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Novelties are a familiar part of daily life. They are also fundamental to the evolution of biological systems,
human society, and technology. By opening new possibilities, one novelty can pave the way for others in a
process that Kauffman has called “expanding the adjacent possible”. The dynamics of correlated novelties,
however, have yet to be quantified empirically or modeled mathematically. Here we propose a simple
mathematical model that mimics the process of exploring a physical, biological, or conceptual space that
enlarges whenever a novelty occurs. The model, a generalization of Polya’s urn, predicts statistical laws for
the rate at which novelties happen (Heaps’ law) and for the probability distribution on the space explored
(Zipf's law), as well as signatures of the process by which one novelty sets the stage for another. We test these
predictions on four data sets of human activity: the edit events of Wikipedia pages, the emergence of tags in
annotation systems, the sequence of words in texts, and listening to new songs in online music catalogues. By
quantifying the dynamics of correlated novelties, our results provide a starting point for a deeper
understanding of the adjacent possible and its role in biological, cultural, and technological evolution.

ur daily lives are spiced with little novelties. We hear a new song, taste a new food, learn a new word.

Occasionally one of these first-time experiences sparks another, thus correlating an earlier novelty with a

later one. Discovering a song that we like, for example, may prompt us to search for other music by the
same artist or in the same style. Likewise, stumbling across a web page that we find intriguing may tempt us to
explore some of its links.

The notion that one new thing sometimes triggers another is, of course, commonsensical. But it has never been
documented quantitatively, to the best of our knowledge. In the world before the Internet, our encounters with
mundane novelties, and the possible correlations between them, rarely left a trace. Now, however, with the
availability of extensive longitudinal records of human activity online', it has become possible to test whether
everyday novelties crop up by chance alone, or whether one truly does pave the way for another.

The larger significance of these ideas has to do with their connection to Kauffman’s theoretical concept of the
“adjacent possible”, which he originally discussed in his investigations of molecular and biological evolution, and
which has also been applied to the study of innovation and technological evolution®*. Loosely speaking, the
adjacent possible consists of all those things (depending on the context, these could be ideas, molecules, genomes,
technological products, etc.) that are one step away from what actually exists, and hence can arise from incre-
mental modifications and recombinations of existing material. Whenever something new is created in this way,
part of the formerly adjacent possible becomes actualized, and is therefore bounded in turn by a fresh adjacent
possible. In this sense, every time a novelty occurs, the adjacent possible expands®. This is Kauffman’s vision of
how one new thing can ultimately lead to another. Unfortunately, it has not been clear how to extract testable
predictions from it.

Our suggestion is that everyday novelties and their correlations allow one to test Kauffman’s ideas quantita-
tively in a straightforward, down-to-earth setting. The intuition here is that novelties, like pre-biotic molecules
and technological products, naturally form networks of meaningful associations. Just as a molecule in the
primordial soup is conceptually adjacent to others that are one elementary reaction step away from it, a web
page is conceptually adjacent to others on related topics. So when a novelty of any kind occurs, it does not occur
alone. It comes with an entourage of surrounding possibilities, a cloud of other potentially new ideas or experi-
ences that are thematically adjacent to it and hence can be triggered by it.

To avoid confusion, we should clarify a distinction we have in mind between novelties and innovations. We
take an innovation to mean something created for the first time, something new to the world, something never
seen before. A novelty, by contrast, is merely anything that is new to you (or to someone else). For example, a
novelty could be a slang expression you have never heard before, or your first exposure to French New Wave
cinema. That unfamiliar bit of slang and that Godard film already existed before you came upon them. They are
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therefore not innovations, but they count as novelties... to you. Seen
in this light, an innovation is a very special sort of novelty.
Innovations are novelties to everyone.

More important than this distinction, however, is what novelties
and innovations share. Both form networks of meaningful associa-
tions, for the reasons discussed above; both come with entourages.
Thus we are led to consider the possibility that all novelties, not just
innovations, are subject to the correlations imposed by the expansion
into the adjacent possible. If this hypothesis is borne out by the data,
it would build a bridge between the well-established study of innova-
tions in biological®, technological and social systems'®'* and the
ubiquitous but often overlooked novelties we all experience every
day. Indeed, as we will see below, although two of our data sets deal
with innovations and two with novelties, all of them display the same
three statistical patterns predicted by our model. These statistical
commonalities support our hypothesis that novelties and innova-
tions are two sides of the same dynamical coin.

Results

Human activities data. We begin by analyzing four data sets, each
consisting of a sequence of elements ordered in time: (1) Texts: Here
the elements are words. A novelty in this setting is defined to occur
whenever a word appears for the first time in the text; (2) Online
music catalogues: The elements are songs. A novelty occurs whenever
a user listens either to a song or to an artist that she has not listened to
before; (3) Wikipedia: The elements are individual wikipages. A
novelty corresponds to the first edit action of a given wikipage by a
given contributor (the edit can be the first ever, or other contributors
may have edited the page previously but that particular contributor
has not); (4) Social annotation systems: In the so-called tagging sites,
the elements are tags (descriptive words assigned to photographs,
files, bookmarks, or other pieces of information). A novelty
corresponds either to the introduction of a brand new tag (a true
innovation), or to its adoption by a given user. Further details on the
data sets used are reported in the Supplementary Information.

The rate at which novelties occur can be quantified by focusing on
the growth of the number D(N) of distinct elements (words, songs,
wikipages, tags) in a temporally ordered sequence of data of length N.
Figure 1 (a-d) shows a sublinear power-law growth of D(N) in all
four data sets, each with its own exponent f§ < 1. This sublinear
growth is the signature of Heaps’ law's. It implies that the rate at
which novelties occur decreases over time as /.

A second statistical signature is given by the frequency of occur-
rence of the different elements inside each sequence of data. We look
in particular at the frequency-rank distribution. In all cases (Fig. 1, f-
i) the tail of the frequency-rank plot also follows an approximate
power law (Zipf’s law)'”. Moreover, its exponent o is compatible with
the measured exponent f of Heaps’ law for the same data set, via the
well-known relation § = 1/o'*". It is important to observe that the
frequency-rank plots are far from featuring a pure power-law beha-
vior. In particular, the relation f = 1/o between the exponent f§ of
Heaps’ law and the exponent o of Zipf’s law is expected to hold only
in the tail of the Zipf plot. Moreover, the frequency-rank plots feature
a variety of system-specific behaviors. For instance, for text corpora
the frequency-rank plot features a 1/R trend for intermediate ranks
(between 10 and 10*); a flattening of the slope for the most frequent
words; and a larger slope, with an exponent compatible with the
observed Heaps’ law, for rare and specialized words. Reproducing
such features quantitatively would require a more detailed modeling
scheme than we consider here, including for instance the distinctions
between articles, prepositions, and nouns. Nevertheless it is interest-
ing that our model with semantic triggering predicts a double slope
for Zipf's law™ as a consequence of the correlations induced by the
parameter 1 (see Supplementary Information for further details).

Next we examine the four data sets for a more direct form of
evidence of correlations between novelties. To do so we need to

introduce the notion of semantics, defined here as meaningful them-
atic relationships between elements. We can then consider semantic
groups as groups of elements related by common properties. The
actual definition of semantic groups depends on the data we are
studying, and can be straightforward in some cases and ambiguous
in others. For instance, in the Wikipedia database, we can regard
different pages as belonging to the same semantic group if they were
created for the first time linked to the same mother page (see
Supplementary Information for further details). In the case of the
music database (Last.fm), different semantic groups for the listened
songs can be identified with the corresponding song writers. In the
case of texts or tags, there is no direct access to semantics, and we
adopted a slightly different procedure to detect semantically charged
triggering events. Lacking of a satisfactory classification of words in
semantic areas, for text and tags we considered each word/tag as
bearing its own class.

Also in these cases the triggering of novelties can be observed by
looking at the highly nontrivial distribution of words. We refer to the
Supplementary Information for a detailed discussion of these cases.

We now introduce two specific observables: the entropy S of the
events associated to a given semantic group, and the distribution of
time intervals f{I) between two successive appearances of events
belonging to the same semantic group. Roughly speaking, both the
entropy S and the distribution of time intervals f{I) measure the
extent of clustering among the events associated to a given semantic
group, with a larger clustering denoting stronger correlations among
their occurrences and thus a stronger triggering effect (refer to the
Methods section).

All the data sets display the predicted correlations among nov-
elties. The results for the entropy in Wikipedia, the social annotation
system del.icio.us and Last.fm databases are shown in Fig. 2 (a,b,c).
For comparison, we also reshuffle all the data sets randomly to assess
the level of temporal correlations that could exist by chance alone
(refer to the Methods section for details). The evidence for semantic
correlations is signaled by a drop of the entropy S with respect to the
reshuffled cases in all the databases considered (Fig. 2, a, b, and c).

The distributions f(I), reported in Fig. 3 (a,b,c) for Wikipedia,
del.icio.us and Last.fm, respectively, feature a markedly larger peak
for short time intervals compared to that seen in the random case,
indicating that events belonging to the same semantic group are
clustered in time (Fig. 3e).

It is interesting to observe that Wikipedia, del.icio.us and Last.fm
represent the outcome of a collective activity of many users. A natural
question is whether the correlations observed above only emerge at a
collective level or are also present at an individual level. In order to
investigate this point we focus on individual texts (ie., written by
single authors of the Gutenberg corpus (see Methods section for
details). Fig. 4 (a,b,c) report both the normalized average entropies
in selected texts (red dot) and in the locally (blue dots) and globally
(green dots) reshuffled texts. Also in this case lower values of the
entropy correspond to more highly clustered occurrences of ele-
ments. Fig. 4 (d,e,f) report the time intervals distribution f(I) for
the same set of texts and reshuffled sets. More highly clustered data
result in higher values of the distribution at low interval lengths. It is
interesting to observe how each individual (each author in this case)
reproduces the qualitative features of aggregated data (analyzed for
the three other datasets): namely, a significantly higher clustering
than that found in the reshuffled data. We refer to the Supple-
mentary Information for a more extensive analysis performed for
single users in the different databases, confirming the same qualitat-
ive scenario. The above reported results show that the adjacent pos-
sible mechanism plays a role also on the individual level, and its effect
is enhanced in collective processes.

A simple generative model. Our results so far are consistent with the
presence of the hypothesized adjacent possible mechanism.
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Figure 1| Heaps’ law (a-€) and Zipf's law (f-1) in real datasets (a-d) and (f-i) and in the urn model with triggering (e,j). Gutenberg® (a), (f), Last.fm*
(b), (g), Wikipedia* (c), (h), del.icio.us* (d), (i) datasets, and the urn model with triggering (e), (j). Straight lines in the Heaps’ law plots show functions
of the form flx) = ax®, with the exponent f§ equal respectively to f = 0.45 (Gutenberg), # = 0.68 (Last.fm lyrics), f = 0.56 (Last.fm artist), § = 0.77
(Wikipedia) and f# = 0.78 (del.icio.us), and to the ratio v/p in the urn model with triggering, showing that the exponents for the Heaps’ law of the model
predicted by the analytic results are confirmed in the simulations. Straight lines in the Zipf’s law plots show functions of the form fx) = ax™*, where the
exponent o is equal to " for the different ’s considered above. Note that the frequency-rank plots in real data deviate from a pure power-law behavior
and the correspondence between the f and o exponents is valid only asymptotically (see discussion above and the Supplementary Information for a

discussion about finite-size effects).

However, since we only have access to the actual events and not to the
whole space of possibilities opened up by each novelty, we can only
consider indirect measures of the adjacent possible, such as the
entropy and the distribution of time intervals discussed above.

To extract sharper predictions from the mechanism of an ever-
expanding adjacent possible, it helps to consider a simplified math-
ematical model based on Polya’s urn*'-*. In the classical version of
this model*, balls of various colors are placed in an urn. A ball is
withdrawn at random, inspected, and placed back in the urn along
with a certain number of new balls of the same color, thereby increas-
ing that color’s likelihood of being drawn again in later rounds. The
resulting “rich-get-richer” dynamics leads to skewed distribu-
tions**** and has been used to model the emergence of power laws
and related heavy-tailed phenomena in fields ranging from genetics
and epidemiology to linguistics and computer science®*%.

This model is particularly suitable to our problem since it con-
siders two spaces evolving in parallel: we can think of the urn as the
space of possibilities, while the sequence of balls that are withdrawn is
the history that is actually realized.

We generalize the urn model to allow for novelties to occur and to
trigger further novelties. Our approach thus builds on that of
Hoppe® and other researchers (see Refs. 30, 31 and references

therein), who introduced novelties within the framework of Polya’s
urn but did not posit that they could trigger subsequent novelties.
(The problem of modeling novelties is very old and dates back to the
work of the logician Augustus de Morgan®. For a review of this early
work, see Ref. 33.). Hoppe’s model was motivated by the biological
phenomenon of neutral evolution, with novel alleles represented as
an open-ended set of colors arising via mutation from a single fixed
color. This variant of Polya’s urn implies a logarithmic, rather than
power-law, form for the growth of new colors in the urn, and hence
does not account for Heaps’ law. Hoppe’s urn scheme is non-coop-
erative in the sense that no conditional appearance of new colors is
taken into account; in particular, one novelty does nothing to facil-
itate another.

In contrast, the cooperative triggering of novelties is essential to
our model. Consider an urn U containing N, distinct elements,
represented by balls of different colors (Fig. 5). These elements rep-
resent words used in a conversation, songs we've listened to, web
pages we’ve visited, inventions, ideas, or any other human experi-
ences or products of human creativity. A conversation, a text, or a
series of inventions is idealized in this framework as a sequence S of
elements generated through successive extractions from the urn. Just
as the adjacent possible expands when something novel occurs, the
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Figure 2 | Normalized entropy in real data and in the urn model with semantic triggering. (a), (b), (c) Normalized entropy of a sequence associated
to a specific label A vs. the number of events, k, with that label. The entropy is averaged for each k over the labels with the same number of occurrences.
Results are displayed for Wikipedia (a), the Delicious dataset (b), the Last.fm dataset (c) and the urn model with semantic triggering (d). For the

Wikipedia and Last.fm datasets we used the respective sequences S;ique s described in the section Methods, while for the Delicious dataset we used the
full sequence of aggregated data. The plot for the model is an average over 10 realizations of the process, with parameters p = 8,v =10, = 0.3 and Ny = v

v
+ 1. The length of the considered sequences is N = 107 and the corresponding Heaps’ exponent is f = M _0.375 (see Supplementary Information for the

relation of the Heaps’ and Zipf’s exponents with the model parameters). In all the cases, results for the actual data are compared with two null models, as
described in the section Methods.

contents of the urn itself are assumed to enlarge whenever a novel  a reinforcement process, i.e., the more likely use of an element in a
(never extracted before) element is withdrawn. given context. For instance, in a conversational or textual setting, a

Specifically, the evolution proceeds according to the following  topic related to s, may require many copies of s, for further discus-
scheme. At each time step ¢ we select an element s, at random from  sion. The key assumption concerns what happens if (and only if) the
U and record it in the sequence. We then put the element s, backinto  chosen element s, happens to be novel (i.e., it is appearing for the first
U along with p additional copies of itself. The parameter p represents  time in the sequence S). In that case we put v + 1 brand new and
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Figure 3 | Distribution of triggering intervals in real data and in the urn model with semantic triggering. Results for the distribution of triggering
intervals (see the section Methods for the definition) for the same data as for the entropy measurements in figure 2: Wikipedia (a), the Delicious dataset
(here the calculation of the local reshuffling was too time-consuming due to the fact that there are as many labels as words), (b), the Last.fm dataset (¢) and
the urn model with semantic triggering (d). The banner at the bottom(e) shows a Sumque sequence for a particular label A of the Last.fm dataset. The color
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described in the section Methods.

distinct elements in the urn. These new elements represent the set of
new possibilities triggered by the novelty s,. Hence v + 1 is the size of
the new adjacent possible made available once we have a novel
experience. The growth of the number of elements in the urn, con-
ditioned on the occurrence of a novelty, is the crucial ingredient
modeling the expansion of the adjacent possible.

This minimal model simultaneously yields the counterparts of
Zipf’s law (for the frequency distribution of distinct elements) and
Heaps’ law (for the sublinear growth of the number of unique ele-
ments as a function of the total number of elements). In particular,
we find that the balance between reinforcement of old elements and
triggering of new elements affects the predictions for Heaps” and
Zipf'slaw. A sublinear growth for D(N) emerges when reinforcement
is stronger than triggering, while a linear growth is observed when
triggering outweighs reinforcement. More precisely the following
asymptotic behaviors are found (see Supplementary Information
for the analytical treatment of the model):

D(N)~Nrif v<p

D(N)~

D(N) ~

Correspondingly, the following asymptotic form is obtained for
Zipf's law: f(R) ~R~, where f(R) is the frequency of occurrence of
the element of rank R inside the sequence S. Figure 1 also shows the
numerical results as observed in our model for the growth of the
number of distinct elements D(N) (Fig. le) and for the frequency-
rank distribution (Fig. 1j), confirming the analytical predictions.

(1)

if v
logN1 =P

Nif v>p.

A model with semantics. So far we have shown how our simple urn
model with triggering can account simultaneously for the emergence
of both Heaps’ and Zipf’s law. This is a very interesting result per se
because it offers a possible solution to the longstanding problem of
explaining the origin of Heaps’ and Zipf’s laws through the same
basic microscopic mechanism, without the need of hypothesizing
one of them to deduce the other. (A different mechanism that
yields both Zipfs law and Heaps’ law has been proposed recently
in a linguistic context by Gerlach and Altmann®.) Despite the

interest of this result, this is not yet enough to account for the
adjacent possible mechanism revealed in real data. In its present
form, the model accounts for the opening of new perspectives
triggered by a novelty, but does not contain any bias towards the
actual realization of these new possibilities.

To account for this, we need to infuse the earlier notion of semant-
ics into our model. We endow each element with a label, representing
its semantic group, and we allow for the emergence of dynamical
correlations between semantically related elements. The process we
now consider starts with an urn I/ with N, distinct elements, divided
into No/(v + 1) groups. The elements in the same group share a
common label. To construct the sequence S, we randomly choose
the first element. Then at each time step ¢, (i) we give a weight 1 to: (a)

a Reinforcement b Adjacent possible

t t+1 t t+1
uo u o e uo Uo @ (
£5] [“es: R
oo ceeo .\00 000 "p A
S OO0.000000000 OOOO@OOOOOOOOOO
c oId new
U oA U O A0 Lyo u o o
ee© ee©
Ceeo 00 O foee ooO.____

Reinforcement with labels Adjacent possible with labels

Figure 5 | Models. Simple urn model with triggering (a), (b) and urn
model with semantic triggering (c), (d). (a) Generic reinforcement step of
the evolution. An element (the gray ball) that had previously been drawn
from the urn ¢/ is drawn again. In this case one adds this element to S
(depicted at the center of the figure) and, at the same time, puts p
additional gray balls into . (b) Generic adjacent possible step of the
evolution. Here, upon drawing a new ball (red) from ¢/, v + 1 brand new
balls are added to U/ along with the p red balls of the reinforcement step that
takes place at each time step. (c), (d) Urn model with semantic triggering.
Same as above except that now each ball has a label defining its semantic
context. The label is conserved during a reinforcement event (e.g., the label
A for the gray balls on panel ¢) while it appears as a brand new label, C, for
the v + 1 balls added for an adjacent possible event (panel d).
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each element in ¢/ with the same label, say A, as s,_;, (b) to the
element that triggered the entry into the urn of the elements with
label A, and (c) to the elements triggered by s,—;. A weighty = 11is
assigned to all the other elements in /. We then choose an element s,
from U with a probability proportional to its weight and write it in
the sequence; (ii) we put the element s, back in ¢/ along with p
additional copies of it (Fig. 5¢); (iii) if (and only if) the chosen ele-
ment s, is new (i.e., it appears for the first time in the sequence S) we
put v + 1 brand new distinct elements into ¢/, all with a common
brand new label (Fig. 5d). Note that for # = 1 this model reduces to
the simple urn model with triggering introduced earlier.

This extended model can again reproduce both Heaps’ and Zipf’s
laws (for details, see the Supplementary Information), and it also
captures some of the main qualitative features of S and f{(I) seen in
real data (Fig. 2, d and Fig. 3, d). Thus, the hypothesized mechanism
of a relentlessly expanding adjacent possible is consistent with the
dynamics of correlated novelties, at least for the various techno-
social systems™ studied here.

Discussion and Conclusions

Let us return to the question of whether novelties and innovations
share the same dynamics. All four of our datasets displayed the same
statistical patterns, both for the rates at which novel events occur and
for the statistical signatures of triggering events. Two of the data sets
involved innovations (the creation of brand new pages in Wikipedia
and the introduction of brand new tags in del.icio.us), while the other
two involved novelties that do not qualify as innovations (the first
appearance of a word in a text, or the first time a user listens to an
existing song). The fact that we observe the same statistical signatures
for novelties and innovations strengthens the hypothesis that they
could be two sides of the same coin, namely, manifestations of cor-
relations generated by the expansion of the adjacent possible.

From this perspective we speculate that our theoretical framework
could be relevant to a much wider class of systems, problems, and
issues—indeed, to any situation where one novelty fosters another. A
natural next step would be to focus more specifically on the study of
major innovations in cultural®®, technological*'®, and biological sys-
tems®**°. A huge literature exists on different aspects of innovation,
concerning both its adoption and diffusion*”~*, as well as the creative
processes through which it is generated®”'®'. The deliberately sim-
plified framework we have developed here does not attempt to model
explicitly the processes leading to innovations*, such as recombina-
tion'*", tinkering® or exaptation’. Rather, our focus is entirely on
the implications of the new possibilities that a novelty opens up. In
our modeling scheme, processes such as the modification or recom-
bination of existing material take place in a black box; we account
for them in an implicit way through the notions of triggering
and semantic relations. Building a more fine-grained mathemati-
cal model of these creative processes remains an important open
problem.

Another direction worth pursuing concerns the tight connection
between innovation and semantic relations. In preliminary work, we
have begun investigating this question by mathematically reframing
our urn model as a random walk. As we go about our lives, in fact, we
silently move along physical, conceptual, biological or technological
spaces, mostly retracing well-worn paths, but every so often stepping
somewhere new, and in the process, breaking through to a new piece
of the space. This scenario gets instantiated in our mathematical
framework. Our urn model with triggering, in fact, both with and
without semantics, can be mapped onto the problem of a random
walker exploring an evolving graph G. The idea of the construction of
a sequence of actions or elements as a path of a random walker in a
particular space has been already studied in Ref. 41, where it has been
shown that the process of social annotation can be viewed as a col-
lective but uncoordinated exploration of an underlying semantic
space. One can go a step further by considering a random walker

as wandering on a growing graph G, whose structure is self-consis-
tently shaped by the innovation process, the semantics being
encoded in the graph structure. This picture strengthens the corres-
pondence between the appearance of correlated novelties and the
notion of the adjacent possible. Moreover, this framework allows
one to relate quantitatively, and in a more natural way, the particular
form of the exploration process (modulated by the growing graph
topology) and the observed outcomes of observables related to trig-
gering events. We refer to the Supplementary Information for a
detailed discussion of this mapping and results concerning this ran-
dom-walk framework for the dynamics of correlated novelties.

Two more questions for future study include an exploration of the
subtle link between the early adoption of an innovation and its large-
scale spreading, and the interplay between individual and collective
phenomena where innovation takes place. The latter question is
relevant for instance to elucidate why overly large innovative leaps
cannot succeed at the population level. On a related theme, the
notion of advance into the adjacent possible sets its own natural
limits on innovations, since it implies that innovations too far ahead
of their time, i.e., not adjacent to the current reality, cannot take hold.
For example, video sharing on the Internet was not possible in the
days when connection speeds were 14.4 kbits per second.
Quantifying, formalizing, and testing these ideas against real data,
however, remains a fascinating challenge.

Methods

Data sets. Our analysis takes into account four different data sets. (i) The corpus of
English texts consists of the material available at the Gutenberg Project ebook
collection*” till February 2007 and resulted in a set of about 4600 non-copyrighted
ebooks dealing with diverse subjects and including both prose and poetry. In total, the
corpus consisted of about 2.8 X 10°® words, with about 5.5 X 10° different words. In
the analysis we ignored capitalization. Words sharing the same lexical root were
considered as different, i.e., the word tree was considered different from trees.
Homonyms, as for example the verbal past perfect saw and the substantive saw, were
treated as the same word. (ii) Delicious® is an online social annotation platform of
bookmarking where users associate keywords (tags) to web resources (URLSs) in a
post, in order to ease the process of their retrieval. The dataset consists of
approximately 5 X 10° posts, comprising about 650,000 users, 1.9 X 10° resources and
2.5 X 10° distinct tags (for a total of about 1.4 X 10° tags), and covering almost 3 years
of user activity, from early 2004 up to November 2006. (iii) Last.fm* is a music
website equipped with a music recommender system. Last.fm builds a detailed profile
of each user’s musical taste by recording details of the songs the user listens to, either
from Internet radio stations, or the user’s computer or many portable music devices.
The data set we used***® contains the whole listening habits of 1000 users till May, 5th
2009, recorded in plain text form. It contains about 1.9 X 10 listened tracks with
information on user, time stamp, artist, track-id and track name. (iv) The Wikipedia
database we collected** dates back to March 7th, 2012 and contains a copy of all pages
with all their edits in plain text. Please refer to the Supplementary Information for a
more detailed discussion of these data sets.

Detecting triggering events. As pointed out above, the semantics and the notion of
meaning could trigger non-trivial correlations in the sequence of words of a text, the
sequence of songs listened to, or the sequence of ideas in a given context. In order to
take into account semantic groups, we introduce suitable labels to be attached to each
element of the sequence. For instance, in the case of music, one can imagine that when
we first discover an artist or a composer that we like, we shall want to learn more about
his or her work. This in turn can stimulate us to listen to other songs by the same artist.
Thus, the label attached to a song would be, in this case, its corresponding writer.

To detect such non-trivial correlations we define the entropy S4(k) of the sequence
of occurrences of a specific label A in the whole sequence S, as a function of the
number k of occurrences of A. To this end we identify the sub-sequence S* of S
starting at the first occurrence of A. We divide S* in k equal intervals and call f; the
number of occurrences of the label A in the i-th interval (see Fig. 6). The entropy of A
is defined as

k N .
$a(k)= = Y X1ogl. @

In case the occurrences of A were equally distributed among these intervals, i.e., f; = 1
Vi=1 ... k Sa(k) would get its maximum value log k. On the contrary, if all the
occurrences of A were in the first chunk, i.e., fi = kand f;.-; = 0, the entropy would get
its minimum value S4(k) = 0. Each S, (k) is normalized with the factor S§** (k) =Ink,
the theoretical entropy for a uniform distribution of the k occurrences. The entropy
S(k) is calculated by averaging the entropies relative to those elements occurring k-
times in the sequence.
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Figure 6 | Entropy and intervals example. Let us indicate with the
same letters the occurrences, e.g., of lyrics of the same artist in the
sequence. Suppose that A has just appeared in the sequence, which ends
with G. Thus, A appears 4 times, i.e., k = 4. We divide the subsequence
S4 =S in 4 parts and count the occurrences f; of A in each of them
(bottom numbers). The normalized entropy of A will be

1 1 1 3
SA(k:4)/log4: <Elog2+ Zlog4+ Zlog4+0>/log4: T As a value

of S(k) we average all entropies of the elements occurring k-times in S. The
numbers at the top show the length of the inter-times used in the interval
distribution evaluation. The local reshuffling would shuffle only those 15
elements occurring after the first occurrence of A, and compute the
normalized entropy and the time intervals distribution on this reduced
sequence.

Moreover, we also analyze the distribution of triggering time intervals f(I). For each
label, say A, we consider the time intervals between successive occurrences of A. We
then find the distribution of time intervals related to all the labels appearing in the
sequence S (see also Fig. 6).

In the Wikipedia and Last.fm datasets we can go a step further since they contain
the contribution of many users. In this case we can focus on a sub-sequence Synique Of
S that neglects the multiple occurrence of the same element by the same users, e.g., in
Last.fm multiple listening of the same song by the same users (a specific song can be
present anyway several times in the sub-sequence since that song can be listened for
the first time by different users). We can thus identify for each label, say A, the sub-
sequence Sﬁnique and correspondingly define the entropy and the time intervals
distribution as described above (see also the Supplementary Information for a
detailed discussion of this analysis both for Last.fm and Wikipedia).

Reshuffling methods. In order to ground the results obtained, both for the entropy
and the distribution of triggering intervals, we consider two suitably defined ways of
removing correlation in a sequence. Firstly, we just globally reshuffle the entire
sequence S. In this way semantic correlations are disrupted but statistical correlations
related to the nonstationarity of the model (responsible, for instance, for Heaps’ and
Zipf's law) are still present. Secondly, for each label, we reshuffle the sequence S*
locally, i.e., from the first appearance of A onwards. This latter procedure removes
altogether any correlations between the appearance of elements.
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