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Abstract

Rationale—Leucocyte telomere length (LTL) is a biological marker of aging, and shorter LTL is 

associated with adverse cardiovascular outcomes. Reduced regenerative capacity has been 

proposed as a mechanism. Bone marrow-derived circulating progenitor cells (PCs) are involved in 

tissue repair and regeneration.

Objective—To examine the relationship between LTL and PCs, and their impact on adverse 

cardiovascular outcomes.

Methods and Results—We measured LTL by quantitative PCR in 566 outpatients (age 63±9 

years, 76% male) with coronary artery disease (CAD). Circulating PCs were enumerated by flow 
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cytometry. After adjustment for age, gender, race, BMI, smoking and previous myocardial 

infarction, a shorter LTL was associated with a lower CD34+ cell count: for each 10% shorter 

LTL, CD34+ levels were 5.2% lower (p<0.001). After adjustment for the aforementioned factors, 

both short LTL (<Q1) and low CD34+ levels (<Q1) predicted adverse cardiovascular outcomes 

(death, myocardial infarction, coronary revascularization or cerebrovascular events) independently 

of each other, with a hazards ratio (HR) of 1.8, 95% confidence interval (CI), 1.1–2.0, and a HR of 

2.1, 95% CI, 1.3–3.0, respectively, comparing Q1 to Q2–4. Patients who had both short LTL (<Q1) 

and low CD34+ cell count (<Q1), had the greatest risk of adverse outcomes (HR=3.5, 95% CI, 

1.7–7.1).

Conclusion—Although shorter LTL is associated with decreased regenerative capacity, both 

LTL and circulating PC levels are independent and additive predictors of adverse cardiovascular 

outcomes in CAD patients. Our results suggest that both biological aging and reduced regenerative 

capacity contribute to cardiovascular events, independent of conventional risk factors.
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INTRODUCTION

Biological aging has been linked to adverse cardiovascular outcomes, yet the underlying 

mechanisms are unknown.1–3 Telomeres are regions of repetitive nucleotide sequences at 

each end of a chromosome that protect the chromosome from deterioration or from fusion 

with neighboring chromosomes during cell replication.4, 5 After each cell division, the 

length of the telomere shortens, and when a critical shortening is reached, the cell enters 

senescence or apoptosis.6, 7 Thus, telomere length is considered a marker of cell senescence 

and replicative capacity.6, 8 Leukocyte telomere length (LTL) represents the average 

telomere length across a heterogeneous population of leukocytes including monocytes, 

granulocytes and lymphocytes, and can serve as a biological marker of aging.

Decreased regenerative capacity, estimated by circulating levels of progenitor cells (PCs), 

has been also linked to adverse cardiovascular outcomes.9–13 Circulating PCs are 

mononuclear cells that originate primarily from the bone marrow and contribute to vascular 

repair and regeneration.14–18 CD34+ mononuclear cells from the human bone marrow 

include distinct lineages of both hematopoietic (CD34+ /CD45med) and non-hematopoietic 

(mesenchymal) progenitors.19 CD34+ cells have greater myocardial reparative potential than 

unselected populations.20 CD133 is a 5-transmembrane antigen marker of primitive stem 

cells that is lost during maturation, and cells expressing both markers (CD34+ /CD133+) are 

thought to be enriched with a vascular PC phenotype.21, 22 Co-expression of chemokine (C-

X-C motif) receptor 4 (CXCR4+), which promotes homing of PCs to stromal derived factor-

enriched hypoxic environments, may also further characterize PCs with capacity for vascular 

repair.23 Although chronological aging is a primary determinant of reduced regenerative 

capacity, other factors including inflammation, oxidative stress, and genetic predisposition 

may also influence repair from cellular injury.24, 25
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Previous studies that have linked LTL to adverse outcomes have postulated that decreased 

regenerative capacity is a major driver of this effect. However, prior investigations have not 

specifically addressed this question. Thus, the aim of our study was to examine the 

association between LTL and PC counts and their mutual and joint relationship with 

recurrent cardiovascular events and mortality in CAD patients. Our hypothesis was that 

shorter LTL are associated with lower PC counts and that PCs are a key determinant of the 

relationship between LTL and adverse cardiovascular outcomes.

METHODS

Study population

Patients were enrolled into the Mental Stress Ischemia Prognosis Study (MIPS), a 

prospective study of patients with stable CAD recruited between June 2011 and August 

2014 at Emory University affiliated hospitals. Presence of CAD was defined by an abnormal 

coronary angiogram demonstrating evidence of atherosclerosis with at least luminal 

irregularities, documented previous percutaneous or surgical coronary revascularization, 

documented myocardial infarction (MI), or a positive nuclear stress test. Patients with acute 

coronary syndromes or decompensated heart failure, and unstable psychiatric conditions 

other than depression were excluded. Clinical information including previous CAD events, 

CAD risk factors, results of coronary angiography and current medications were 

documented using standardized questionnaires and chart reviews. The Emory University 

Institutional Review Board approved the research protocol, and all participants provided 

written informed consent. Blood samples were collected after a 12-hour fast.26 Angiographic 

CAD severity was calculated using the Gensini score for 490 patients with a median time 

between the angiogram and enrolment of 2.1 (1.0 – 4.7) years.27 Adjudicated events (death, 

MI, coronary revascularization and cerebrovascular accident (CVA)) were ascertained for all 

subjects after enrollment. Mortality data were collected through follow up clinic visits at 1 

and 2 years, phone calls at 3 years, medical records review, and querying the Social Security 

Death Index. The main outcome of the study was a combined endpoint including death, MI, 

coronary revascularization and CVA. We also considered a separate endpoint that excluded 

revascularization to rule out potential bias due to patient referral for coronary procedures.

Leukocyte telomere length measurement

Genomic DNA samples were extracted from peripheral blood leukocytes, standardized and 

used for LTL assay following the original method by Cawthon.8, 28 LTL, measured as the 

ratio of telomeric product/single copy gene (T/S), was quantified by a high-throughput LTL 

assay involving quantitative PCR using a serially diluted standard DNA and the standard 

curve method,8 as described previously (online Supplement). The T/S ratio reflects the 

average length of the telomeres across all leukocytes.

Flow cytometry

Flow cytometry was used for circulating PCs counting as described before.9 Venous blood 

was collected via a peripheral vein in EDTA tubes after an overnight fast. Blood samples 

were processed within 4 hours and incubated with fluorochrome labeled monoclonal 

antihuman mouse antibodies to identify surface markers expressed on mononuclear cells 
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before quantification using flow cytometry using a “lyse no-wash” methodology.9 

Mononuclear cells PC that were CD45med and expressed CD34 were enumerated, with 

subsets of the CD45med, CD34+ cells, that co-expressed CD133 (stem cell marker) and 

CXCR4 (homing marker that may direct PC to ischemic tissues) measured. Further details 

are given in the online Supplement.

Statistical analyses

Logarithmic base 2 transformations were used for PC counts and LTL. Simple and multiple 

linear regression models were used to examine the association between PCs and LTL, and to 

identify factors that were associated with PCs or LTL among several candidate variables, 

such as age, gender, race, smoking, body mass index (BMI) and history of MI. The 

Spearman rank correlation and scatter plots were used to test the association between LTL, 

and PC and Leukocyte levels, respectively. To study the association between LTL, PCs and 

cardiovascular events, LTL and PCs were examined both as continuous variables and as 

quartiles using Kaplan-Meier curves and the log-rank test, as well as Cox proportional 

hazards regression models. LTL and PC were examined both as independent predictors as 

well as an interaction term in Cox Proportional hazards regression model. The incidence rate 

of cardiovascular events was calculated and the association with LTL and PC count was 

examined using chi-squared tests. Statistical analysis was performed using SPSS statistical 

software (version 23.0; SPSS Inc.).

RESULTS

Of 695 CAD patients enrolled in MIPS, we had missing PCs for the first 100 patients 

enrolled, because it was not part of the initial study protocol. This was an ancillary study 

which begun after MIPS enrollment had already started. Additional patients had missing 

PCs or LTL because of technical difficulties in sample drawing or processing, or the patient 

refused. A total of 566 patients had complete data for both LTL and PCs, and were included 

in this analysis. Patients with missing PC or LTL were less likely to be males or white; there 

were no other substantial differences in other major demographic or clinical characteristics. 

The average age was 63 ± 9 years and 76% were male. LTL was normally distributed with a 

mean ± SD of 0.82 ± 0.14 T/S units (Table 1).

Correlates of LTL

In bivariate analysis, increasing age, male gender, white race, history of smoking and BMI 

were inversely correlated with LTL (Online Table I). All these factors, except BMI, 

remained inversely correlated with LTL in a multivariable linear regression model that 

included CAD risk factors, history of MI, medications (beta blockers, aspirin, and statins), 

and CAD severity (Gensini angiographic score). There was no statistically significant 

association between CAD severity and LTL; however, history of MI was associated with 

shorter LTL in multivariable analysis.

Correlates of circulating PCs

In bivariate analysis, younger age, male gender, white race and higher BMI were all 

associated with higher levels of PCs. These factors remained significant in multivariable 
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regression analysis that included demographic variables, CAD risk factors, history of MI, 

medications and CAD severity (Online Table II).

Association between LTL and circulating PCs

Shorter LTL was independently associated with lower PC counts in all subsets, but not other 

leukocyte counts, including granulocytes, monocytes or lymphocytes (Figure 1, Table 2). For 

each 10% shorter LTL, PC counts were lower by 5.2%, 8.6%, 5.3% and 9.3 % for CD34+, 

CD34+/CD133+, CD34+/CXCR4+ and CD34+/CD133+/CXCR4+, respectively. This 

association remained statistically significant after adjustment for factors associated with LTL 

and PC counts (age, gender, race, BMI, smoking and previous MI), total white blood cell 

counts monocyte, neutrophil and lymphocyte counts (Table 2).

LTL, circulating PCs and outcomes

Patients were followed for a median (IQR) period of 3.0 (2.4 – 3.7) years. A total of 71 

patients had adverse events, including 13 deaths, 15 MIs, 48 coronary revascularizations, 

and 8 cerebrovascular events. In Kaplan Meier analysis, both lower levels of LTL and lower 

PC counts (CD34+, CD34+/CD133+ and CD34+/CXCR4+ cells) were associated with higher 

rate of adverse cardiovascular events (Figure 2, Online Figure I).

To investigate the interaction between LTL and CD34+ cell counts, both were dichotomized 

by the lowest quartile. In bivariate analysis, both LTL<Q1 and CD34+<Q1 were associated 

with increased risk of adverse outcomes (Tables 3 and 4). Including both LTL and CD34+ 

PCs in one model only slightly weakened their associations and both remained independent 

predictors of outcome. These associations remained significant after adjustment for age, 

gender, race, BMI, smoking and previous MI (Table 4). Furthermore, there was an additive 

effect such that patients with short LTL and low CD34+ cell counts had the highest risk of 

adverse outcomes, approximately the sum of the risk for those two factors alone (Figure 3, 

Table 3 and 4). In adjusted Cox-proportional hazards modeling, the HR for those with both 

factors, compared to those with neither, was 4.3 (95% CI, 1.7, 10.8), for death, MI, or CVA, 

and 3.5 (95% CI, 1,7, 7.1) for death, MI, CVA, or revascularizations. However, the 

interaction between LTL and CD34+ was not statistically significant (Table 4).

Similar relationships of LTL and other PC counts (CD34+/CD133+, CD34+/CXCR4+ and 

CD34+/CD133+/CXCR4+) with cardiovascular events and mortality were observed (Online 

Figure II).

DISCUSSION

We found that shorter LTL is associated with lower circulating levels of PCs, independent of 

age and CAD risk factors. All CD34 expressing PCs that are known to be enriched for 

hematopoietic and endothelial progenitors were lower in patients with shorter LTL, but 

similar associations were not present with respect to other leukocyte cell counts. Although 

there was no statistically significant association between severity of coronary atherosclerosis 

and either LTL or PC counts, the latter were both significantly associated with future 

cardiovascular events. Both LTL and PC counts were independent predictors of 

cardiovascular outcomes. No statistically significant interaction was found between LTL and 
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PC as binary predictors in the Cox regression model. Our results suggest that accelerated 

biological aging, reflected by a shorter LTL, is associated with decreased numbers of 

circulating PC, a measure of reduced regenerative capacity. However, both accelerated aging 

and reduced regenerative capacity are independent and additive predictors of future 

cardiovascular endpoints.

The length of telomeres, although in part genetically determined,29 is thought to be a 

reflection of the accumulated cellular damage over time, resulting from various mechanical, 

hemodynamic, metabolic, oxidative and immunological insults.1, 4, 25, 29, 30 These factors 

may also affect the replicative capacity of stem cells leading to increase cellular activation 

and possibly exhaustion.31 Consistent with this view, several studies have used LTL as a 

marker of biological aging and have linked it to age-related diseases including 

atherosclerosis and its consequences,32 such as peripheral vascular disease,7, 33 CAD,34 and 

importantly, cardiovascular mortality.2, 32 Since aging is associated with decline in 

circulating PCs, and atherosclerosis is thought to develop as a result of an imbalance 

between endogenous repair mechanisms and factors causing cell injury,35, 36 most of the 

studies have speculated that these observed clinical associations were related to decreased 

regenerative capacity. Increased inflammation and oxidative stress, two known key factors in 

the pathophysiology of atherosclerosis,37 may result in increased utilization of circulating 

PCs, which home to the ischemic tissue and denuded endothelium to contribute to vascular 

and endothelial repair. In turn, this may trigger bone marrow stimulation and hematopoietic 

PC division and subsequent shorter LTL. Consistent with this hypothesis, Di Cas et al. 

reported an association between shorter LTL and lower circulating CD34+ PC counts in a 

small group of healthy young subjects.38 In our larger study, we have confirmed and 

expanded this observation in patients with CAD. Although these findings suggest that LTL 

might be a determinant of the circulating stem cells pool, it predicts adverse outcomes 

independent of circulating PCs.25 Thus, our data indicate that the relationship between LTL 

and cardiovascular events is only minimally driven by vascular repair processes. Other 

mechanisms related to biological aging must be at play.

In this study, LTL was significantly correlated with PCs independent of chorological age, 

which suggests that it may serve as a biological marker of replicative capacity. Others have 

shown that LTL largely mirrors the telomere length in human bone marrow hematopoietic 

stem cells that are also the source for circulating PCs.25, 39 Although LTL represents the 

average telomere length in a heterogeneous population of leukocytes, there is a robust 

similarity in the telomere length among different cells. Thus, individuals with relatively 

short (or long) telomeres in one leukocyte subset have short (or long) telomeres in other 

leukocyte subsets.40 Previous reports showed a high correlation between LTL and telomere 

length of CD34+ hematopoietic PCs, in both bone marrow39 and umbilical cord.40, 41 Thus, 

shorter LTL is a reflection of similar reductions in telomere length of bone marrow 

progenitors, implying decreased replicative capacity of hematopoietic stem cells. We did not 

observe any statistically significant association between LTL and other leukocyte counts, 

suggesting that shorter LTL is a reflection of bone marrow regenerative capacity rather than 

global circulating cellular reserve, although this issue remains controversial.42–48
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Interestingly, we did not find a significant correlation between CAD burden and LTL. This is 

consistent with findings from the PESA (Progression of Early Subclinical Atherosclerosis) 

and the Asklepios studies where LTL was not associated with subclinical 

atherosclerosis.49, 50 In the Brubeck cohort, LTL was also not associated with subclinical 

atherosclerosis (non-stenotic carotid atherosclerosis), yet it was associated with development 

of advanced atherosclerosis (stenotic carotid plaques) and adverse cardiovascular outcomes 

(vascular death, MI, revascularization and stroke).51 Our study suggests that, in terms of 

cardiovascular risk, LTL is a marker of more downstream processes involved in biological 

aging, rather than the atherosclerotic process in general. Telomere shortening can cause cell 

senescence, and once a certain threshold is reached, particularly in the setting of 

inflammation and oxidative stress, such as in presence of CAD plaque or CAD risk factors, 

LTL shortening may accelerate the decline in circulating PCs. This may lead to less effective 

endothelial repair, with subsequent increase in inflammation and oxidative stress at the 

plaque level, which in turn may lead to plaque destabilization and the triggering of 

cardiovascular events.52, 53

The lowest quartile of PCs and LTL had highest risk of cardiovascular events, suggesting 

threshold effects in injury and repair processes, such that repair mechanisms may fail only 

when critical levels of oxidative damage face a low pool of PCs. The observed findings 

could also be related to other factors implicated in the pathophysiology of atherosclerosis, 

including increased inflammation and oxidative stress.37 Whether inflammatory and 

oxidative pathways trigger both biological aging and decline of regenerative capacity, and 

whether they explain fully the LTL association with adverse cardiovascular outcomes, need 

to be further investigated.

Strengths and limitations

Our study is the largest known published study to date investigating the association between 

LTL and PCs and the only study investigating PCs and LTL in patients with CAD. We used 

highly accurate assays for both LTL and CD34+ cell count (coefficient of variation of 2.1% 

and 2.9%, respectively). We did not assess telomere length in different circulating PCs, 

which would require cellular isolation with apheresis, or large amount of cells obtained 

usually by either cell culture or bone marrow stimulation.39, 54, 55 However, Sakoff et al has 

previously shown that LTL correlates with the telomere length of CD34+ cells.39 We 

assessed regenerative capacity using circulating CD34+ cell subsets; however, there may be 

other PC pools that would also be informative. Furthermore, we did not assess circulating 

PCs functionality, which would require cell culture and/or other complex methodology 

which was not feasible in this study. Whether patients with shorter LTL also have decreased 

circulating PCs function need to be further investigated. We assessed CAD severity using the 

closest available coronary angiogram by chart review, with a median time between 

angiogram and enrollment of 2.1 (1.0 – 4.7) years. Thus, angiogram data may not accurately 

reflect patients’ current burden of CAD in our study. As in any study, our measurements 

carry some degree of error, which, however, is expected to be mostly non-systematic error 

which would bias the estimates towards the null value. However, the analytical methods we 

used for our main variables of interest, LTL and PCs, have low coefficient of variation 

(<10%), and our outcomes were independently adjudicated. Finally, our study included 

Hammadah et al. Page 7

Circ Res. Author manuscript; available in PMC 2018 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



patients with stable CAD; whether our findings can be generalized to healthy populations 

need to be further investigated.

Conclusion and implications

Among patients with stable CAD, LTL is associated with decreased regenerative capacity, 

independent of age and CAD risk factors. Both LTL and circulating PC levels are 

independent and incremental predictors of adverse cardiovascular outcomes. Our study 

suggests that biological aging and regenerative capacity processes, albeit related, index 

largely independent pathways involved in cardiovascular disease risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty and Significance

What Is Known?

• Circulating progenitor cells (PC), promote vascular repair and regeneration 

and in low levels are linked to adverse cardiovascular outcomes.

• Leukocyte telomere length (LTL) is a biomarker of biological aging that 

reflects cumulative inflammatory and oxidative cellular injury. Short LTL has 

been linked to adverse cardiovascular outcomes.

• Previous studies have speculated that the link between biological aging (lower 

LTL) and adverse cardiovascular outcomes is due to decreased regenerative 

capacity. However, this hypothesis has not been tested before.

What New Information Does This Article Contribute?

• Biological aging, measured as LTL, is associated with decreased regenerative 

capacity, assessed using circulating PCs.

• In relation to adverse cardiovascular events, biological aging and decreased 

regenerative capacity to be two independent processes, that are additive to 

each other.

In comparison with chronological aging, biological aging reflects accumulated burden of 

individual exposure to injurious factors including oxidative stress, inflammation, toxins 

and environmental factors. Using peripheral blood, we can detect average leukocyte 

telomere length, which can serve as a biological marker of aging. Shorter leukocyte 

telomere length predicts adverse cardiovascular outcomes independent of chronological 

aging. It has been postulated that this effect is due to decreased regenerative capacity, 

leading to impaired biological repair processes; however, this was not tested directly 

before. In a cohort of patients with stable coronary artery disease, found a significant 

correlation between biological aging, measured as leucocyte telomere length, and 

decreased regenerative capacity, measured as circulating PCs. However, we found 

biological aging to be independent and additive to decreased regenerative capacity in 

predicting adverse cardiovascular outcomes. Thus, mechanisms related to biological 

aging other than vascular regeneration and repair must be at play.

Hammadah et al. Page 12

Circ Res. Author manuscript; available in PMC 2018 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Scatter plots showing the association of LTL with PC and Leukocyte levels, respectively, as 

continuous variables. The graphs show raw data to ease interpretation, with Spearman 

correlation coefficients and p values.
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Figure 2. 
Association of LTL quartiles and CD34+ cell count quartiles with adverse cardiovascular 

outcomes. P values were derived from log-rank tests comparing Kaplan Meier survival 

curves.
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Figure 3. 
Additive effect between LTL and CD34+ cell count in predicting cardiovascular outcomes 

(Death, MI, CVA and revascularization). LTL and CD34+ were dichotomized using the first 

quartile of the distribution. P values were derived from log-rank tests comparing Kaplan 

Meier survival curves, and from chi square tests comparing incidence rates.
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Table 1

Distribution of LTL, PCs and other characteristics of patients included in the study sample.

Total

Number of patients 566

Age, year, mean ± SD 63 ± 9

Male, % 76

White, % 69

BMI, kg/m2, mean ± SD 30 ± 5

Hypertension, % 76

Diabetes, % 32

Dyslipidemia, % 82

Current/former smoking, % 60

Previous MI, % 36

Medication use

  ACEI, % 46

  ARBs, % 17

  Aspirin, % 86

  Statins, % 85

  Beta blocker, % 76

CAD severity, median (IQR) 24 (9 – 56)

LTL, mean ± SD 0.82 ± 0.14

CIRCULATING PCS (CELLS/µL), MEDIAN (IQR)

CD34+ 1.6 (1 – 2.4)

CD34+/CXCR4+ 0.7 (0.5 – 1.1)

CD34+/CD133+ 0.7 (0.4 – 1)

CD34+/CD133+/CXCR4 0.3 (0.2 – 0.5)

LEUKOCYTE COUNTS (×103 CELLS/µL), MEDIAN (IQR)

White blood cells 6 (4.8 – 7.3)

Monocytes 1.8 (1.5 – 2.2)

Neutrophils 0.4 (0.3 – 0.6)

Lymphocytes 3.7 (2.8 – 4.7)

BMI: Body mass index. ARBs: Angiotensin receptor blockers. ACEI: angiotensin converting enzyme inhibitors; MI: myocardial infarction

Circ Res. Author manuscript; available in PMC 2018 March 31.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hammadah et al. Page 17

Ta
b

le
 2

A
ss

oc
ia

tio
n 

be
tw

ee
n 

LT
L

 a
nd

 P
C

s 
us

in
g 

lin
ea

r 
re

gr
es

si
on

 m
od

el
s.

C
D

34
+

C
D

34
+ /

C
D

13
3+

C
D

34
+ /

C
X

C
R

4+
C

D
34

+ /
C

D
13

3+ /
C

X
C

R
4+

Δ
*

P
 v

al
ue

†
Δ

*
P

 v
al

ue
†

Δ
*

P
 v

al
ue

†
Δ

*
P

 v
al

ue
†

U
na

dj
us

te
d

−
5.

2%
3.

9 
×

 1
0−

4
−

8.
6%

7.
2 

×
 1

0−
7

−
5.

3%
0.

00
2

−
9.

3%
1.

1 
×

 1
0−

5

A
dj

us
te

d 
m

od
el

1‡
−

5.
5%

4.
4 

×
 1

0−
4

−
8.

3%
4.

7 
×

 1
0−

6
−

5.
8%

0.
00

2
−

9.
0%

6.
8 

×
 1

0−
5

A
dj

us
te

d 
m

od
el

2§
−

5.
5%

0.
00

1
−

7.
7%

2.
5 

×
 1

0−
5

−
6.

0%
0.

00
2

−
8.

6%
1.

8 
×

 1
0−

4

* Δ
 r

ep
re

se
nt

s 
th

e 
%

 c
ha

ng
e 

in
 P

C
s 

pe
r 

10
%

 d
ec

re
as

e 
in

 L
T

L
. L

in
ea

r 
re

gr
es

si
on

 a
na

ly
se

s 
w

er
e 

pe
rf

or
m

ed
 w

ith
 lo

g 
ba

se
 o

f 
2 

tr
an

sf
or

m
at

io
ns

 o
f 

LT
L

 a
nd

 P
C

s,
 w

ith
 P

C
s 

as
 o

ut
co

m
es

. ∆
 w

as
 c

al
cu

la
te

d 
as

 (
2β

 
−

 1
) 

×
 0

.1
0.

† P 
va

lu
es

 w
er

e 
de

ri
ve

d 
fr

om
 li

ne
ar

 r
eg

re
ss

io
n 

m
od

el
s.

‡ M
od

el
 1

: A
dj

us
te

d 
fo

r 
ag

e,
 g

en
de

r, 
ra

ce
 (

w
hi

te
 v

s 
no

n-
w

hi
te

),
 B

M
I,

 s
m

ok
in

g 
an

d 
pr

ev
io

us
 M

I.

§ M
od

el
 2

: A
dj

us
te

d 
fo

r 
m

od
el

 1
 +

 a
bs

ol
ut

e 
m

on
oc

yt
e 

co
un

t. 
P 

va
lu

es
 r

em
ai

ne
d 

si
gn

if
ic

an
t w

he
n 

m
on

oc
yt

e 
co

un
t w

as
 r

ep
la

ce
d 

w
ith

 to
ta

l l
eu

ko
cy

te
, l

ym
ph

oc
yt

e,
 o

r 
gr

an
ul

oc
yt

e 
co

un
t.

A
bb

re
vi

at
io

ns
: L

T
L

: L
eu

ko
cy

te
 te

lo
m

er
e 

le
ng

th
. P

C
s:

 P
ro

ge
ni

to
r 

C
el

ls
.

Circ Res. Author manuscript; available in PMC 2018 March 31.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hammadah et al. Page 18

Table 3

Event rate of adverse cardiovascular outcomes according to LTL and CD34+ levels.

Death, MI or CVA
(number of events = 36)

Death, MI, CVA or
revascularization
(number of events = 84)

Event rate P* value Event rate P* value

Bivariate analysis

LTL < Q1 vs ≥Q1 11.1 % vs 4.5 % 0.006 21.5 % vs 10.6 % 0.001

CD34+ <Q1 vs ≥Q1 11.0 % vs 4.6 % <0.007 22.1 % vs 10.4 % 0.001

Additive effect

  LTL ≥ Q1 & CD34+ ≥ Q1 3.9 % 0.001 8.5 % <0.001

  LTL ≥ Q1 & CD34+ < Q1 6.7 % 18 %

  LTL < Q1 & CD34+ ≥ Q1 6.8 % 17 %

  LTL < Q1 & CD34+ < Q1 19.1 % 29.8 %

*
p values were calculated using the Chi Square test.

LTL: leucocyte telomere length. MI: Myocardial infarction, CVA: Cerebrovascular accident. Q1: first quartile
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Table 4

Multivariable Cox regression analysis of the association of LTL and CD34+ with adverse cardiovascular 

outcomes.

Death, MI or CVA
(number of events = 36)

Death, MI, CVA or
revascularization

(number of events = 84)

Multivariable Cox regression
analyses

HR (95%CI) P value HR (95%CI) P value

Continuous variables*

    LTL (per 10% increase) 0.82 (0.71–0.95) 0.008 0.89 (0.80 – 0.98) 0.018

    CD34+ (per 10% increase) 0.96 (0.93 – 0.99) 0.027 0.97 (0.95–0.99) 0.011

Dichotomous variables

  Bivariate analysis*

    LTL < Q1 vs ≥Q1 2.4 (1.2 – 4.7) 0.013 2.0 (1.3 – 3.2) 0.004

    CD34+ <Q1 vs ≥Q1 2.5 (1.3 – 5.0) 0.008 2.3 (1.4 – 3.6) 0.001

  Multivariable Model 1†

    LTL < Q1 vs ≥Q1 2.1 (1.1 – 4.3) 0.032 1.8 (1.1 – 2.9) 0.017

    CD34+ <Q1 vs ≥Q1 2.3 (1.1 – 4.6) 0.019 2.1 (1.3 – 3.4) 0.003

  Multivariable Model 2‡

    LTL < Q1 vs ≥Q1 2.0 (0.9 – 4.4) 0.067 1.8 (1.04 – 2.9) 0.037

    CD34+ <Q1 vs ≥Q1 2.2 (1.1 – 4.5) 0.030 2.1 (1.3 – 3.5) 0.003

  Multivariable Model 3 §

    LTL < Q1 vs ≥Q1 1.7 (0.6 – 4.6) 0.306 2.5 (1.3 – 4.7) 0.005

    CD34+ <Q1 vs ≥Q1 1.6 (0.6 – 4.4) 0.376 2.1 (1.1 – 4) 0.033

  Interaction between LTL and
CD34+

1.6 (0.4 – 6.9) 0.519 0.7 (0.3 – 1.8) 0.462

*
LTL and CD34+ in separate models.

†
Model 1: CD34+ cell counts and LTL in same model

‡
Model 2: Model 1 + age, gender, race (white vs non-white), BMI, smoking and previous MI.

§
Model 2 + interaction term.

LTL: leucocyte telomere length. MI: Myocardial infarction, CVA: Cerebrovascular accident. Q1: First quartile.
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