donors (donors
KB47 and KB51) with 5 antibodies are presented in Fig. 4A, whereas a summary of all
stainings, including both the percentage of infected cells positive for Env staining and
the median fluorescence intensity (MFI) of Env staining, is displayed in Fig. 4B. In the
representative examples, the nnAbs (5-25, 4-42, and 1-863) bound to Gag� cells, but
the MFI of binding was low. As observed with the laboratory-adapted strains, the CD4i

FIG 3 Analysis of ADCC activities of nnAbs and bNAbs. (A) CEM-NKR cells infected with HIV-1 (NLAD8 strain) were incubated
with 5-25, PGT128, or the mGO53 isotype antibody (all at 15 �g/ml) and with heterologous NK cells. After 4 h, the percentage
of Gag� CEM-NKR target cells (indicated in blue) was measured by flow cytometry. Data from one representative experiment
(out of six) are shown. (B) CEM-NKR cells were infected by two laboratory-adapted HIV-1 strains (NLAD8 or NL4.3), and each
antibody was tested with heterologous NK cells from at least three healthy donors. ADCC was calculated as the disappearance
of infected cells with or without antibody. Negative values were set to zero (means � standard errors of the means are shown).
nd, not determined. (C) Correlates of ADCC activity. ADCC means were calculated and plotted with mean binding values (from
Fig. 1B) for each antibody and the two viruses. Correlation was calculated by the Spearman correlation coefficient (r). nnAbs
are color-coded in blue, bNAbs are in red, and the isotypic control is in green.
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nnAbs also bound to a subset of cells expressing undetectable or low levels of Gag,
likely corresponding to bystander cells that may have captured viral material and/or to
cells at an early stage of the viral life cycle. The PGT128 bNAb bound with high intensity
to Gag� cells and not to Gag� cells (Fig. 4A). A comprehensive analysis of the binding
of the 8 nnAbs and 5 bNAbs on cells from the 8 patients confirmed these results (Fig.
4B). Some of the nnAbs bound to cells infected by the reactivated virus, but the
intensity of binding remained low. The nnAbs also bound with low intensity to
bystander cells. In contrast, the bNAbs displayed broader coverage and a higher
intensity of binding to reactivated Gag� cells, with minimal attachment to Gag� cells
(Fig. 4).

We further documented the binding of anti-Env antibodies to reactivated lympho-
cytes from patients by performing costaining with an anti-CD4 antibody. We reasoned
that cells that have downregulated CD4 are likely to be productively infected and in an
advanced stage of the viral life cycle, since Vpu, Nef, and Env are each able to interfere
with CD4 cell surface expression (77, 78). The Gag� cells were clearly composed of two
populations of cells, expressing CD4 or not at the cell surface (Fig. 5). As expected, the
Gag MFI was higher in CD4� cells, which were preferentially and strongly bound by
bNAbs. The situation was different with the nnAbs, which preferentially bound to CD4�

cells expressing low levels of Gag (Fig. 5). The MFI of nnAb binding to CD4� cells was
low, confirming our results obtained with the whole cell population (Fig. 4B).

We then used our panel of antibodies to test the sensitivity of reactivated cells to
ADCC. In a representative example with cells from donor KB51, the 5-25 nnAb was
ineffective, whereas PGT128 depleted half of the infected cells (Fig. 6A). Each antibody
from the panel was then tested against reactivated cells from 4 to 6 donors (Fig. 6B).
None of the nnAbs tested displayed detectable ADCC activity against these primary
isolates, except for 5-25, which was moderately active against cells from some donors.
In contrast, bNAbs were generally ADCC potent on cells from the majority of donors
tested. Collectively, the bNAbs display significantly higher levels of ADCC than do the
nnAbs (Fig. 6C). Altogether, these results indicate that nnAbs may bind to some cells
expressing reactivated viral strains, but the intensity of binding is generally not
sufficient to allow ADCC.

Binding of nnAbs to cells infected with T/F HIV-1 strains. We extended our
analysis of the recognition of infected cells by nnAbs to other primary HIV-1 strains that
might be relevant during transmission between individuals. CEM-NKR cells were in-
fected with 8 T/F HIV-1 strains (79) and costained with anti-Gag and anti-Env antibodies.
A representative example with CH058 shows that two nnAbs (5-25 and 4-42) bound
poorly to infected cells, whereas the NIH45-46 and PGT128 bNAbs bound strongly (Fig.
7A). When the whole panel of nnAbs and bNAbs was tested against the 8 T/F viruses,
we observed a strong dichotomy between the two categories of antibodies. The
percentage of infected cells stained with nnAbs remained consistently low (Fig. 7B), and
among positive cells, the MFI of staining was also low for nnAbs (not shown). These
results confirmed that the binding of bNAbs to T/F HIV-1 strains is variable (63).
However, each of the 5 bNAbs bound to 3 to 5 of the 8 T/F strains, and a strong
intensity of staining was often observed (Fig. 7A and data not shown). Conversely, each
of the 8 T/F viruses was targeted by 1 to 5 of the 5 bNAbs (Fig. 7B and data not shown).

TABLE 2 Biological characteristics of the 8 patients with detectable HIV-1 reactivation

Patient Age (yr)
Duration of
HAART (yr)

CD4 T cell count
(cells/mm3)

RNA level
(copies/ml)

KB18 55 9 2002 �40
KB27 54 4 495 �40
KB29 45 8 366 �40
KB30 39 5 730 �40
KB47 46 8 638 �40
KB49 50 7 1329 �40
KB50 43 5 684 �40
KB51 69 26 536 �40

ADCC by nnAbs and bNAbs Journal of Virology

April 2017 Volume 91 Issue 8 e02440-16 jvi.asm.org 7

http://jvi.asm.org


Therefore, the breadth of recognition of cells infected with primary HIV isolates,
including reactivated virus from the reservoir and T/F strains, is particularly limited for
nnAbs.

A small CD4-mimetic sulfopeptide conjugate modulates the activity of nnAbs.
Small CD4 mimetics modify the conformation of Env at the cell surface and sensitize
HIV-1-infected cells to ADDC mediated by nonneutralizing polyclonal antibodies pres-
ent in sera and other fluids from HIV-1-infected individuals (60). We thus examined the
effect of mCD4.2-PS1 on the binding and ADCC activity of our panel of nnAbs and
bNAbs. mCD4.2-PS1 is a recently described CD4-mimetic sulfopeptide conjugate that
binds to HIV-1 Env and inhibits cell-free and cell-associated HIV-1 with particularly low
50% inhibitory concentrations (IC50s), in the picomolar-to-nanomolar range (80).

FIG 4 Binding of anti-Env antibodies on reactivated HIV-1-infected cells from the viral reservoir in patients on HAART. (A) Purified CD4� T cells
from the 2 indicated patients on HAART (patients KB47 and KB51) were activated, and viral replication was monitored by flow cytometry. When
the percentage of Gag� cells was �5%, cells were stained with the indicated Abs. The data indicate the percentage of NAb� cells among Gag�

cells. Infected cells (Gag high) are shown in blue, and bystander cells (Gag negative/low) are shown in gray. Data from one representative
experiment (out of 2 to 3 for each patient) are shown. (B) Heat maps representing the percentage of Ab� cells (left) and the median fluorescence
intensity of Ab staining (right) in infected or bystander cells obtained from each patient.
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mCD4.2-PS1 binds gp120 through its mCD4 moiety and induces the structural modi-
fications necessary to expose the coreceptor binding domain, which, as a result,
becomes available to be blocked by the PS1 moiety (81). We first examined the effect
of mCD4.2-PS1 on Env epitope exposure. CEM cells infected with NLAD8 or CH058 and
primary CD4� T cells infected with the reactivated virus from patient KB18 (KB18v) were
incubated with mCD4.2-PS1 (10 nM) for 10 min before staining with the panel of nnAbs
and bNAbs. A representative example with CH058-infected cells shows that the binding
of the 5-25 nnAb was strongly enhanced by mCD4.2-PS1, whereas the staining of the
3BNC117 bNAb was decreased, likely because both molecules compete for the CD4bs
on gp120 (Fig. 8A). An analysis of the panel of antibodies confirmed that for cells
infected with the CH058 and KB18v viruses, the staining of some nnAbs (mostly those
targeting the V3 loop and the gp41ID epitopes) was increased (Fig. 8B). As expected,

FIG 5 Binding of anti-Env antibodies to reactivated HIV-1-infected cells from the viral reservoir. Purified CD4� T cells from a
patient on HAART (patient KB47) were activated, and viral replication was monitored by flow cytometry. When the percentage
of Gag� cells was �5%, cells were stained with the indicated Abs. (A) Cells were stained with anti-CD4 and anti-Gag antibodies
and with PGT128 or the isotype control mGO53. Three cell populations were defined, depending on the levels of Gag and CD4.
(B and C) Frequencies of antibody-positive cells (B) and median fluorescence intensities of staining (C) for each of the three
cell populations (n � 4; means � standard errors of the means).
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the nnAbs targeting the CD4bs were inhibited in their binding, whereas the CD4i
epitope was not significantly enhanced. The sensitivity of bNAbs to mCD4.2-PS1 varied
depending on the viral strain, but none of the 5 bNAbs tested displayed enhanced
binding after treatment with mCD4.2-PS1 (Fig. 8B).

We then assessed the effect of mCD4.2-PS1 on the ADCC activity of the nnAbs and
bNAbs. T cells infected with either CH058 or KB18v were incubated or not with
mCD4.2-PS1 before being used as targets in ADCC assays (Fig. 8C and D). The small CD4
mimetic enhanced the ADCC potency of some nnAbs, reflecting their increased binding
to infected cells. The ADCC efficacy of the bNAbs was decreased with CH058 and not
affected with KB18v, mirroring the effect of mCD4.2-PS1 on bNAb binding.

We then examined how the prototypic CD4i anti-cluster A A32 antibody (25)
behaves in our assays, since A32-like antibodies constitute the majority of the ADCC
activity observed in HIV-1-infected or RV144-vaccinated individuals (21, 26, 50, 68, 71,
82). Using lymphocytes infected with KB18v, we observed that the profile of A32
binding was comparable to that of CD4i CoRBS antibodies 4-8 and 4-42, with prefer-
ential staining for Gag-low or -negative cells (Fig. 9). The intensity of staining was not
enhanced by mCD4.2-PS1 (Fig. 9). Accordingly, none of the three CD4i nnAbs (targeting
either cluster A or the CoRBS) induced efficient ADCC against KB18v-infected cells in the
absence or presence of mCD4.2-PS1 (Fig. 9).

Altogether, these results indicate that a small CD4 mimetic enhances the binding
and ADCC activity of some but not all nnAbs. However, the combination of mCD4.2-PS1
and nnAbs does not seem to be superior to bNAbs used without the mimetic.

DISCUSSION

A correlate analysis of the RV144 vaccine trial suggested a protective role of nnAbs
displaying ADCC activity in the prevention of HIV-1 acquisition (17–19). However,

FIG 6 ADCC activity of nnAbs and bNAbs on reactivated HIV-1-infected cells from patients. (A) Reactivated cells from one
representative patient (patient KB51) were incubated with 5-25, PGT128, or the mGO53 isotype antibody (all at 15 �g/ml) and
with heterologous NK cells. After 6 h, the percentage of Gag� target cells (indicated in blue) was measured by flow cytometry.
(B) Summary of ADCC observed for each antibody against reactivated CD4 T cells isolated from patients. Broadly neutralizing
antibodies are color-coded in red, nonneutralizing antibodies are in blue, and the isotype control is in green. Each dot
represents data for one patient, tested with the indicated Abs and NK cells isolated from 2 to 3 heterologous healthy donor
cells. (C) Comparison of ADCC activities observed with nnAbs and bNAbs. Each dot represents the mean ADCC activity of each
Ab, tested on cells from 6 to 8 patients. Black bars indicate the means (**, P � 0.005 by a Mann-Whitney test).
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FIG 7 Limited recognition of T/F HIV-1-infected cells by nnAbs. (A) CEM-NKR cells infected with T/F HIV-1 (strain CH058) were
incubated with the indicated Abs (at 15 �g/ml). The numbers indicate the percentages of bNAb� cells among infected (Gag�)
cells. Data from one representative experiment (out of 4) are shown. (B) CEM-NKR cells infected with 8 T/F HIV-1 strains (CH040,
CH058, CH077, CH106, THRO, REJO, RHPA, and WITO) were incubated with the indicated Abs (at 15 �g/ml). Radar plots
represent the mean percentages (plain lines) and standard deviations (dashed lines) of Ab� cells among infected (Gag�) cells
evaluated by flow cytometry, from 3 independent experiments. nnAbs are in blue, and bNAbs are in red.
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FIG 8 A synthetic CD4 mimetic modulates binding of nnAbs and bNAbs and ADCC. (A) CEM-NKR cells infected with T/F HIV-1 (strain
CH058) were incubated with mCD4.2-PS1 (10 nM) for 10 min before measurement of Ab binding by flow cytometry. Data from one
representative experiment (out of 3) are shown. (B) CEM-NKR cells infected with T/F HIV-1 (strain CH058) and primary CD4 T cells
infected with HIV strain KB18v from patient KB18 were incubated or not with mCD4.2-PS1 before measurement of Ab binding by flow
cytometry. nnAbs (top) (in blue) and bNAbs are depicted separately. Radar plots represent the mean percentages (plain lines) and

(Continued on next page)
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subsequent studies in primates failed to demonstrate a protective role of passively
administered nonneutralizing single or pooled monoclonal antibodies or polyclonal
antibodies (23, 33, 34, 37, 38). The transfer of polyclonal, ADCC-inducing antibodies
isolated from an elite controller that exhibited nonneutralizing control of infection also
did not protect against SHIV challenge (36). In contrast, the passive transfer of the most
active bNAbs mediates sterilizing protection in primate models (1–6). Thus, the role of
nonneutralizing antibodies with ADCC activity in protection from infection or slowing
disease progression remains debatable and partly understood. Here, we have ad-
dressed this question by characterizing the activity of a panel of nine nonneutralizing
monoclonal antibodies in cell culture systems. We analyzed the ability of the nnAbs to
bind to HIV-1-infected cells and to mediate ADCC through NK lysis. The nnAbs were
selected to cover some of the known nonneutralizing epitopes present on the gp120/
gp41 complex and to bind with high affinity to the HIV-1 YU-2 gp140 trimer (20, 27–29).
Their activity was compared to those of five of the most active bNAbs, including those
that we and others recently demonstrated to be potent in eliminating HIV-1-infected
cells through ADCC (51, 59, 63).

We analyzed the binding activity of the nonneutralizing and neutralizing antibodies
in lymphocytes infected with up to 18 different HIV-1 strains, including 2 HIV-1
reference strains (NL4.3 and NLAD8), 8 isolates reactivated from patients under sup-
pressive treatment, and 8 T/F viruses. Strikingly, the nnAbs efficiently bound to cells
infected with the reference strains but were generally modestly able to bind to T cells
infected with the primary isolates. Our results reveal an unexpected lack of breadth of
nnAbs, a phenomenon that cannot be observed in classical neutralization assays with
cell-free viral particles, since the antibodies are, by definition, nonneutralizing. More-
over, we report that nnAbs often bind preferentially to bystander cells present in the
culture. Bystanders are defined as cells displaying low levels of Gag and an absence of
CD4 downregulation and likely correspond to cells that have recently captured viral
particles or are covered by shed gp120 from neighboring productively infected cells.
This preferential binding to bystander cells was previously reported for other mono-
clonal or polyclonal nonneutralizing antibodies (61, 83). This is likely the consequence
of intrinsic properties of nnAbs, which are not able to bind to the fully closed state of
the viral envelope (84). The binding of Env to CD4 molecules present on noninfected
cells will induce conformational changes, revealing the hidden epitopes targeted by

FIG 8 Legend (Continued)
standard deviations (dashed lines) of Ab� cells among infected (Gag�) cells evaluated by flow cytometry, from 3 independent
experiments. (C and D) ADCC was evaluated in the presence or absence of mCD4.2-PS1 by using CEM-NKR cells infected with T/F HIV-1
(strain CH058) (C) or CD4 T cells infected with HIV-1 strain KB18v (D). Results are means � standard errors of the means with NK cells
from three donors (*, P � 0.05; **, P � 0.005 [by a Mann-Whitney test]).

FIG 9 A synthetic CD4 mimetic modulates binding of nnAbs and bNAbs and ADCC. (A) Primary CD4 T cells infected with HIV-1 (KB18v isolate) were incubated
with mCD4.2-PS1 (10 nM) for 10 min before measurement of Ab binding by flow cytometry. Data from one representative experiment (out of 3) are shown.
(C) ADCC was evaluated in the presence or absence of mCD4.2-PS1. Results are means � standard errors of the means from three independent experiments.
Results are means � standard errors of the means with NK cells from three donors.
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some of the nnAbs. For instance, the binding of gp41ID nnAbs to both Gag� and Gag�

cells is probably due to the recognition of a nonfunctional trimeric Env spike, more
specifically gp41 stumps (83). In comparison with the nnAbs, the recognition profile of
bNAbs is wide, and they preferentially target productively infected cells rather than
neighboring cells.

We and other previously reported that a prerequisite for the ADCC activity of a given
bNAb is its ability to stably bind to infected cells (46, 56, 59, 63). The affinity of binding
to target cells, measured as the MFI of staining analyzed by flow cytometry, also
correlates with the efficacy of ADCC (63). In agreement with the poor binding of the
nnAbs to most of the viral isolates tested, we show that these antibodies are inefficient
at eliminating cells producing primary virus from the viral reservoir or cells infected
with T/F strains. This is again in contrast to the ability of bNAbs to eliminate infected
cells, as demonstrated here and in recent studies in cell culture and in vivo (51, 52,
59, 63).

Small CD4 mimetics with the capacity to trigger the CD4-bound conformation of Env
enhance the recognition of infected cells by serum or other antibody-containing fluids
from HIV-infected individuals (60–62). Here, we have tested the impact of mCD4.2-PS1,
a CD4-mimetic sulfopeptide conjugate, on the efficacy of our panel of nnAbs. In
agreement with data from previous reports, we observed an enhancement of binding
and ADCC activity by some of the nnAbs, indicating that the compound induced
conformational changes in Env at the surface of infected cells. However, the increased
efficacy was somewhat modest and did not reach the antiviral effect observed with the
bNAbs. Interestingly, mCD4.2-PS1 facilitated the binding of nnAbs targeting the gp41ID
or the V3 epitopes but did not induce the exposition of the CD4i epitope (using either
anti-CoRBS or anti-cluster A antibodies), at least with the 2 viral strains tested. This can
be due to the structure of mCD4.2-PS1, including a sulfopeptide conjugate targeting
the CD4i epitope, thus competing with the binding of CD4i antibodies (81). However,
we cannot exclude that this compound may stabilize Env in a conformation different
from that observed for other CD4 mimetics. It has also been reported that small CD4
mimetics require the addition of antibodies targeting the coreceptor binding site to
facilitate recognition by CD4i nnAbs (62).

It has been proposed that CD4i antibodies or other nnAbs that recognize Env
epitopes exposed after virus binding to uninfected cells may mediate ADCC at an early
step of the viral replication cycle (21, 57, 85, 86). Such antibodies might thus mediate
the elimination of infected cells more efficiently than those targeting epitopes exposed
at later stages of infection. However, our results show that the intensity of nnAb
staining of bystander cells does not surpass that of bNAbs on productively infected
cells. Moreover, we did not detect a significant elimination of bystander cells by nnAbs
when we used the number of NK cells as a reference in our ADCC assay (not shown).

We cannot rule out that the 9 nnAbs tested here are not the most potent ones.
However, we show that the prototypic anti-cluster A CD4i antibody A32 (22) does not
display strong ADCC against cells infected by a virus isolated from one patient.
Numerous other nnAbs have been isolated and tested in ADCC assays (57, 65, 67, 68,
71, 87). It will be worth determining whether they display a broader recognition of
HIV-1-infected cells, since most previous studies were based on a relatively low number
of primary cross-clade viral isolates or used gp120-coated cells as ADCC targets (24, 39,
50, 60, 65–70). Future experiments in animal models and in human cell cultures will also
help evaluate the efficacy of nnAbs, used alone or in combination with other nnAbs,
bNAbs, and CD4 mimetics, in the elimination of infected cells.

In summary, our data suggest that the breadth of recognition of HIV-1-infected cells
by nnAbs is narrow and that bNAbs display a broader and higher ADCC capacity than
do nnAbs.

MATERIALS AND METHODS
Cells and viruses. The CEM-NKR-CCR5 cell line (referred to as CEM-NKR) was obtained from the NIH

AIDS Reagent Program. NK cells were purified from human peripheral blood (obtained anonymously
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from the Etablissement Français du Sang [EFS]) by density gradient centrifugation followed by immu-
nomagnetic selection (Miltenyi). The purity of NK cells was 90 to 98%. NK cells were maintained in
complete medium, and interleukin-2 (IL-2) (50 IU/ml) was added the day before use. Virus stocks were
prepared by the transfection of 293T cells (obtained from the ATCC) along with vesicular stomatitis virus
G (VSV-G) to normalize infectivity (88). Cells were infected with NL4.3, NLAD8, and transmitted-founder
HIV-1 strains (CH040, CH058, CH077, CH106, RHPA, THRO, REJO, and WITO; obtained from the NIH AIDS
Reagent Program) as described previously (89). Viral inocula (25 to 100 ng of p24/106 cells) were adjusted
to achieve similar levels of Gag� cells (around 40 to 50%) at 48 h postinfection.

Antibodies and the CD4 mimetic. Anti-Env nnAbs and bNAbs, as well as the isotypic control
mGO53, were produced as recombinant monoclonal antibodies carrying the same human IgG1 Fc region
by the cotransfection of 293T or 293F cells (obtained from the ATCC) as previously described (27).
Antibodies were purified by batch/gravity-flow affinity chromatography using protein G-Sepharose 4
fast-flow beads (GE Healthcare). The CD4 mimetic (mCD4.2-PS1) was prepared by chemical synthesis and
characterized as previously described (80).

ADCC assay. The ADCC assay was performed as previously described (63). HIV-1-infected target
CEM-NKR or primary CD4 T cells (obtained anonymously from the EFS) were stained by using the Far-Red
cell tracker (Life Technologies). Totals of 2 � 104 to 5 � 104 targets were plated into U-bottom 96-well
plates and incubated with antibodies (15 �g/ml) for 5 min at room temperature. Heterologous NK cells
were added to each well (at a ratio of 1 CEM-NKR cell to 10 NK cells or 1 primary CD4 T cell to 1 NK cell).
Plates were spun for 1 min at 300 � g to promote cell contacts and incubated at 37°C for 6 h (for primary
CD4 T cells) or 4 h (for CEM-NKR cells). Cells were then stained for intracellular Gag as previously
described (88). Data were acquired on a FACS Canto II instrument (BD Biosciences) or an Attune Nxt
instrument (Life Technologies) and analyzed by using FlowJo software. The frequencies of Gag� cells
among Far-Red� cells were determined. ADCC was calculated by using the following formula: 100 � (%
of Gag� target cells plus NK cells without antibody � % of Gag� target cells plus effector cells with
antibody)/(% of Gag� target cells plus NK cells without antibody). Negative values were set to zero. In
some experiments, we used the number of NK cells in the culture as a reference to specifically measure
the disappearance of p24� cells.

Staining of HIV-1-infected cells with nnAbs and bNAbs. Cells (0.5 � 104 to 2 � 104 cells per well)
were incubated for 30 min at 37°C with anti-Env bNAbs or with an isotypic human IgG1 control (mGO53)
at 15 �g/ml diluted in culture medium. Cells were then washed and incubated for 30 min at 4°C with
anti-human IgG1(H�L) Alexa Fluor 647 (1:400 dilution; Life Technologies). Cells were then fixed with 4%
paraformaldehyde (PFA) and processed for intracellular Gag staining.

Neutralization assay. Neutralization of cell-free HIV-1 was measured by using the Tzm-BL cell line
(obtained from the NIH AIDS Reagent Program) as previously described (90). Dose-response inhibition
curves were drawn by fitting the data to sigmoid dose-response curves (variable slope) using GraphPad
Prism software. The percentage of inhibition was defined as (% signal in nontreated target cells � %
signal in bNAb-treated cells)/(% signal in nontreated target cells) � 100. The IC50 was calculated with
GraphPad Prism.

Reactivation of HIV-1 from highly active antiretroviral therapy (HAART)-treated patients. For
each patient, 50 ml of blood was harvested in the presence of EDTA. Peripheral blood mononuclear cells
(PBMCs) were isolated by Ficoll gradient purification, and CD4 T cells were purified as described above.
For the viral outgrowth assay, CD4 T cells were stimulated with PHA-M (2 mg/ml; Sigma-Aldrich) or
anti-CD2,3 and -CD28 beads (1 bead for 2 cells; Miltenyi Biotech) with 100 IU/ml of IL-2 (R&D) at 1 � 106

cells/ml. Every 2 to 3 days, 1 ml of the supernatant was harvested and replaced with fresh medium. At
the indicated time points, cells were evaluated for Gag expression and antibody binding by flow
cytometry. Cells were used for ADCC experiments when the fraction of Gag� cells was above 5%. The
KB18v HIV-1 strain isolated from patient KB18 was amplified once in primary CD4� T cells.

Data processing and statistical analysis. Calculations were performed and figures were drawn by
using Excel 2011 or GraphPad Prism 5.0. Statistical analysis was performed by using GraphPad Prism, with
Wilcoxon matched-paired t tests or Mann-Whitney unpaired t tests. Spearman correlation coefficients (r)
were calculated by using GraphPad Prism.

Ethics statement. All patients were from the Hôpital Kremlin Bicêtre (Kremlin Bicêtre, France) under
successful HAART (Table 2). Each participant provided written consent to participate in the study, which
was approved by the regional investigational review board (IRB) (Comité de Protection des Personnes
Ile-de-France VII, Paris, France) and performed according to European guidelines and the Declaration of
Helsinki. All samples were anonymized. All subjects were adults.
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