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Abstract

Membrane-induced interactions can play a significant role in the spatial distribution of membrane-

bound proteins. We develop a model that combines a continuum description of lipid bilayers with 

a discrete particle model of proteins to probe the emerging structure of the combined membrane-

protein system. Our model takes into account the membrane’s elastic behavior, the steric repulsion 

between proteins, and the quenching of membrane shape fluctuations due to the presence of the 

proteins. We employ coupled Langevin equations to describe the dynamics of the system. We 

show that coupling to the membrane induces an attractive interaction among proteins, which may 

contribute to the clustering of proteins in biological membranes. We investigate the lateral protein 

diffusion and find that it is reduced due to transient fluctuations in membrane shape.

I. INTRODUCTION

Cellular membranes, such as the plasma membrane, play a critical role for the stability of a 

cell and the multitude of biochemical processes that occur therein. Their principal structure 

is a bilayer of phospholipid and sterol molecules that hosts a large variety of integral and 

peripheral membrane proteins. The spatial organization of these membranes has been a topic 

of great interest because it determines which proteins are in sufficiently close proximity to 

interact with one another, which in turn is a prerequisite for cellular processes such as 

signaling.

The structure of a membrane is determined by the interactions between proteins and the lipid 

bilayer. While the specifics of this interaction depend on molecular-level details of the 

involved molecules, the principal effects of a broad range of proteins on membrane 

organization can be understood by considering how binding to a membrane affects its shape 

and shape fluctuations. For example, earlier experimental work shows protein crowding can 

lead to membrane bending [1, 2]. It has also been shown both in experiment [3–6] and 

theory [7–10] that scaffolding proteins, which induce and/or sense local membrane 

curvature, can cause large-scale membrane deformations with concomitant lateral 

organization of the proteins. Similarly, actin filaments that exert a force on the membrane 

due to polymerization can cause membrane deformations, which in turn induce a 

compressive force on the filaments that can lead to their bundling [20]. The dominant 

physical features of these illustrative examples are due to a coupling between protein 

degrees of freedom and the local membrane shape in the vicinity of the proteins.
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The nature of this coupling depends on the type of protein under consideration. Important 

earlier work has focused on modeling transmembrane proteins as disk-shaped inclusions in 

elastic membranes, which impose geometric boundary conditions at the protein–membrane 

interface or that locally alter the membrane’s elastic constants. These couplings result in an 

effective interaction between proteins that scales as 1/r4 where r is the distance between two 

such inclusions [21–23]. Others have considered adhesion sites that pin a membrane to a 

surface [24], and found a pair-wise interaction that depends logarithmically on the 

separation between adhesion sites. Typically these are many-body interactiones, i.e., they 

cannot be decomposed into a sum of pairwise contributions [25].

In this work we consider proteins that impose local constraints on the position of the 

membrane. This scenario arises, for example, when the membrane is coupled to other 

components of the cellular environment. For example, actin filaments that are anchored in 

the cytosolic actin network and whose tips are in contact with the membrane effectively 

suppress shape fluctuations of the membrane. In related work, Speck and coworkers 

considered the effect of membrane pinning to a solid substrate, and showed that the 

quenching of membrane fluctuations gives rise to an attractive interaction between adhesion 

sites [26, 27].

Spatial organization of the combined membrane/protein system can occur over length scales 

of hundreds of nanometers to several micrometers. This makes modeling such processes at 

atomistic resolution unfeasible, and therefore many coarse-grained approaches have been 

suggested in the literature, see for example Refs. 8–19. Our approach combines a continuum 

description of the membrane and a discrete particle model for the proteins. The former is 

based on the classic description of membrane elasticity due to Canham and Helfrich [28, 

29], which we simulate using the Fourier Space Brownian Dynamics method developed by 

Brown and coworkers [30–32]. Proteins are treated as spherical objects with non-specific 

repulsive interactions. The coupling between both subsystems is a simple harmonic potential 

that centers the membrane position to a constant value at the position of the proteins. The 

model is described in detail in the following section. We simulate the dynamics of our 

model, which is governed by a set of coupled Langevin equations. In Section III we present 

our findings for membrane fluctuation spectra, protein-protein correlation functions, and 

protein diffusion constants. We show that our model predicts the emergence of a fluctuation-

induced, membrane-mediated attraction between proteins that influences the spatial 

organization of the membrane–protein system.

II. THE MODEL

We construct our model by considering the effects of membrane elasticity, protein–protein 

interactions, and membrane-protein coupling. The total energy E of the system for a given 

configuration is the sum of these three contributions.

A. Membrane Elasticity

We use the elastic model developed by Canham and Helfrich to capture the effect of 

membrane shape deformations [28, 29, 33]. This model views the membrane as a two-

dimensional surface whose energetics are determined by its elastic material constants. We 
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limit ourselves to membrane shapes that can be parametrized by a single scalar function h(r) 

that represents the height deviation of the membrane from a flat reference plane. The 

membrane is located at the positions (r, h(r)), where r = (x, y) ∈ [0, L]2, and L is the side 

length of the simulation box. If membrane deformations are small one can expand the 

Canham-Helfrich energy to quadratic order in h and its derivatives, and obtains

(1)

as the energy functional of a free membrane. The parameters describing the elastic 

properties are the surface tension σ and the bending rigidity κ. We assume that the 

membrane is symmetric so that there is no spontaneous curvature. We have omitted the 

contribution of Gaussian curvature to the energy, which is a constant offset if the membrane 

topology is closed and fixed, as is the case for our model.

Equation (1) can be simplified by expanding h(r) in a plane wave basis, h(r) = L−2Σkh̃keik·r. 

The coefficients h̃k = ∫∫L2 dr h(r)e−ik·r are the Fourier transform of h(r), and the wavevector 

is of the form k = (p 2π/L, q 2π/L) with p, q ∈ ℤ. With these definitions we can express the 

membrane energy as

(2)

The advantage of this representation is that different Fourier modes are uncoupled, which 

allows us to derive several useful results analytically.

In our simulations we treat the real and imaginary parts of the Fourier coefficients h̃k as the 

dynamical variables that evolve in time. To do that we have to consider two modifications to 

this equation [34]. First, we must limit ourselves to a finite basis set, which we do by 

considering only wavevectors k with |p| ≤ P and |q| ≤ Q. The numbers P and Q determine the 

magnitude of the largest wavevector (or the smallest lengthscale) that our model can resolve. 

Second, due to the symmetry relationship  only half of those Fourier coefficients are 

independent. Ignoring the k = (0, 0) mode, we choose the Fourier coefficients with 

wavevectors {(p2π/L, q2π/L) : (1 ≤ p ≤ P, q = 0)or(−P ≤ p ≤ P, 1 ≤ q ≤ Q)} as independent 

degrees of freedom, and refer to this set as k > 0. Expressed in terms of these modes, the 

membrane energy (2) becomes

(3)
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Unlike some previous work [30, 31, 35, 36], our approach does allow the imaginary part of 

the Fourier coefficients at the Nyquist modes to be non-zero, thereby preserving translational 

invariance even for those high-wavevector modes [34].

B. Protein-Protein Interactions

The interaction among multiple proteins is a complicated function that in principle depends 

on the type, molecular structure, orientation, and conformation of the biomolecules. Here we 

neglect nearly all this detail in order to construct a simple model that captures the basic 

physical feature that is independent of the specific nature of the proteins, which is the steric 

repulsion that prevents multiple proteins from occupying the same region in space. We 

consider a collection of N proteins, each of which is completely defined by its position ri in 

the xy-plane (1 ≤ i ≤ N). The potential energy Epp of their interaction is pairwise additive,

(4)

and we choose the purely repulsive Weeks-Chandler-Andersen (WCA) potential [37]

(5)

as the pair interaction. The parameters εp and σp denote the energy and length scales of this 

interaction, the latter being approximately the diameter of the proteins.

C. Membrane-Protein Interactions

There are multiple ways in which proteins can interact with cellular membranes. Here we 

consider a potential energy term that couples the protein position and the height field of the 

membrane:

(6)

The physical meaning of this interaction is that the position of the membrane above or below 

the proteins has to be close to the constant value l relative to the z = 0 reference plane. The 

parameter ε described the strength of this constraint. If it is large, then the proteins 

effectively pin the membrane to the specific height l.

It is instructive to rewrite this interaction in terms of a potential energy surface in which the 

proteins diffuse: defining
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(7)

equation (6) becomes

(8)

where the potential ϕ depends on the membrane configuration and is therefore time-

dependent.

D. Dynamics

Our goal is to study both dynamical and static equilibrium properties of the model. To this 

end we introduce coupled Langevin equations for both membrane and protein degrees of 

freedom that describe the time evolution of the system, and that generate an ensemble of 

configurations according to the canonical Boltzmann distribution.

The Langevin equation for the membrane Fourier modes h̃k is based on the Fourier Space 

Brownian Dynamics model [30–32]:

(9)

(10)

Here, E = Em + Epp + Emp is the total energy of the system, δE/δh(r) is its functional 

derivative with respect to a membrane height change at position r, and {.}k denotes the 

Fourier transform. The mobility factor Λ̃
k is the Oseen tensor [32], Λ̃

(11)

which accounts for the hydrodynamic behavior of the aqueous solvent with viscosity η. The 

last part of (10) is a stochastic noise term. Its real and imaginary parts have mean zero and 

satisfy the Fluctuation-Dissipation relationships [34]
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(12)

(13)

(14)

which guarantee convergence to the correct equilibrium distribution.

The Langevin equation for the position of the i-th protein in the (x, y) plane, ri, is

(15)

(16)

where ∇i is the gradient with respect to ri, γp is the mobility of the protein, and the 

stochastic term ζi(t) has mean zero and variance

(17)

where the subscripts α and β represent the Cartesian components of the two-dimensional 

vector ζi. As before, this choice of the stochastic term ensures proper equilibration of the 

system. For a free protein that does not interact with the membrane (i.e., ε = 0), equation 

(15) generates a two-dimensional Brownian motion with diffusion coefficient D0 = kBTγp.

E. Simulation Scheme

Solving the coupled Langevin equations for membrane and protein degrees of freedom 

allows us to study the equilibrium behavior of our model system. We use the Euler-

Maruyama method to solve these equations numerically for small time increments Δt. In this 

discrete representations, equations (10) and (16) become
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(18)

(19)

where r stands for independent, normally distributed random numbers with zero mean and 

unit variance for both real and imaginary parts of the membrane Fourier modes h ̃k for k > 0 

(equation (18)) and for each Cartesian component of the position ri of each protein (equation 

(19)).

The choice of the timestep Δt is determined by the requirement that it must be smaller than 

all relevant dynamical processes in the system so that they can be resolved by the numerical 

integration. Several such processes exist in our model. The first is the dynamics of the 

membrane. In absence of any proteins, each membrane mode relaxes on the wavevector-

dependent timescale [35]

(20)

which together with (11) implies that

(21)

where  is the largest wavevector in the system. Using a large number 

of wavevectors therefore necessitates a very small timestep if one wants to simulate the 

membrane dynamics accurately. The equilibrium properties, however, are independent of the 

choice of the mobility factor Λ̃
k, as long as the stochastic noise terms satisfy the 

Fluctuation-Dissipation relationships (12)–(14). For our equilibrium studies we choose

(22)
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which makes the membrane relaxation times (20) wavevector independent. The constant τ 
has dimensions of time and sets the timescale for membrane dynamics. Its value does not 

affect the equilibrium properties of the system, and we set it to one second for convenience. 

In simulations that aim to study dynamical properties, such as the diffusion of proteins 

discussed in Section III C, we use the physical expression (11) for the Oseen tensor.

The second constraint on Δt limits protein motions to distances less than their diameter per 

time-step, . This condition ensures proper sampling of protein-protein 

interactions. Finally, we impose that the typical protein displacement in a single time-step is 

small compared to the shortest wavelength of the membrane, .

F. Simulation Parameters

Our model has a considerable number of parameters. Here we limit ourselves to systems 

where both the membrane surface tension σ and the preferred membrane height l are chosen 

to be zero. The strength ε of the protein-membrane interaction is set to , where 

kB is Boltzmann’s constant and T is the temperature. The energy scale εp of the protein–

protein interactions is set equal to kBT. The linear dimension L of the simulation box is 50 

times the diameter σP of the proteins. When studying the equilibrium behavior of our model 

we use a grid of P = Q = 32 Fourier modes together with expression (22) for the mobility 

factor Λk̃. As discussed previously, studying the diffusive behavior of the proteins requires 

the use of (11) for the Oseen tensor, which leads to dramatically different relaxation 

timescales for membrane modes with different wavevector magnitudes. We therefore used a 

significantly reduced model system with (P,Q) = (1, 0) or (P,Q) = (1, 1) wavevectors for 

those simulations. The timestep Δt is set to  for simulations with N = 2 

proteins, as well as for N = 100 proteins with bending rigidities βκ equal to 10 or 100 where 

β = 1/kBT. Simulations with N = 100, βκ = 1 and N = 500, βκ ∈ {10, 100} needed a 5 times 

smaller timestep, while those with N = 500, βκ = 1 required another tenfold reduction in Δt 
to reach proper equilibrium behavior.

III. RESULTS

A typical snapshot of our simulations is shown in Figure 1. The membrane exhibits 

undulations that are driven by thermal fluctuations. Proteins diffuse in the (x, y)-plane, 

effectively pinning the membrane to the height l = 0 at their positions.

Figure 2 shows the effective potential energy surface ϕ(r) in which the proteins diffuse. In 

this representation it becomes apparent that there are regions of high potential that are 

effectively inaccessible to the proteins. These regions are caused by fluctuations that move 

the membrane away from the protein’s preferred height l. A protein entering such a region 

would require either a rare fluctuation to overcome this potential or waiting until the 

membrane has relaxed back to its ground state. This exclusion of proteins from parts of the 

membrane area leads to motion akin to diffusion in a dynamically crowded environment.

We will study protein diffusion in detail in Section IIIC. First we will focus on the 

equilibrium properties of the membrane and protein subsystems. To this end we define the 
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probability distribution of a microstate, uniquely specified by the protein positions {ri} and 

Fourier components {h̃k}, which is the Boltzmann distribution

(23)

where

(24)

is the partition function. Here the first integral is taken over all possible positions of each 

protein in the square [0, L]2. The second integral is over all possible complex values for 

every Fourier coefficient h̃k with k > 0.

A. Membrane Fluctuations

The interaction between protein and membrane degrees of freedom has a significant effect 

on the membrane fluctuation spectrum. In the absence of proteins (N = 0) or if the coupling 

strength ε is zero, the spectrum can be readily computed from the equipartition theorem to 

be

(25)

If proteins at static positions ({ri}) interact with the membrane, the variance of the Fourier 

modes changes to

(26)

Because the coupling term (6) is quadratic in the membrane height, this expression is the 

variance of a multivariate Gaussian probability distribution, which we compute numerically 

using matrix inversion (see Appendix A for details).

Finally, if the proteins are mobile, the variance of a membrane Fourier amplitude h̃k is

(27)
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and we compute this quantity as the time-average of trajectories generated by the Langevin 

equations (18, 19).

Results for calculated membrane fluctuation spectra are shown in Fig. 3. The top panel 

shows the effect of protein density, specified by the dimensionless quantity . As 

expected, both the numerical calculation (26) and the simulation result yield the analytical 

free membrane result (25) if no proteins are present (ρ* = 0), which serves as a useful test to 

validate the respective computer codes. As the protein density increases, the variance of 

membrane Fourier modes with small wavevectors, corresponding to large length scales, is 

significantly suppressed, while modes with high wavevectors are not affected by the 

interaction with the proteins. Membrane spectra computed with static proteins at randomly 

chosen positions are indistinguishable from those obtained from simulations in which 

proteins were freely diffusing.

The bottom panel of Fig. 3 illustrates how bending rigidity affects membrane spectra at fixed 

protein density. The relative reduction in variance of Fourier amplitude at small wavevectors 

is largest for flexible membranes with low bending rigidities. A natural interpretation of this 

result is that membranes with high bending rigidities already have smaller fluctuations, and 

are therefore less affected by the additional pinning to a specific height imposed by the 

proteins.

B. Membrane-Induced Protein Interactions

From the proteins’ perspective the membrane acts like a time-dependent external potential 

ϕ(r, t). Because all proteins are embedded in the same membrane, its elastic behavior 

mediates an effective interaction among the proteins. To quantify this coupling, we compute 

the free energy for a configuration with proteins at positions r1, . . . , rN by performing a 

partial trace over membrane degrees of freedom:

(28)

(29)

where

(30)

is the membrane-mediated interaction between the proteins. It is in general a complicated 

function of the protein positions that is not pairwise additive. However, due to the Gaussian 

nature of the protein-membrane coupling it can be easily computed numerically (see 

Appendix B for details).
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From our simulations we obtain the radial distribution function (RDF) [38]

(31)

This function is a measure for density correlations between two points in space that are 

separated by the distance vector r.

If there are only two proteins in the system, then the RDF is related to the effective free 

energy of the protein subsystem as

(32)

where r = r2–r1 is the separation of the proteins. Even though our model is not fully 

isotropic due to the square shape of the reference domain, we typically consider rotationally 

averaged quantities g(r) and F(r).

Protein density correlation functions obtained from simulations are shown in Fig. 4 for 

different values of membrane bending rigidities and protein densities. If the membrane is 

completely rigid (κ = ∞) proteins behave like a two-dimensional WCA fluid: the pair 

correlation function is equal to one at distances larger than the protein diameter if the density 

is low (Fig. 4a). Softening the membrane (i.e., reducing the value of κ) has a large effect on 

the RDF in this case: a significant peak forms right at the constact distance σp with a broad 

shoulder that extends to distances about five times the protein diameter (Fig. 4a). This 

emergence of protein density correlations is a consequence of their coupling to the 

membrane, which mediates an attractive interaction. The magnitude of this effect decreases 

with increasing protein density (Fig. 4b,c). In this case we observe a peak in g(r) even for 

rigid membranes, which is due to the steric repulsion between proteins and their resulting 

packing structure. Decreasing κ enhances this peak to a lesser extent than in the case of low 

protein density.

In the low-density limit the RDF is directly related to the free energy of the protein 

subsystem, eq. (32). In Fig. 4d we show the free energy surface F(r) as obtained from the 

simulations of N = 2 proteins, together with numerical calculations of the membrane-

mediated interaction Fmm(r). We find that for physically relevant membrane bending 

energies (βκ ≈ 10) the membrane-mediated attraction contributes approximately 1.3 kBT, or 

3 kJ/mol, to the protein-protein interaction at contact.

C. Protein Diffusion

The diffusion constant D of proteins moving in the (x, y)-plane is a quantity of great interest 

[35, 39–43]. Due to the coupling between protein and membrane degrees of freedom this 
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constant can differ from the bare diffusion constant D0 that the Langevin equation (16) 

would generate if no such coupling existed, or if the membrane was infinitely rigid.

In this section we report simulation results that were obtained using a single protein. This 

allows us to isolate the effect of membrane fluctuations on the diffusion constant from that 

due to protein crowding. For the reasons stated in Section II F we chose an artificially small 

number of wavevectors, (P,Q) = (1, 0) or (P,Q) = (1, 1). In the former case we only study the 

protein motion along the x-axis (d = 1), while in the latter we consider both the x- and the y-

direction (d = 2).

The diffusion constant can be obtained from the mean-squared displacement (MSD) at 

sufficiently long times through the relationship

(33)

where the numerator is the variance of the protein displacement over a time period τ.

If there are no interactions, the discretized Langevin equation (19) generates a stochastic 

process that has the diffusion constant D0 independent of the chosen values for the lag time 

τ or the timestep Δt. This is no longer the case if the diffusing protein interacts with the 

membrane, as illustrated in Fig. 5. First, we find that one must use a very small timestep to 

obtain MSDs that are independent of Δt, and that therefore correspond to the continuum 

limit Δt → 0. Second, even with a properly chosen timestep the apparent diffusion constant 

depends on the lag time if the latter is not sufficiently large. The likely cause for this 

behavior is the finite relaxation time of the membrane whose dynamics affects the motion of 

the proteins. This problem can be avoided by making τ larger than the timescale of all other 

dynamical processes in the system. This approach, however, has the disadvantage that for a 

fixed trajectory length one has fewer independent data points to estimate the MSD if τ is 

large. This leads to large uncertainties in the estimate of 〈(Δr(τ ))2〉, and therefore of D. To 

quantify the uncertainty in our estimate of the MSD we use the fact that the variance 

estimator for an underlying Gaussian process follows the chi-squared distribution, and 

compute the confidence interval

(34)

Here S2 is the sample variance, which is an unbiased estimate for the population variance 

〈(Δr(τ ))2〉, n is the number of independent observations of displacements with lag time τ, 

and the parameter α is set to 0.05, which corresponds to a 95% confidence level. This 

interval is typically not symmetric around the estimated MSD.
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Figure 5 illustrates how we calculate the diffusion constant for a typical choice of system 

parameters. First, we successively decrease the timestep Δt in our simulations until the 

observed MSD, and therefore the apparent diffusion constant (33), becomes independent of 

the timestep. We then identify the lag time τ at which the estimate for D is within the 

confidence intervals of all subsequent estimates using longer lag times. This estimate of the 

diffusion constant, together with its uncertainties, is then used in further analysis.

The ratio of the actual diffusion constant D and the bare diffusion constant D0 in principle 

depends on all parameters in the model, in particular the solvent viscosity η, the membrane 

bending rigidity κ, and D0 itself. This behavior can be seen in Figure 6, which shows results 

for D/D0 obtained from simulations using P = 1,Q = 0 (a) and P = 1,Q = 1 (b) Fourier modes 

and a wide range of parameter values. We find that in general the relative diffusion constant 

decreases with increasing solvent viscosity, decreasing membrane rigidity, or increasing D0. 

In no case did we observe an increase of the diffusion constant above the bare value D0.

The interaction between the proteins and the membrane couples the diffusive dynamics of 

the former to the relaxation dynamics of the latter. Protein diffusion throughout the system 

occurs on a time scale τdiff ∝ L2/D0. According to (21) the membrane relaxation time is τm 

∝ ηL3/κ for the longest wavevector mode if the surface tension vanishes. Plotting the 

effective diffusion constant D/D0 as a function of the ratio τm/τdiff of these two timescales, 

we find that all data points collapse onto a single curve (Figures 6c,d). This fact illustrates 

that the competition between planar diffusion and membrane relaxation determines the 

actual diffusion constant of the proteins. For biologically realistic values of the parameters 

involved (D0 = 10−13 m2/s, η = 10−3 Js/m3, κ = 10kBT, T = 310 K) the ratio LD0η/κ is 

approximately 6 × 10−4, at which D/D0 ≈ 1. In this case the coupling between the membrane 

and the proteins therefore does not have a significant effect on the effective protein diffusion 

constant.

IV. DISCUSSION

Our model is based on a continuum description of a cellular membrane and a simple particle 

representation of peripheral proteins. Both components interact through a harmonic 

interaction that suppresses membrane height fluctuations at the protein locations. Our results 

show that this interaction gives rise to multiple observable changes in the behavior of both 

subsystems. First, membrane fluctuations over long length scales are depressed; the extent of 

which increases with protein density and decreasing membrane rigidity. Second, the 

coupling to the membrane induces an effective attraction between proteins. Third, the 

apparent diffusion constant of the proteins decreases if the bending rigidity is low. This 

effect, however, is likely negligible for typical biological membranes.

The emergence of a membrane-mediated interaction between proteins has been previously 

established for different types of couplings between the two subsystems. Early work in this 

field established an effective interaction that scales with 1/r4 for membrane inclusion [21–

23]. The same dependence has been calculated for the interaction between rods absorbed to 

membranes [44, 45]. Theoretical studies of the distance-dependent free energy of membrane 
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adhesion sites have different functional forms [24, 26, 27]. In all cases the interaction is 

induced by the thermal fluctuations of the membrane, and therefore entropic in origin.

We find that the induced attraction contributes on the order of 3 kJ/mol to the interaction 

energy between two proteins for biologically relevant values of the involved parameters. 

This contribution decreases at higher protein densities. In particular, in no case did we 

observe a condensation of proteins into a high-density droplet, as one observes in systems 

with sufficiently attractive pairwise interactions that exhibit a liquid-vapor transition.

In this work we focused on a specific coupling between the membrane and the proteins, 

namely a quadratic interaction the depends on the membrane height at the positions of the 

proteins. This model is appropriate for proteins that suppress membrane height fluctuations. 

There are other classes of proteins that couple differently to the membrane. For example, 

some membrane scaffolding proteins sense and induce local curvature upon membrane 

binding [46–48]. To study these systems our model can be modified by replacing the 

coupling to the membrane height h(ri) in eq. (6) by one to the local mean curvature 

∇2h(ri)/2. Related models have been proposed in the literature [8, 40, 42, 43, 49, 50]. Higher 

resolution models that take into account the non-isotropic shape of specific proteins have 

shown that the combination of membrane-mediated and direct protein–protein interactions 

can give rise to orientationally ordered aggregates [10, 51–53]. Together, these studies 

highlight the variety and complexity of structures that can emerge from seemingly simple 

membrane–protein interactions.

Acknowledgments

K. S. was supported in part by a training grant from the National Institute of General Medical Sciences of the 
National Institutes of Health, award number T32GM008268.

References

1. Stachowiak JC, Hayden CC, Sasaki DY. Proc Natl Acad Sci USA. 2010; 107:7781. [PubMed: 
20385839] 

2. Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY, Sherman MB, Geissler PL, Fletcher DA, 
Hayden CC. Nat Cell Biol. 2012; 14:944. [PubMed: 22902598] 

3. Frost A, Perera R, Roux A, Spasov K, Destaing O, Egelman EH, de Camilli P, Unger VM. Cell. 
2008; 132:807. [PubMed: 18329367] 

4. Heinrich MC, Capraro BR, Tian A, Isas JM, Langen R, Baumgart T. J Phys Chem Lett. 2010; 
1:3401. [PubMed: 23772271] 

5. Shi Z, Baumgart T. Nature Communications. 2014; 6:5974.

6. Chen Z, Shi Z, Baumgart T. Biophys J. 2015; 109:298. [PubMed: 26200865] 

7. Blood PD, Voth GA. Proc Natl Acad Sci USA. 2006; 103:15068. [PubMed: 17008407] 

8. Ayton GS, Blood PD, Voth GA. Biophys J. 2007; 92:3595. [PubMed: 17325001] 

9. Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M. Nature. 2007; 447:461. 
[PubMed: 17522680] 

10. Simunovic M, Srivastava A, Voth GA. Proc Natl Acad Sci USA. 2013; 110:20396. [PubMed: 
24284177] 

11. Laradji M, Kumar PBS. Phys Rev Lett. 2004; 93:198105. [PubMed: 15600888] 

12. Cooke IR, Kremer K, Deserno M. Phys Rev E. 2005; 72:011506.

13. Venturoli M, Sperotto MM, Kranenburg M, Smit B. Phys Rep. 2006; 437:1.

Sapp and Maibaum Page 14

Phys Rev E. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. J Phys Chem B. 2007; 111:7812. 
[PubMed: 17569554] 

15. Pasqua A, Maibaum L, Oster G, Fletcher DA, Geissler PL. J Chem Phys. 2010; 132:154107. 
[PubMed: 20423168] 

16. Chen L, Gao L, Fang W, Golubovic L. Comm Comp Phys. 2012; 11:709.

17. Chen L, Jia N, Gao L, Fang W, Golubovic L. Int J Mol Sci. 2013; 14:7932. [PubMed: 23579956] 

18. Srivastava A, Voth GA. J Chem Theo Comp. 2013; 9:750.

19. Simunovic M, Evergren E, Golushko I, Prevost C, Renard HF, Johannes L, McMahon HT, Lorman 
V, Voth GA, Bassereau P. Proc Natl Acad Sci USA. 2016; 113:11226. [PubMed: 27655892] 

20. Liu AP, Richmond DL, Maibaum L, Pronk S, Geissler PL, Fletcher DA. Nature Physics. 2008; 
4:789. [PubMed: 19746192] 

21. Goulian M, Bruinsma R, Pincus P. Europhys Lett. 1993; 22:145.

22. Park JM, Lubensky TC. J Phys I France. 1996; 6:1217.

23. Kim KS, Neu J, Oster G. Biophys J. 1998; 75:2274. [PubMed: 9788923] 

24. Farago O. Advances in Planar Lipid Bilayers and Liposomes. 2011; 14:129.

25. Yolcu C, Haussman RC, Deserno M. Adv Colloid Interface Sci. 2014; 208:89. [PubMed: 
24685271] 

26. Speck T, Reister E, Seifert U. Phys Rev E. 2010; 82:021923.

27. Speck T. Phys Rev E. 2011; 83:050901(R).

28. Canham PB. J Theor Biol. 1970; 26:61. [PubMed: 5411112] 

29. Helfrich W. Z Naturforsch C. 1973; 28:693. [PubMed: 4273690] 

30. Lin LCL, Brown FLH. Phys Rev Lett. 2004; 93:256001. [PubMed: 15697914] 

31. Lin LCL, Brown FLH. Phys Rev E. 2005; 72:011910.

32. Brown FLH. Ann Rev Phys Chem. 2008; 59:685. [PubMed: 18173377] 

33. Safran, SA. Statistical Thermodynamics of Surfaces, Interfaces and Membranes. Addison–Wesley 
Publishing; 1994. 

34. Sapp, K., Shlomovitz, R., Maibaum, L. Annual Reports in Computational Chemistry. Wheeler, 
RA., editor. Vol. 10. Elsevier; Amsterdam: 2014. p. 47-76.

35. Reister-Gottfried E, Leitenberger SM, Seifert U. Phys Rev E. 2007; 75:011908.

36. Camley BA, Brown FLH. Phys Rev Lett. 2010; 105:148102. [PubMed: 21230871] 

37. Weeks JD, Chandler D, Andersen HC. J Chem Phys. 1971; 54:5237.

38. Hansen, J-P., McDonald, IR. Theory of Simple Liquids. 4. Academic Press; 2013. 

39. Brown FLH, Leitner DM, McCammon JA, Wilson KR. Biophys J. 2000; 78:2257. [PubMed: 
10777724] 

40. Sigurdsson JK, Brown FLH, Atzberger PJ. J Comp Phys. 2013; 252:65.

41. Reister E, Seifert U. Europhys Lett. 2005; 71:859.

42. Reister-Gottfried E, Leitenberger SM, Seifert U. Phys Rev E. 2010; 81:031903.

43. Leitenberger SM, Reister-Gottfried E, Seifert U. Langmuir. 2008; 24:1254. [PubMed: 18072795] 

44. Golestanian R, Goulian M, Kardar M. Europhys Lett. 1996; 33:241.

45. Golestanian R, Goulian M, Kardar M. Phys Rev E. 1996; 54:6725.

46. Antonny B. Cur Op Cell Biol. 2006; 18:386.

47. Frost, A., Unger, VM., de Camilli, P. The Pombe Cdc15 Homology Proteins. Aspenström, P., 
editor. Landes Bioscience; 2009. 

48. Frost A, Unger VM, de Camilli P. Cell. 2009; 137:191. [PubMed: 19379681] 

49. Naji A, Atzberger PJ, Brown FLH. Phys Rev Lett. 2009; 102:138102. [PubMed: 19392406] 

50. Ayton GS, Lyman E, Krishna V, Swenson RD, Mim C, Unger VM, Voth GA. Biophys J. 2009; 
97:1616. [PubMed: 19751666] 

51. Arkhipov A, Yin Y, Schulten K. Biophys J. 2008; 95:2806. [PubMed: 18515394] 

52. Yin Y, Arkhipov A, Schulten K. Structure. 2009; 17:882. [PubMed: 19523905] 

Sapp and Maibaum Page 15

Phys Rev E. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Cui H, Mim C, Vazquez FX, Lyman E, Unger VM, Voth GA. Biophys J. 2013; 104:404. [PubMed: 
23442862] 

Appendix A: Calculation of Membrane Fluctuation Spectra

In Section IIIA we derived equation (26) for the membrane fluctuation spectrum in the 

presence of N static proteins at positions r1, . . . , rN. This expression is the variance of a 

multivariate Gaussian probability distribution. Here we explain in detail how we computed 

this variance numerically.

We begin by enumerating the independent real-valued degrees of freedom [34]. We do so by 

choosing the following ordering of the real and imaginary parts of the membrane Fourier 

modes: Reh̃1,0, Imh̃1,0, . . ., Reh̃P,0, Imh̃P,0, Reh̃ −P,1, Imh̃ −P,1, . . ., Reh̃P,1, Imh̃P,1, . . . , Reh̃

−P,Q, Imh̃ −P,Q, . . ., Reh̃P,Q, Imh̃P,Q. The total number of real-valued degrees of freedom is 

M = 2P + 2Q + 4PQ. For notational convenience we relabel this sequence as d1, . . . , dM 

such that

(A1)

(A2)

This allows us to rewrite the exponent in (26) as

(A3)

where d is the M-dimensional column vector containing the variables di, d⊤ is its transpose, 

and the coupling matrix X is of the form

(A4)

Here Cn,m is a 2×2 submatrix that couples the real and imaginary part of a single Fourier 

mode hk̃. Its components are

(A5)
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(A6)

(A7)

(A8)

The coefficients (p, q) of the wavevector kn are p = (n – P –1) mod (2P +1)–P, q = (n–P –

1)/(2P +1)⌋ +1.

With the exponent written in the form (A3) we can compute the covariances as elements of 

the inverse of X,

(A9)

with 1 ≤ j, j′ ≤ M.

The variance of a single membrane mode can then be computed as the sum of the variances 

of its real and imaginary parts,

(A10)

(A11)

Appendix B: Calculation of Protein Density Correlation Functions

To calculate the membrane-mediated interaction Fmm for a static collection of proteins at 

positions ({ri}) we proceed as in Appendix A and rewrite the Boltzmann factor in the form 

(A3). The integration in eq. (30) can then be performed analytically and yields
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(B1)

Here we have suppressed constants independent of the protein positions that cause an overall 

shift in the free energy. Instead, we normalize the free energy such that it is zero at the 

largest possible distance within our simulation box.

In the special case of only N = 2 proteins we can then directly calculate the pair correlation 

function from this energy using eq. (32).
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FIG. 1. 
Snapshot of a simulation of the combined membrane/protein system. The gray surface 

shows the current membrane configuration; red dots illustrate protein positions. Simulation 

parameters are P = Q = 32, σ = 0, βκ = 10, , N = 100.
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FIG. 2. 
Same snapshot as in Fig. 1, but showing in gray the potential energy surface ϕ(r) instead of 

the membrane conformation. Proteins remain in the low-energy regions of this potential, 

whereas the membrane is free to fluctuate in protein-free regions.
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FIG. 3. 
(a) Dependence of membrane fluctuations on protein density. If no proteins are present the 

spectra are given by the free membrane result (25). As the protein density increases, the 

variance of membrane modes with small wavevectors is significantly reduced. Dashed lines 

represent numerical solutions of (26); points were obtained from simulations. (b) 

Dependence of membrane fluctuations on bending rigidity. The reduction of membrane 

fluctuations (relative to the free membrane result) is largest for flexible membranes that have 

low bending rigidity.
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FIG. 4. 
Effect of membrane rigidity on protein pair correlation functions at different densities. (a) At 

low densities (N = 2) the RDF is essentially flat outside the protein diameter if the 

membrane is rigid, and develops a significant peak as the bending rigidity is reduced. (b) At 

intermediate densities (N = 100) this effect is less pronounces. (c) At high densities (N = 

500) there is a peak in the pair correlation function, but it is due to packing and nearly 

independent of the membrane bending rigidity. (d) Free energy of the protein–protein 

interaction, eq. (32), and membrane-mediated interaction, eq. (30). Dashed lines are 

obtained from simulations; solid lines in panels (a) and (d) are obtained numerically as 

described in Appendix B.
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FIG. 5. 
Determination of the diffusion constant from mean squared displacements. The timestep Δt 
must be chosen sufficiently small so that observed MSDs do not depend on its value. The lag 

time τ must be large enough so that the dynamics reaches the diffusive regime, indicated by 

a constant value of D as computed by (33). Uncertainties increase significantly with τ if the 

total length of the simulation data is fixed. Simulation parameters: L = 250 nm, P = 1, Q = 0, 

N = 1, D0 = 5 × 109 nm2/s, βκ = 10, σ = 0, η = 10−29 Js/nm3, .
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FIG. 6. 
Renormalization of protein diffusion as a function of membrane bending rigidity κ and 

solvent viscosity η. The ratio of actual to bare diffusion constant, D/D0, varies strongly with 

system parameters both in the one-dimensional case (P = 1,Q = 0, panel (a)) and the most 

basic two-dimensional case (P = 1,Q = 1, panel (b)). When plotted as a function of D0η/κ 
the data points collapse onto single curve in both cases (panels (c) and (d), respectively).
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