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Review Article
Protective benefits of AMP-activated protein kinase in 
hepatic ischemia-reperfusion injury
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Abstract: Hepatic ischemia-reperfusion injury (HIRI) is a major cause of hepatic failure and death after liver trauma, 
haemorrhagic shock, resection surgery and liver transplantation. AMP-activated protein kinase (AMPK) is an energy 
sensitive kinase that plays crucial roles in the regulation of metabolic homeostasis. In HIRI, ischemia induces the 
decline of ATP and the increased ratio of AMP/ATP, which promotes the phosphorylation and activation of AMPK. 
Three AMPK kinases, liver kinase B1 (LKB1), Ca2+/calmodulin-depedent protein kinase kinase β (CaMKKβ) and 
TGF-β-activated kinase-1 (TAK1), are main upstream kinases for the phosphorylation of AMPK. In addition to the 
changed AMP/ATP ratio, the activated CaMKKβ by increased intracelluar Ca2+ and the overproduction of reactive 
oxygen species (ROS) are also involved in the activation of AMPK during HIRI. The activated AMPK might provide 
protective benefits in HIRI via prevention of energy decline, inhibition of inflammatory response, suppression of 
hepatocyte apoptosis and attenuation of oxidative stress. Thus, AMPK might become a novel target for the pharma-
cological intervention of HIRI.
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Hepatic ischemia-reperfusion injury (HIRI) hap-
pens when the blood supply to liver is interrupt-
ed and subsequently returned, resulting in 
robust oxidative stress and inflammatory res- 
ponse in liver [1]. HIRI is a major cause of 
hepatic failure and death after liver trauma, 
haemorrhagic shock, resection surgery and 
liver transplantation [2, 3]. In HIRI, ischemia 
and hypoxia induce decline of ATP, a status of 
shortage of energy, thus directly or indirectly 
lead to hepatic damage [4]. Meanwhile, the 
fallen energy status activates several energy 
sensors such as AMP-activated protein kinase 
(AMPK) [5]. AMPK plays important roles in the 
maintenance of energy homeostasis via regu-
lating energy metabolism [6]. In addition, there 
are increasing evidence indicated that AMPK 
also participated in the regulation of oxidative 
stress, inflammatory response and cellular 
apoptosis [7, 8]. Recent studies have revealed 
that AMPK could provide beneficial effects in 

HIRI and AMPK is emerging as a novel target for 
pharmacological intervention of HIRI [9].

The structure of AMPK

AMPK is a heterotrimeric complexes of catalytic 
α subunit, regulatory β/γ subunits in all eukary-
otic cells [10]. In mammals, there are several 
subunit isoforms including α1, α2, β1, β2, γ1, 
γ2 and γ3 [11]. For α subunit, there is a binding 
segment for β/γ subunit in the C-terminal 
domain, an auto-inhibitory domain (AID) in the 
middle position and an activation of kinase 
domain which contains the Thr172 residue in the 
N-terminal domain [12]. The C-terminal domain 
of β isoform is crucial for its interaction with α 
and γ subunits and a glycogen/carbohydrate-
binding domain/motif (GBD/CBM) is located in 
the middle region of β isoform [13]. α1/α2 and 
β1/β2 isoforms are very similar in mammalian. 
AMPKγ subunits whose sizes vary from the 
length of N terminal domain, contain four 
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cystathionine-β-synthase (CBS) which make up 
two Bateman domains in a series of tandem 
repeats (CBS1 and CBS2 in Bateman domains 
1, CBS3 and CBS4 in Bateman domains 2) [14]. 
Binding AMP or ADP to the AMPKγ subunits is 
crucial for the sensing of lower energy status 
and the activation of AMPK [15].

Activation of AMPK in HIRI

The phosphorylation of AMPKα catalytic sub-
unit at Thr172 is a hallmark of AMPK activation 
[13]. AMPK is activated by metabolic stress 
when the intracellular AMP/ATP ratio and/or 
ADP/ATP ratio increases [5]. Binding AMP or 
ADP to AMPKγ subunit can change AMPK into a 
better substrate for its upstream kinases [7]. 
Three AMPK kinases, liver kinase B1 (LKB1), 
Ca2+/calmodulin-depedent protein kinase kin- 
ase β (CaMKKβ) and TGF-β-activated kinase-1 
(TAK1, a member of the mitogen-activated pro-
tein kinase family) have been identified as the 
main upstream kinases to mediate the phos-
phorylation of AMPKα at Thr172 [16]. The phos-
phorylation of AMPK is reversed mainly by pro-
tein phosphatase-2A (PP2A) and protein 
phosphatase-2C (PP2C) [17]. In addition to pro-
moting AMPK phosphorylation, AMP can also 
prevent AMPK against dephosphorylation and 
the subsequent deactivation (Figure 1) [18]. In 
addition, the endogenous hormones including 
ghrelin, cannabinoids, glucocorticoids, resistin, 
adiponectin also play pivotal regulatory roles in 
the activation of AMPK [19-23].

to be able to activate AMPK during HIRI because 
H2O2 could induce the oxidation of cysteine res-
idues of the subunits of AMPK and then assist 
the phosphorylation of AMPK by increased AMP 
[27, 28].

The beneficial actions of AMPK in HIRI

The beneficial effects of AMPK in ischemia-
reperfusion have been observed in heart and 
kidney [29, 30]. In rats with HIRI, administra-
tion of AMPK activator AICAR preserved ATP 
content, decreased lactate accumulation, sup-
pressed hepatocyte apoptosis and alleviated 
hepatic injury [9]. Adiponectin is an important 
adipocytokine that involved in energy metabo-
lism and other important physiological or path-
ological processes [23, 31]. There is increasing 
evidence suggests that the biological activities 
of adiponectin largely depend on AMPK [32-
34]. Recent research found that treatment with 
adiponectin suppressed the elevation of ami-
notransferase and the degree of histological 
abnormalities, these beneficial effects were 
associated with enhanced activation of AMPK 
while inhibition of AMPK abolished the protec-
tive effects of adiponectin [35]. These data 
also support the protective actions of AMPK in 
HIRI. 

The potential mechanism underlying the ben-
efits of AMPK

Although the beneficial effects of AMPK in HIRI 
and ischemia-reperfusion injury in other organs 

Figure 1. Activation of AMPK. AMPK is sensitive to AMP/ATP ratio, it can 
be activated when intracellular AMP increases. Binding AMP to AMPKγ sub-
unit can change AMPK into a better substrate for its upstream kinases to 
phosphorylate and activate AMPK. The phosphorylation of AMPKα catalytic 
subunit at Thr172 is a hallmark of AMPK activation. Three AMPK kinases, 
liver kinase B1 (LKB1), Ca2+/calmodulin-depedent protein kinase kinase β 
(CaMKKβ) and TGF-β-activated kinase-1 (TAK1), are main upstream kinases 
for the phosphorylation of Thr172 in AMPKα. On the contrary, AMPK can be 
deactivated by protein phosphatase-2A (PP2A) and protein phosphatase-2C 
(PP2C).

There is evidence suggested 
that AMPK was activated in 
HIRI [24], but the underlying 
mechanisms largely remains 
unknown. Here, we will pres-
ent several possible pathways 
(Figure 2). Firstly, AMPK might 
be activated in response to 
the changed ratio of AMP/ATP 
in liver during HIRI [9]. Se- 
condly, the increase of intra-
celluar Ca2+ during HIRI could 
act as a second messenger 
and induce the activation of 
CaMKKβ [25], which is report-
ed to be an upstream kinase 
of AMPK and be involved in 
the phosphorylation of AMPK 
[26]. Thirdly, increased reac-
tive oxygen species (ROS), 
such as H2O2, were reported 
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have been confirmed by various researchers, 
the underlying mechanisms largely remains 
unknown. It is well-established that the primary 
role of AMPK is maintenance the balance of 
energy metabolism [36], therefore, preventing 
the decline of ATP might be the basic mecha-
nism contributes to the protective benefits of 
AMPK in HIRI [9]. In addition, AMPK also have 
pivotal regulatory roles in inflammatory res- 
ponse, oxidative stress and cellular apoptosis 
[37-39], these actions of AMPK could also pro-
vide beneficial effects in HIRI (Figure 2).

Maintenance of energy homeostasis

It was reported that ischemia-reperfusion could 
induce marked reduction in hepatic ATP level 
[9]. Preconditioning, a well documented appro- 
ach against ischemia injury [40], stimulated the 
activation of hepatic AMPK, suppressed ATP 
decline and attenuated HIRI, treatment with 
AMPK activator could also maintain ATP level 
and provide beneficial effects [9]. These data 
suggested that preservation of ATP level might 
be closely associated with the protective 
effects of AMPK in HIRI [41]. The central roles 
of AMPK in maintenance of energy balance 

TNF-α and IL-6 in LPS-stimulated macrophages 
[45, 46]. Additionally, the anti-inflammatory 
actions of AMPK activators have extensively 
confirmed in vitro and in vivo [47, 48].

Ischemia-reperfusion injury is usually accom-
panied with severe activation and infiltration of 
leukocytes. In HIRI, the activation of liver 
kupffer cell, neutrophils, T-lymphocytic and 
monocytes results in the generation of pro-
inflammatory cytokines and matrix metallopro-
teinases (MMPs), these inflammatory media-
tors would greatly aggravate hepatic injury in 
HIRI [49]. It has been suggested that activation 
of AMPK in HIRI could suppress the expression 
of adhesion molecules, reduce the infiltration 
of leukocytes and decrease the level of pro-
inflammatory cytokines [35]. Thus, suppression 
of inflammatory response might contribute to 
the protective benefits of AMPK in HIRI.

Modulation of apoptosis

AMPK is also an important regulator involved in 
determining the fate of cells. It was recently 
reported that activation of AMPK suppressed 
glucose deprivation-induced apoptosis in neu-

Figure 2. Pathophysiological significance of AMPK in HIRI. AMPK is activated 
in HIRI via several possible pathways. Firstly, AMPK might be activated in 
response to increased ratio of AMP/ATP. Secondly, the increased intracel-
luar Ca2+ during HIRI could induce the activation of CaMKKβ, an upstream 
kinase of AMPK. Thirdly, increased reactive oxygen species (ROS) might also 
be involved in the activation of AMPK. The activated AMPK might provide pro-
tective benefits via prevention of energy decline, inhibition of inflammatory 
response, suppression of hepatocyte apoptosis and attenuation of oxidative 
stress.

have been widely recognized. 
AMPK preserve ATP level via 
switching on catabolic path-
ways to produce ATP and 
shutting off anabolic path-
ways to prevent ATP consump-
tion [42].

Suppression of inflammation

In addition to metabolic regu-
lation, AMPK is also involv- 
ed in several energy-intensive 
physiological and pathologi-
cal processes such as inflam-
mation [43, 44]. It was report-
ed that transfection with co- 
nstitutively active AMPKα sig-
nificantly suppressed LPS-in- 
duced production of pro-infla- 
mmatory cytokines such as 
tumor necrosis factor alpha 
(TNF-α) and interleukin 6 (IL-
6) in macrophages, whereas 
inhibition of AMPK by RNA 
interference dramatically en- 
hanced the expression of 
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rons, hyperglycemia-induced apoptosis in 
endothelial cells and free fatty acids-induce 
apoptosis in retinal pericytes [50-52]. In rats 
with HIRI, administration of AMPK activator 
AICAR significantly suppressed the apoptosis of 
hepatocytes [9]. In addition, the suppressive 
effects of adiponectin on the cleavage of cas-
pase-3 and the percentage of TUNEL-positive 
cells in rats with HIRI could be reversed by 
AMPK inhibitor [35]. The above data suggests 
that the protective benefits of AMPK in HIRI 
might also attribute to its anti-apoptotic 
activities.

Regulation of oxidative stress

Severe oxidative stress induced by ischemia-
reperfusion is another crucial tache in the 
development of HIRI [53]. Several studies have 
also revealed the important roles of AMPK in 
antioxidant defenses. It was reported that acti-
vation of AMPK induced the expression heme 
oxygenase-1 (HO-1), a representative anti-oxi-
dative enzyme, via E2-related factor 2 (Nrf2)-
dependent manner [54, 55]. AMPK could also 
increase the expression of manganese super-
oxide dismutase and catalase via phosphoryla-
tion and activation of forkhead box O1 (FoxO1) 
[56, 57]. In addition to the enhanced antioxi-
dant capacity, AMPK also suppressing ROS 
generation via inhibiting the NAD(P)H oxidase 
[58, 59]. These anti-oxidative activities of 
AMPK might also result in beneficial effects in 
HIRI.

Conclusions and prospects

AMPK is a critical enzyme involved in metabolic 
regulation and other energy-associated pro-
cesses. Ischemia-reperfusion is a typical situa-
tion with severe disturbance of energy metabo-
lism. There is increasing evidence suggests 
that AMPK is activated during ischemia-reper-
fusion and activated AMPK plays crucial roles 
against ischemia-reperfusion injury [39, 60]. 
The protective benefits of AMPK activator, such 
as AICAR, have been confirmed in HIRI and 
ischemia-reperfusion injury in other organs [9, 
30]. In addition, the widely used first-line anti-
diabetic drug metformin is an indirect activator 
of AMPK and most of the hypoglycemic actions 
of metformin depend on AMPK [61, 62]. 
Interestingly, administration of metformin also 
prevented ischemia-reperfusion injury, includ-
ing HIRI [63-67]. Therefore, AMPK might be- 

come a novel target for the pharmacological 
intervention of HIRI and ischemia-reperfusion 
injury in other organs.
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