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Recent genome-wide association studies have identified many susceptibility loci for a 

variety of complex traits. There is intense interest in evaluating the potential utility of these 

variants for individualized risk-prediction for chronic diseases such as breast cancer. A 

recent article in this journal (1) evaluated the potential discriminatory accuracy of breast 

cancer risk models that use a variety of genetic variants, some of which, but not all, were 

found through genome-wide association studies (GWAS). We comment on the methodology 

and conclusions of that paper and compare it to other work that has assessed the potential 

role of genetic variants for risk prediction and considered the possible impact of discoveries 

of new variants in future studies.

The paper by van Zitteren et al (1) used simulations to estimate the area under the operating 

characteristic curve (AUC) from breast cancer risk models based on SNPs. From a review of 

meta-analyses and GWAS, they found 96 variants, 41 of which were nominally significant at 

the 0.05 level. They estimated the AUC as 0.67 based on these 41 variants and 0.68 based on 

all 96 variants. They also commented on the numbers of additional variants that would be 

needed to increase the AUC to a higher value, such as 0.80.

The work of van Zitteren et al is interesting and surprising in several respects. Previous 

studies based on SNPs associated with breast cancer in GWAS yielded estimates of AUC of 

0.574 for 7 SNPs(2), 0.579 for 10 SNPs (3) and 0.585 for 11 SNPs (4). The SNPs in these 

studies attained genome-wide significance (p<10−7) and odds ratios per allele were based on 

independent data, thus reducing or eliminating the bias found in odds ratios in the discovery 

phase of GWAS, known as the “winners’s curse” (5). It is very difficult to increase the AUC 

from 0.58 to 0.67 (2, 6).

Park et al (7) examined the prospects for increasing the AUC based on further GWAS. They 

estimated the likely number and the distribution of effect sizes for yet to be discovered SNPs 

based on the effect sizes for known susceptibility loci and the power of the original GWAS 

that led to these discoveries. For breast cancer, they estimated that within the range of effect-

sizes of known loci, there could be a total of 67 common susceptibility SNPs, including 

those already identified, which is almost four times the number of known SNPs. However, 

the incremental contribution of the undetected SNPs to the genetic variance is likely to be 

modest as their effect sizes will tend to concentrate towards the lower end of the range. In 

particular, Park et al estimated that the total of 67 susceptibility SNPs could explain a total 
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of 17.1% of genetic variance of breast cancer and could lead to an AUC of only 0.635. Since 

detection of most of these additional SNPs at a genome-wide significance would require 

very large sample sizes, they concluded that an AUC of 0.635 would be the practical upper 

limit of the discriminatory power of risk model for breast cancer based on common 

susceptibility SNPs alone.

Thus, it is impressive that van Zitteren et al report an AUC=0.67 based on 41 nominally 

significant variants. Based on a log-normal approximation of risk (8), we estimated that in 

order to achieve an AUC of 0.67, a genetic risk model will need to explain 27.9% of known 

heritability of breast cancer corresponding to a sibling recurrence risk of 2.0. In contrast, the 

18 SNPs found in GWAS studies in Table 1 account for only 7.1% of the heritability. There 

has been recent speculation (9) on reasons why the SNPs from GWAS account for such a 

small portion of the theoretical heritability that one would anticipate from studies of familial 

aggregation of breast cancer (8, 10). Some possibilities are variants that contribute to risk but 

are not tagged by common SNPs in standard GWAS analyses. Such variants might include 

deletions, repeats, copy number variations, and uncommon and rare SNPs that are not in 

tight linkage disequilibrium with SNPs accessible with a GWAS platform, such as the 

Illumina Infinium 660K array. Thus it is possible that van Zitteren et al have tapped into 

some of the “missing heritability” to achieve an AUC of 0.67 from nominally significant 

variants based on the meta-analytic literature; some of these variants are deletions and 

repeats that might not be detected in GWAS. We will return to this possibility in discussing 

Table 1, which classifies the variants in van Zitteren et al partly in terms of the ability of 

GWAS to detect them.

Another possibility is that some of the variants used by van Zitteren et al are not truly 

associated with breast cancer and represent chance findings with possibly exaggerated odds 

ratios. Many of the meta-analyses cited by van Zitteren et al focused on a “candidate gene.” 

Findings from many early candidate gene studies were not reproducible, and a number of 

authors sought to explain why (11-12). Important reasons for these failures were the limited 

power and lack of stringency of significance levels used, which yielded low positive 

predictive value for the studies and hence many false positive findings. Most of these studies 

did not include an independent confirmatory study of the findings, which would have limited 

false positive reports. The situation was so problematic that scientists and journal editors 

developed guidelines and recommendations for reporting on genetic association studies (13). 

The use of meta-analyses based on multiple studies with large cumulative numbers of cases 

and controls, as in Table 2 of van Zitteren et al, ameliorates some of these problems, but the 

possibility of false positives cannot be ruled out due to the low significance threshold (p-

value < 0.05) used for inclusion of the variants in the analysis. Further, publication bias can 

also create false positives and estimates of exaggerated odds-ratios in large meta-analyses.

To explore the contributions of different types of variants in the calculation of AUC by van 

Zitteren et al, we divided them into three categories (Table 1). (1) We considered a set of 18 

SNPs that have been associated with risk of breast cancer with genome-wide significance 

(typical p-value < 10−7) in recent GWAS. (2) We considered a set of 13 common candidate 

SNPs that were not detected in GWAS, but reached borderline significance (p-value < 0.05) 

in the meta-analysis of van Zittern et al. If these associations were real, recent GWAS should 
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have had sufficient power to detect some of these variants through tagging SNPs in the same 

region. (3) We considered a set of 10 non-SNP variants that may not be detectable in GWAS 

even if the associations were real.

Using a log-normal model for risk, as in Pharoah et al. (8), we estimated that SNPs in 

category (1) lead to an AUC of only 0.587. This estimate is very near the value 0.585 

calculated by Gail (4) for 11 known SNPs and lies between the value of AUC obtained by 

Wacholder et al (3) for 10 known SNPs and the value obtained by Park et al for 67 

potentially detectable SNPs. Adding the SNPs in category (2) further increases the AUC to 

0.623, and further addition of the non-SNP variants to the model leads to an AUC of 0.640. 

A refined calculation for the 41 variants that treats the eight combinations of AR, CHEK2 

and Cyp19 exactly and uses the lognormal approximation for the other variants with smaller 

odds ratios yields AUC=0.646. Increases in AUC from 0.587 to 0.623 and again to 0.646 

represent impressive gains. Thus, these comparisons show that the variants in categories (2) 

and (3) that have not been reported in GWAS have made a substantial contribution to the 

estimate of AUC given by van Zitteren et al. Whether such an AUC value would be 

reproducible in an independent dataset will depend on how many of the variants listed in 

categories (2) and (3) reflect true association, and whether the meta-analyses of van Zitteren 

et al yielded unbiased estimate of risk for these variants.

To understand whether the SNPs in category 2 in Table 1 are truly associated with breast 

cancer risk, we calculated the power of the large genome-wide association (GWA) study by 

Turnbull et al (14) to detect them at a genome-wide significance level of p=10−7. We used 

the odds ratios in van Zitteren et al (and Table 1) and assumed that these SNPs were 

perfectly correlated with tagging SNPs used by Turnbull et al. Although the power was less 

than 0.10 for nine of the thirteen SNPs, the powers were 0.64, 1.00, 1.00 and 0.71 

respectively for CCND1, CYP1B1, eNOS, and FAS. The fact that none of these SNPs was 

detected in the GWA study of Turnbull et al raises the suspicion that some of the 

associations in this category will not be confirmable.

Our methods for calculating AUC yield qualitatively similar results to those in van Zitteren 

et al, but our AUC 0.646 for all 41 variants is substantially lower than the value 0.67 that 

they report. Both analyses assume that relative odds multiply across loci and that genotypes 

at the various loci are independent. These assumptions justify the lognormal approximation 

by an application of a central limit theorem. There are some differences in the methods used, 

however. First, we reviewed the literature and chose different odds ratios than used by van 

Zitteren et al in a very few instances (Table 1). For example for 6q25, we used the odds ratio 

1.15 instead of 1.36, because the former corresponds to a Caucasian population and the latter 

to an Asian population. Second, we calculated the AUC using the odds ratios in Table 1, 

whereas van Zitteren et al reported an average AUC obtained by re-sampling odds ratios at 

each locus. Because the AUC is a non-linear function of these odds ratios, the mean exceeds 

the value we calculated. From unreported simulations, we estimated that this phenomenon 

accounts for an increase of about 0.012 in the AUC compared to our estimate based on the 

original odds ratios. We regard this increment of 0.012 as an upward bias, because it is 

induced by sampling error in the relative risk estimates rather than by random variation in 

the underlying true relative risks. With the method of van Zitteren et al, smaller studies with 
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less precise estimates of relative risk would yield higher AUC estimates than larger studies 

with the same point estimates of relative risk. The remaining difference, 

0.670-0.646-0.012=0.012 might be accounted for by some differences in the modeling that 

we do not understand because of our difficulty in reconstructing some of the modeling steps 

followed by van Zitteren et al.

Even higher AUC levels than the value 0.67 found by van Zitteren et al would be desirable 

for many public health applications, such as defining subsets of the population for which a 

chemopreventive agent like tamoxifen might be recommended, or allocating public health 

resources (4). To investigate the feasibility of attaining higher AUC values, van Zitteren et al 

calculated that if two, three, four or five times as many variants are found in the future with 

an odds-ratio distribution similar to that of the 41 variants in Table 1, then the AUCs could 

be 0.73, 0.77, 0.80 and 0.82 respectively. Moreover, they described combinations of numbers 

of variants and odds-ratios needed to bring the AUC of the model to 80%. One can assess 

how realistic these scenarios are from current GWAS data. As Park et al noted, more 

susceptibility SNPs are likely to exist, but the distribution of effect-sizes for the undetected 

loci will be shifted towards smaller values than previously detected loci. Thus, simulating 

additional variants on the assumption that their effect size distribution will be similar to that 

of known loci, as in van Zitteren et al, leads to a substantial overestimate of AUC for any 

given number of assumed loci. Another way to see whether a particular combination of 

number of variants and odds-ratios are realistic would be to compare the number of expected 

discoveries under such a model to number of observed discoveries in recent GWAS. For 

example, we estimated that if there were 100 SNPs each with odds-ratio 1.3 and minor allele 

frequency 0.3, a scenario that will lead to an AUC of 0.80 according to Table 3 in van 

Zitteren et al, one would expect all of these SNPs to be detected at p<10−7 in the GWA study 

of Turnbull et al (14), who reported only 12 SNPs, including 4 novel SNPs, at this 

significance level.

van Zitteren et al used the AUC statistic as the main metric for evaluating utility of risk-

models. Several authors have recommended other criteria based on risk-benefit analyses in 

specific applications as more appropriate (4, 15-18). Nonetheless, the ordering of AUC 

values gave a good indication of how various risk models would perform in several risk-

benefit applications in public health (4). van Zitteren et al commented that SNPs and other 

variants might be combined with other factors to improve discriminatory power (AUC). 

Previous work has demonstrated that adding mammographic density to standard 

epidemiologic risk factors, such as family history, increases AUC even more than adding 

SNPs (2). Presumably, adding SNPs and other variants as well as mammographic density 

could increase AUC even more. Adding BRCA1/2 mutations with carrier frequency 0.0032 

and relative risk 10, based on data in (19), we found that the AUC increased from 0.646 

without BRCA1/2 to 0.655 with BRCA1/2 in our models for the general population. To 

achieve a large increase in AUC will require including strong, fairly common risk factors, 

such as mammographic density. It is possible that well validated strong biomarkers, such as 

sensitivity to mutagens, might contribute, as has been seen for lung (20) and bladder cancer 

(21). For women with biopsies, detailed pathologic and molecular data may yield strong risk 

factors (22). Perhaps one day a nearly painless way to obtain such pathologic or molecular 

Chatterjee et al. Page 4

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data will be found that would be widely applicable and would increase the discriminatory 

accuracy of breast cancer risk predictions for women in the general population.
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Table 1

Three categories of variants associated with breast cancer risk in van Zitteren et al. l

Gene Variant in van
Zitteren

Variant in
GWAS
literature

Allele
Frequency in
van Zitteren

Per Allele Odds
Ratio in van
Zitteren

Per Allele Odds
Ratio in GWAS

Literature

P value
in GWAS*

Power to
detect SNP in
GWAS*†

Category 1: 18 SNPs found in GWAS

1p11 rs11249433 (T/C) same .3935 1.16 1.16 1×10-2

2q35 rs13387042 (G/A) same .500 1.11 1.12 2×10-10

3p24 SLC4A7 rs4973768 (C/T) same .470 1.12 1.11 6×10-7

5p12 rs2067980 (A/G) rs10941679 .160 1.08 1.19 3×10-3

5p12 rs7716600 (C/A) .2205 1.10

6q25 rs2046210 (G/A) same .3645 1.36 1.15 2×10-5

8q24 rs13281615 (T/C) same .40 1.06 1.08 2×10-5

Chr 9 rs1011970 (C/A) Turnbull * .1675 1.07 1.09 3×10-8

Chr 10 rs2380205 (G/A) Turnbull * .4295 0.95 0.94 5×10-7

Chr 10 rs10995190 (G/A) Turnbull * .149 0.84 0.86 5×10-15

Chr 10 rs704010 (G/A) Turnbull * .3945 1.11 1.07 4×10-9

Chr 11 rs614367 (G/A) Turnbull * .152 1.16 1.15 3×10-15

14q24 rs999737 (T/C) .2385 0.94

17q23 rs6504950 (G/A) .2700 1.04

FGFR2 rs2981582 (C/T) .379 1.18 1.26 4×10-31

LSP1 rs3817198 (T/C) .300 1.06 1.07 6×10-4

MAP3K1 rs889312 (A/C) .2795 1.13 1.12 5×10-9

TNRC9 rs3803662 (C/T) .2505 1.23 1.19 3×10-15

Category 2: 13 SNPs not found in GWAS

AKAP9 M463I (G/T) .366 1.08 0.087

CCND1 G870A .4595 1.12 0.641

CYP1B1 Val432Leu (G/C) .5445 1.60(het)

1.1(hom) 1.00

eNOS G894T .2265 1.22 (recess) .010

eNOS T(−786)C .8215 0.74 1.00

ESR1 rs3020314 (T/C) .3105 1.05 0.002

ESR2 rs4986938 (A/G) .361 0.94 0.017

FAS G(−1377)A .148 1.18 0.710

HER2 I655V (G/A) .1975 1.05 0.000

IGFBP3 A(−202)C .4895 1.03 0.000

NBS1 G8360C .320 0.97 0.000

WDR79 R68G C/G) .1205 1.08 0.004

XRCC1 R399Q (A/G) .660 1.12 (recess) 0.078

Category 3: 10 non-SNP variants
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Gene Variant in van
Zitteren

Variant in
GWAS
literature

Allele
Frequency in
van Zitteren

Per Allele Odds
Ratio in van
Zitteren

Per Allele Odds
Ratio in GWAS

Literature

P value
in GWAS*

Power to
detect SNP in
GWAS*†

AR CAG repeat .539 0.61 (dom.)

CASP8 D302H .444 0.89 .88 0.14ns

CHEK2 1100delC .500 binary 2.40

Cyp19 TTTA10 0.024 binary 1.52

ERCC2 A751C .634 binary 1.13

GSTM1 Deletions .565 binary 1.10

GSTT1 Deletions .493 binary 1.11

MTHFR C677T .336 binary 1.04

TGFB1 L10P .5265 1.05

VDR Fok1 .146 binary 1.14

*
The GWAS was reported in (14).

†
Power calculations for category 2 SNPs (n=13) were performed at significance level 10−7 for the two-stage design of Turnbull et al (14). Power 

calculations for SNPs with recessive and co-dominant effects were based on a 2 degree of freedom test. For all other SNPs, the power calculations 

were done for the 1 degree of freedom trend test under a model that assumes that the relative odds are 1, OR, or OR2, for per allele odds ratio OR.
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