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Abstract

Metabolomics generates a profile of small molecules that are derived from cellular metabolism 

and can directly reflect the outcome of complex networks of biochemical reactions, thus providing 

insights into multiple aspects of cellular physiology. Technological advances have enabled rapid 

and increasingly expansive data acquisition with samples as small as single cells; however 

substantial difficulties remain. In this primer, we provide an overview of metabolomics, especially 

mass spectrometry based metabolomics that uses liquid chromatography for separation, and 

discuss its utilities and limitations. We identify several areas at the frontier of metabolomics 

technology development. Our goal is to give the reader a sense of what might be accomplished 

when conducting a metabolomics experiment, now and in the near future.
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Metabolomics-overview

Metabolomics investigates the activity and status of cellular and organismal metabolism, on 

global- or network-scale, to delineate the end points of physiology and pathophysiology [1–

5]. It involves the measurement of small molecule compounds, including endogenous and 

exogenous molecules, that are the products and substrates of chemical reactions within 

biological systems. A metabolomics experiment directly reflects the activity of the metabolic 

network that leads to the production of these metabolites and yields essential information 

about the underlying biological status of the system in question. Thus, metabolomics is not 

defined by any particular experiment but reflects the study of metabolism in a 

comprehensive way. It can involve an “untargeted” screen where thousands of unknown 

features are profiled and the relative differences in two conditions or across a population 

(semi-quantitation) are measured (Figure 1). Such a screening experiment could be useful 

in identifying a new metabolite that may be present in a genetic condition or a newly 

engineered metabolic pathway [6–12]. However, a semi-targeted metabolomics experiment 
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is often more useful; here, a large number of molecules are unambiguously identified and 

quantified [13, 14]. This process allows the user to generate data that are otherwise obtained 

from hundreds of separate biochemical assays, to characterize the properties of a network or 

pathway[12, 15–20]. These experiments are considered semi-targeted because, while the list 

of metabolites is defined, the hypothesesis may not be. Targeted experiments often provide 

deeper insights by testing a specific hypothesis because the absolute concentrations of 

molecules are measured (absolute quantitation) [16, 21–23] or the rates or fluxes of the 

conversion of one molecule to another can be obtained [22, 24, 25]. Thus, a targeted 

metabolomics analysis requires substantial pre-existing knowledge and its success depends 

on strength of the hypothesis being tested.

Both nuclear magnetic resonance (NMR) and mass spectrometry (MS) are effective tools 

that analyze the molecular composition of a sample (Table 1) [26]. NMR detects molecular 

features by measuring an intrinsic magnetic property of atomic nuclei (i.e. the “spin”) that 

encodes information about the chemical environment and thus its molecular structure. MS is 

more commonly used for semi-targeted or untargeted metabolomics because it is more 

sensitive, higher-throughput, and can measure more molecules in a complex biological 

sample. However, one advantage to NMR is that it is quantitative in that the number of 

molecules in the sample corresponds to the number of nuclei in that sample although this 

limitation in MS can be overcome by incorporating internal standards before extraction. 

Both liquid chromatography (LC) and gas chromatography (GC) are used for metabolite 

separatation (Table 1). Efforts have also been made to combine these different instruments 

(LC-NMR-MS) to advance strucuture elucidation[33]. In addition, the amount of material 

required for metabolomics is also getting smaller, which allows for single cell metabolite 

profiling or spatial resolution within cells or tissues. However, data collection is merely the 

first step of metabolomics, and metabolomics is ultimately an integration of instrumentation, 

chemistry, statistics, and computer science with a biological problem [4, 39, 40]. In this 

article, we provide a primer on metabolomics discuss its process, the type of data that are 

obtained, and its applications.

From experiment to MS data – sample preparation and instrumentation

There is no limitation of the sample type that is suitable for a metabolomics study. However, 

the sample type and metabolites of interest determine the appropriate sample preparation 

procedures [41–43]. Furthermore, data interpretation is markedly different depending on the 

biological system that the metabolites originated. For example, to compare health and 

disease states or to study drug actions, measuring the level of a metabolite in the serum may 

be a reasonable proxy for a physiological function [44], since serum metabolome is the net 

effect of diet, environment and whole-body response to a disease or a drug; however, 

measuring that same metabolite level in a tissue would have a different interpretation, 

because it reflects more the cell autonomous effect. In sample preparation procedures, a 

general principle is to preserve the original state of the biological system as much as 

possible by minimizing the amount of enzyme activity and chemical reactivity that occurs 

during metabolite extraction, a process to isolate or purify metabolites from original 

biological matrix (cells, serum, tissue, etc).
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For small molecule metabolites, protein precipitation or liquid-liquid extraction are the most 

commonly used methods. Polar organic solvents, such as methanol, acetonitrile or 

isopropanol, are used to extract mostly polar metabolites, whereas relatively non-polar 

solvents, such as hexane, chloroform, or methyl tertiary butyl ether, or the combination of 

polar and non-polar solvents, are used to extract lipids [45, 46]. Occasionally, acid is added 

to the extraction solvent to preserve the stability of certain compounds, such as acyl-

Coenzyme A compounds [47]. However, although acidic solvents may stabilize one class of 

metabolites, they may also simultaneously cause degradation of other types of metabolites 

and possibly cause an overall reduction in the sensitivity of the experiment due to ion 
suppression [48, 49]. Despite the diverse chemical properties of metabolites, protocols have 

been developed that allow for a broad coverage of metabolites while maintaining, at a 

tolerable level, the inherent tradeoffs [34, 50–52]. For instance, these general protocols may 

not offer the best sensitivity for every single metabolite, and therefore, unstable or low 

abundant metabolites may require special care.

MS involves first ionizing the molecules (i.e., adding a positive or negative charge to) and 

then moving these molecules through electric fields where they are eventually analyzed. At 

each time point, the data are recorded as mass spectra, composed of mass to charge ratio for 

each intact ion and corresponding intensity. Each ion has a retention time and mass spectra, 

the values of which are dependent on instrument setup.

Two commonly used approaches for MS analysis are Multiple Reaction Monitoring (MRM) 

and high resolution MS (HRMS). MRM experiments are usually conducted on a triple 

quadrupole mass spectrometer [21, 32, 52]. The first quadrupole filters ions (parent ion) 

within a defined molecular weight (usually with a resolution of 1 atomic mass unit). The 

second quadrupole fragments the molecules that have been selected and the third quadrupole 

selects characteristic fragments. Therefore, before any data acquisition, the parent and 

fragement ions must be defined, and the optimized energy for the fragmentation and 

retention time for each metabolite is needed.

Another increasingly common method for MS is high resolution MS (HRMS). These 

approaches rely on the high mass resolution of the mass analyzer. One commonly used 

mass analyzer is an OrbitrapTM which records the oscillation of the ions, the frequency of 

which provides information of the molecular mass [53]. Another is a Time of Flight (TOF) 

instrument, which records the time it take for an ion to traverse through an electric field [54, 

55]. These mass analyzers greatly simplify compound identification compared to lower 

resolution methods. When high resolution mass analyzers are coupled to collision cells that 

can fragment ions before they are sent to the mass analyzer, the fragment pattern of ions 

provide additional structural information. Then at the data processing stage, metabolite 

assignments are made.

From mass spectrometry data to metabolite profiling

There are numerous open source and commercial software available for raw mass 

spectrometry data analysis (Table 2). The output data includes features (peaks with specific 

retention time and mass to charge ratio m/z); peak area, which is usually the preferred 
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parameter to represent relative abundance of each metabolite in different samples. These 

software packages typically involve chromatographic alignment, peak selection and 

compound identification by searching against metabolomics databases. This untargeted 

experiment is relatively thorough and unbiased, but it usually contains thousands of features, 

and unfortunately, these features do not directly reflect the metabolite identity (Figure 1). To 

characterize metabolites, it starts from matching of selected features with that of known 

metabolites. These databases are publically available at several online servers [56–60]. For 

metabolomics data generated from HRMS, m/z is often used as the only criteria for feature 

identification, and therefore, many features often return multiple metabolite identities, which 

is caused by isomers or ion source fragmentation [61]. A further complication is that 

chromatographic retention times (RT) are highly dependent on the LC or GC setup, are 

difficult to reproduce from external databases, and also vary over time even within a given 

lab. Lots of efforts have been made to advance untargeted analysis and feature identification, 

including new MS/MS workflow or network integration (Table 2) [62, 63]. A more detailed 

discussion of unknown metabolite identification is contained in a recent article [4]. Overall, 

untargeted analysis could be challenging and the result could be hard to interpret.

Therefore, a more targeted or semi-targeted data analysis is also performed simultaneously 

(Figure 1). An internal reference library including both m/z and RT, or even MS/MS spectra, 

is constructed in-house either by using pure chemical standards or by generating them “on 

the fly” by spiking in reference compounds into the metabolite extract. For a typical semi-

targeted analysis, dozens to hundreds of metabolites can be assigned with high confidence 

from various biological samples and 3000–10000 other features are present in the spectra 

and remain unidentified [64, 65]. Nevertheless, this semi-targeted analysis provides a time- 

and cost-effective yet informative metabolic profile and allows researchers to either test 

multiple hypotheses at once or investigate systems biology-level questions.

Converting ion intensity to metabolite concentration is complex, which depends on variables 

such as percent of the compound recovered from the original material, column binding 

capacity, ionization efficiency, and transmission efficiency through the mass spectrometer. 

However, MS based metabolomics data are often semi-quantitative, which means that 

although the signal itself (metabolite peak area) does not reflect the absolute concentration, 

differences in peak area do scale linearly with metabolite concentration. A differential 

analysis provides the relevant biological information.

Normalization may be required in certain cases. For example, inconsistent sample 

preparation or extraction from different sources can result in varying ion suppression and 

cause nonlinear shifts of MS intensities of metabolites in different samples. In these 

situations isotopically labelled standards (internal standards) are added to each sample 

before the extraction for normalization [50]. However, applying internal standards is 

challenging due to the wide diversity of chemical properties and wide concentration ranges 

of metabolites in biological samples. When carrying out analyses in the absence of these 

standards, we therefore recommend making comparisons using material from a similar 

origin (compare serum A to serum B or tumor A to tumor B) and as similiar an amount of 

material as possible. Alternatively, pooled quality control samples can be used to reduce 
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variation due to batch effects[66] . When applying these principles, most MRM and HRMS 

methods have yielded a linear range of quantitation for 3 to 4 orders of magnitude.

Analysis of a metabolomics experiment

Since metabolomics experiments typically contain information that could otherwise be 

obtained from hundreds of separate biochemical assays, usually some pre-existing biological 

knowledge helps with interpretation of a metabolomics experiment. Under this framework 

one can simply use the data to ask biologically relevant questions and make conclusions 

following the standard scientific method. Such questions could be: Does the energy status 

change under this condition? How about the redox status? Are the nucleotide levels 

maintained when this gene is overexpressed? Treating a metabolomics experiment under this 

mindset often allows for the one to reach conclusions about a biological mechanism in a 

highly expedited fashion as opposed to pursuing these hypotheses one by one with separate 

assays.

Nevertheless it is not humanely possible to process the entirety of the data from intuition 

alone. Computational tools are needed for further analysis. Software for feature extraction 

(Table 2) often include additional data analysis functions, such as principal components 

analysis, hierarchical clustering, and numerous statistical tests and data visualization plots to 

identify the largest changing features and specific signatures in the data. Pathway 

enrichment analyses, which are commonly used in gene expression analysis [67], can be also 

used with metabolomics data to identify affected metabolic pathways. However, metabolite 

annotation and pathway demarcations are not as well developed as in the genomics field thus 

often times these analyses produce results that are hard to interpret. Nevertheless, pathway 

enrichment analyses still give some useful insights into groups of metabolites of interest. For 

example, in a recent study pathway enrichment analysis of metabolomics data showed that 

the methionine cycle was altered before other parts of the network were affected [20]. 

Further, network mappings can contribute to systems level analysis upon integration with 

other ‘omics’ data sets [68, 69]. One commonly used network mapping tool is Cytoscape 

and the metabolism plugin for Cytoscape, called Metscape [70, 71]. There are other software 

that employ the Cytoscape platform, such as MetaMapR and GAM, which may generate 

metabolic networks based on enzymatic transformations, metabolite structural similarity, 

mass spectral similarity or empirical associations [68, 72]. A recently developed software 

PIUMet facilitates unknown metabolite identification by network integration of untargeted 

metabolomics [63]. These tools become more powerful upon integration with other omics 

data and allow the user to find regions of the metabolic network that correspond to a 

phenotype or are altered in a condition.

Isotope tracing, flux analysis, and computational modeling

The overall metabolite profile is very informative in many cases as discussed above, but for 

metabolites involved in multiple catabolic and anabolic pathways, metabolite levels reflect 

some complicated conglomeration of each individual pathway contribution. An 

appropriately designed isotopic tracing study is then used to identify the activity within each 

pathway of that metabolite and is the phenotypic readout of metabolism. The isotopic 
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labeling pattern of downstream metabolites is used to represent the metabolic flux from 

different sources. Typical protocols involve incubating a stable isotope labeled nutrient (such 

as glucose, an amino acid, a lipid, or other molecules) at the same concentration as the 

original experiment (different concentrations will induce changes to metabolism from the 

original condition of interests) and waiting for the metabolic flux to reach steady state [74, 

76]. Note that ‘steady state’ means that the isotopic labeling pattern of metabolites of 

interest is no longer time-dependent.

Much of the time, comparing the labeling pattern of a certain metabolite in different 

experimental conditions or performing a simple calculation of the labeled nutrient’s 

contribution to downstream metabolites is sufficient to interpret a metabolic flux 

qualitatively. However, model-based flux calculations often provide more accurate and 

sometimes comprehensive views of metabolism that can not be obtained from intuition 

alone[74, 76–79]. These techniques are collectively termed “Metabolic Flux Analysis” and 

involve taking a series of isotope measurements of different metabolites, overlaying them 

onto a metabolic network, and fitting a mathematical model of the fluxes onto a the network 

that best fits the data. This approach is very powerful but at the moment the implementation 

of the technology has been limited and most computations involving flux estimation and 

statistical analysis of the results are typically carried out on an ad hoc basis. Future 

directions will involve successfully implementing these approaches to serve a broader 

audience. More detailed discussions about flux calculations have been covered by previous 

reviews and we refer the reader to these[74, 76, 77, 79].

Recent biological insights obtained by metabolomics

In recent years, metabolomics has been applied in multiple fields to make new discoveries 

and confirm hypotheses (Figure 2). A seminal advance in cancer biology used untargeted 

LC-HRMS to discovery that cancer cells with mutant IDH1 produce 2-hydroxyglutarate, a 

metabolite that was found in the spectra of the mutants but not the wild type cells after 

untargeted metabolomics using LC-HRMS. This metabolite was later shown to provide a 

link between metabolism and epigenetics[80, 81].

Metabolomics has also been widely used in drug discovery and drug action[3, 82]. An 

extensive drug database, DrugBank (http://www.drugbank.ca/) now exists [83]. Over 8000 

drug entries are recorded in this database, and the related information, such as known drug 

metabolism and known or proposed drug target, is also provided. Meanwhile, metabolomics 

is helping researchers to gain new knowledge of drug action. For example, through a 

metabolomics study, Ser et al. showed that 5-FU (5-fluorouracil), a commonly used 

chemotherapy drug, caused overproduction of the nucleotide deoxyuridine, which was also 

measured in 5-FU treated mouse serum. The overflow of this nucleotide could be potentially 

used as a biomarker for positive response to 5-FU treatment[84].

Semi-targeted metabolomics analyses led to a deeper understanding of the etiology of aging, 

cardiometabolic disease, and cancer, where metabolomics data not only tests existing 

hypotheses that can come from transcriptional or proteomics data but also provides insights 

when there is lack of hypothesis or when original hypothesis is rejected. For example, a 
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study on Drosophila employed HRMS and demonstrated a critical role for specific clock 

genes in modulating the effects of nutrient manipulation on fat metabolism and aging[85]. In 

a separate study, MRM-based analyses have identified signatures of the onset of pancreatic 

cancer and diabetes [86]. Elevated plasma levels of branched-chain amino acids (BCAAs) 

were found to be associated increased risk of diabetes and other cardiometabolic 

diseases[87, 88]. These studies spawned further mechanistic analyses, which have pointed to 

the role of amino acid oxidation in the mitochondria as a key player in the etiology of these 

diseases. This same signature was also associated with an increased risk of future pancreatic 

cancer diagnosis[88]. These findings led to the mechanistic insight that the cause of this 

elevation was an increase in tissue breakdown, at least in the case of tumor development. 

Semi-targeted metabolomics analyses have also lent insights into human population genetics 

and the origins of metabolic traits. Genome-wide association studies (GWAS) studies for 

variation in metabolite levels were carried out in human blood from 2820 individuals[89]. 

Surprisingly, numerous genetic loci associated with blood metabolite concentrations were 

discovered and the locations of these loci, for the most part, were in promixity to a gene 

encoding a metabolic enzyme involved the production or consumption of the given 

metabolite. This analysis provided evidence that some of the metabolome variation observed 

across individuals may be directly encoded in the genome. Such studies may be valuble for 

understanding personalized nutrition, which is still in its infant stages[90].

Flux analyses have also led to important advances in cancer biology. One example was the 

discovery of the diversion of glycolytic flux into de novo serine metabolism as an important 

process in some cancers. Further efforts to trace the fate of serine using stable isotopes, 

HRMS and mathematical modeling revealed how the network downstream of serine is 

coordinated, leading to the identification of a potential cancer therapeutic[91]. These studies 

have also identified systems-level properties that show how gene expression levels can be 

used to sometimes predict metabolic flux, in which case then biomarkers for metabolic flux 

could be obtained from human specimens, from which mRNA is often more readily 

available[92]. Other flux analyses have identified previously unappreciated pathways that 

are important in cancer, leading to new drug targets[93–95]. As another example, acetate has 

been identified as an alternative fuel source for cancer metabolism[96–98]. Mashimo et al. 

first performed in vivo tracing in patients and showed the increased oxidation of acetate in 

the brains of patients with glioblastoma and brain metastases using 13C-NMR, and 

furthermore, Comerfold and Schug et al. demonstrated the utilization of acetate in tumors 

required the enzyme acetyl-CoA synthetase 2 which is now an important drug target in 

cancer. Thus is these cases metabolomics has led to novel findings that have advanced key 

areas of biomedical research.

Challenges and future directions in metabolomics

In summary, much progress in metabolomics has been made and obtaining a metabolite 

profile or measuring metabolic flux is now standard practice. Efforts are also being made to 

advance the field by covering more metabolites with less materials or efforts, achieving 

spatial resolution, and integration of multi-omics (Figure 3). Nevertheless, challenges remain 

in multiple areas.
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The greatest challenge for metabolomics is how to best obtain biological insight with the 

appropriate experimental design. Success often achieves a balance of biological intuition 

that is supplemented with computation. Choices of experimental models are an essential 

component in this process. For example, ex vivo systems that can successfully model in vivo 

metabolism are important[99–101]. Conclusions drawn from cell culture have substantially 

advanced biomedical knowledge but must be assessed with respect to the assumptions in the 

model such as the nutrient rich environements that typical cultures conditions consist of. 

Another major challenge is subcellular compartmentalization as metabolomics data reflects 

the sum of metabolites in different cellular organelles. Although it would be preferable to 

assay metabolites from specific organelles, it is very challenging, if currently impossible, to 

separate organelles while preserving the metabolic state of these structures. Recent studies 

have used clever isotope tracing strategies to probe cofactors that occur in a specific 

compartment such as the cytosol[102]. Metabolic flux analysis can be also used to estimate 

fluxes that involve metabolites that are shared across compartments [91, 95].

Metabolic heterogeneity is another issue in understanding metabolism and efforts to carry 

out metabolomics at the single cell level are underway[103–106]. This particularly exciting 

frontier in metabolomics research involves the analysis of single cells to obtain information 

that is masked in bulk studies. There are various approaches developed and successfully 

applied to plant, neuron, yeast, bacteria and animal cells in the last decade [105, 107]. Single 

cells could be isolated with a needle, or through microfluidic devices, followed by 

metabolite extraction and further analysis with HRMS or MS/MS[108–110]. Intact cells or 

tissue samples can also directly interact with an ionization source to generate ions, which are 

then analyzed by MS [111–113]. These technologies in princible can achieve spatial 

resolution of sub micrometer, and therefore, metabolomics imaging and analysis of 

subcellular organelles can be achieved. However, with this extremely fine spatial resolution, 

the data acquisition time and data size are also dramatically increased, which makes it 

difficult to perform single cell metabolomics in a high throughput fasion. In addition, efforts 

are also required to improve the robustness, number of metabolites covered and accuracy. 

Therefore, standard metabolomics techniques that average cells are still the mainstay.

Better approaches to standardize metabolomics data are also essential to advance the field. 

Thus, efforts are underway to create better normalization procedures and better protocols to 

rapidly obtain absolute metabolite concentration values [114, 115]. For flux analysis, the 

mathematical frameworks and algorithms are well beyond what is typically implemented 

and assessable to larger a community. Such an effort to further disseminate these capabilities 

will prove valuable. Nevertheless, current metabolomics technologies coupled with 

interesting questions already allow rapid inroads to be made.

Acknowledgments

Work was funded by (R00CA168997) and (R01CA193256) to JWL from National Cancer Institute at the National 
Institutes of Health. We thank the anonymous reviewers for helpful suggestions in improving this manuscript.

Glossary

Absolute quantitation
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a measurement of concentration of a metabolite.

Chromatography
techniques used to separate metabolites based on chemical properties.

Features
signal patterns recorded in metabolomics data (defined by the pair of retention time and 

mass to charge ratio in LC- or GC-MS based metabolomics data).

In source fragmentation
fragmentation of molecules that occurs during ionization of the sample.

Ion suppresion
the reduction of sensitivy due to the difference in the ability to ionize a molecule as a result 

of the surrounding composition of that molecule.

Mass resolution
the ability to distinguish a molecule due to its mass to charge ratio from another molecular 

with a different mass to charge ratio.

Pooled quality control samples
a mixture of samples to be analyzed with similar matrix to provide a representative “mean” 

sample, which is used to check the performance variation among individuals or over time.

Retention time
the time taken for a metabolite to be eluted from a column.

Semi-quantitation
the measurement of the relative level of a molecule in two conditions or across a population.

Semi-targeted metabolomics
a system for quantitation of hundreds of known metabolites, and simultaneous detection of 

thousands of unknown features which are tentatively identified or not identied.
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Box 1

Outstanding Questions

• How does one best extract meaningful biological information from massive 

amounts of metabolomics data?

• How can in vitro models more accurately reflect in vivo metabolism?

• How can intracellular compartmentalization be resolved in metabolomics 

experiments?

• What are the best ways forward in conducting single cell metabolomics 

experiments?

• What are the best ways to make metabolic flux analysis more broadly used in 

the biomedical community?
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Trends

• Extraction from a biological a sample followed by chromatographic 

separation and mass spectrometry allows for the simultaneous measurement 

of hundreds of metabolites.

• The application of metabolomics to address numerous biological questions 

has been successfully demonstrated.

• Advances in instrumentation and computational tools make metabolomics.

• Emerging technologies are further advancing metabolomics.
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Figure 1. Targeted, semi-targeted and untargeted analysis
General scheme of different workflows that are available for metabolomics studies.
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Figure 2. Distribution of recent publications on applications of metabolomics by area
Number of publications were obtained by searching the corresponding keywords (e.g., drug 

discovery & metabolomics) in Google Scholar, with time range of 2015 – current (Nov 

2016), and the fraction was calculated by dividing the number obtained from each area by 

the total number of publications in metabolomics.
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Figure 3. Trends in metabolomics
Trends include broader metabolite coverage from smaller sample sizes, achieving spatial 

resolution, and the integration of multi-omics data.
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Table 1

Metabolomics platforms

Pros Cons Special Applicationsa

LC-MS • Broad metabolite coverage

• Simple sample preparation

• High sensitivity

• Superior flexibility in 
compound separation and 
detection (i.e., options of LC 
column, mobile phase or MS 
method settings)

• Various open source software 
assisting data analysis

• Cross platform variation or batch 
effects that hinders 
standardization

• Not quantitative

• Destructive

• Inability to measure organic 
compounds which don’t form 
molecular ion adducts 
(i.e.hydrocarbons)

Comprehensive (broad 
coverage) metabolomics 
analysis

GC-MS • Broad metabolite coverage

• Analysis of gases or naturally 
volatile compounds

• High sensitivity

• Various open source software 
assisting data analysis

• Variations due to instrument type 
or conditions

• Not quantitative

• Destructive

• Not suitable for nonvolatile or 
thermally fragile molecules

• Complications from multiple 
derivatization products from a 
single metabolite

Petrol chemical analysis

NMR • Real time reaction 
monitoring at controlled 
temperatures

• Real time in vivo 
measurements

• Deeper structural information

• Non-invasive

• Low sensitivity

• Less metabolite coverage per run

• Less automated spectral 
processing

• High-cost of equipment and 
maintenance

• De novo 
compound 
structure 
elucidation

• Kinetics analysis 
of chemical 
reactions

• Real time in vivo 
metabolic studies 
using stable 
isotope tracing

• Real time imaging 
of live cells or 
animals

a
unique applications (besides metabolomics) compared to other platforms.
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