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Abstract

Differentiation alters molecular properties of stem and progenitor cells, leading to changing shape 

and movement characteristics. We present a deep neural network that prospectively predicts 

lineage choice in differentiating primary hematopoietic progenitors, using image patches from 

brightfield microscopy and cellular movement. Surprisingly, lineage choice can be detected up to 

three generations before conventional molecular markers are observable. Our approach allows 

identifying cells with differentially expressed lineage-specifying genes without molecular labeling.

Long-term high throughput time-lapse microscopy is a powerful tool to study the 

differentiation processes of single cells in unprecedented temporal resolution1. A high 

frequency of brightfield imaging (typically on the scale of a few minutes) ensures that 
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moving single cells and cell divisions can be accurately tracked and used for the 

construction of cellular genealogies. Additionally, fluorescent imaging (due to cell 

phototoxicity typically only possible in intervals of thirty minutes or more2) allows the 

quantification of molecular lineage markers3,4. However, molecular lineage markers are 

only available for specific, often already differentiated cell types5,6, hindering an early 

identification of differentiating cells.

We thus set out to exploit the information in the abundant brightfield images of time-lapse 

experiments for a prospective detection of lineage commitment. We developed our method 

on time-lapse experiments of primary murine hematopoietic stem and progenitor cells 

(HSPCs) differentiating into either the granulocytic/monocytic (GM) or the megakaryocytic/

erythroid (MegE) lineage (Fig. 1a, Supplementary Fig. 1). Branches (i.e. a cell and all its 

predecessors) were generated by automatically linking an image patch of 27x27 pixel 

covering the mass-centered cell body to every time point of a manual cell track (Fig. 1b,c, 

Supplementary Note 1). We annotated lineage commitment when the respective lineage 

marker was detectable in the fluorescent channel (CD16/32 for GM and GATA1-mCherry 

for MegE lineage) and assigned all tracked cells to one of three categories: i) “annotated” 

cells with clear marker expression within the cell lifetime, ii) “latent” cells with no 

immediate marker expression but an expression in a subsequent generation, and iii) 

“unknown” cells with no marker expression in current or subsequent generations 

(Supplementary Fig. 2a-c). Our dataset comprised 150 genealogies from 3 independent 

experiments with a total of 5,922 single cells (Supplementary Fig. 2d-f). Each cell was 

imaged ~400 times, resulting in more than 2,400,000 image patches.

We used these millions of image patches to build a classifier that predicts the lineage choice 

of a stem cell’s progeny towards the GM or the MegE lineage. To efficiently leverage the 

information in our dataset we built on recent advances in deep neural networks for image 

classification. We combine a convolutional neural network (CNN) with a recurrent neural 

network (RNN) architecture to automatically extract local image features and exploit the 

temporal information of the single-cell tracks (Fig. 1d,e). Specifically, three connected 

convolutional layers extract image features, resulting in increasingly global representations 

of the image patches. As a CNN allows no direct inclusion of features other than pixel 

information, we introduced a concatenation layer combining the highest-level spatial 

features with cell displacement, followed by a fully connected layer that can be interpreted 

as patch features. To train the CNN, this layer is connected to output nodes resulting in a 

single patch lineage score between 0 and 1. Lineage scores of 0 or 1 indicate a strong 

similarity to cell patches from the MegE or GM lineage, respectively. Next, in order to 

classify individual cells as committed to either lineage, we used the patch features as input 

for the RNN. To model long-range temporal dependencies in the data without suffering from 

the vanishing-gradient problem7, we used a bidirectional long short term memory (LSTM) 

architecture8,9 (Fig. 1e).

After filtering out all unknown cells (containing both uncommitted cells and committed cells 

for which the markers had not yet switched on at the end of the experiments), the dataset to 

train and evaluate our method consisted of 4,402 single cells (~1,700,000 image patches) 

with annotated or latent marker onset (34% MegE and 66% GM, Supplementary Fig. 2e,f). 
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To assess the generalization power of our model to reliably predict a cell’s putative lineage 

choice in independent experiments, we trained our CNN-RNN on 2 experiments and tested 

the resulting model on the third experiment; we repeated this procedure 3 times in a round-

robin fashion (Fig. 1f) and evaluated the performance of the trained model by the area-

under-the-curve (AUC) of the receiver-operating characteristic and F1 score (Supplementary 

Fig. 3). Our method achieved high AUCs of 0.87±0.01 (mean±sd, n=3 rounds) on annotated 

cells, indicating that morphology and displacement suffice to detect the lineage choice of 

HSPCs. Interestingly, the reported AUCs for latent cells were also high (0.79±0.02, mean

±sd, n=3 rounds), suggesting that latent cells are morphologically different before an 

identifiable marker expression. We further investigated this finding by analyzing AUCs for 

every generation separately (Fig. 1g). AUCs stayed at comparable and robust levels from one 

to three generations before an annotated marker onset (0.84±0.07, 0.86±0.04 and 0.78±0.05 

respectively, mean±sd, n=3 rounds). At four and five generations before the marker onset the 

decline and variance of AUCs (0.74±0.19 and 0.82±0.19 respectively, mean±sd, n=3) 

suggested that the difference in morphology and displacement did not longer suffice to 

differentiate GM- and MegE-committed cells. We achieved similar performance when using 

our classifier on data from genetically non-modified mice (see Methods and Supplementary 

Fig. 4). To assess the performance of our CNN-RNN on cells where tracking is stopped 

before cell cycle completion (e.g. in an “online-prediction” scenario where the lineage score 

is calculated while the experiment runs), we computed AUCs based only on a subset of 

brightfield patches. While single patches are insufficient for correct prediction, AUCs over 

0.75 were reached when using the first ~25% of timepoints in the cell cycle from annotated 

(Fig. 1h) and latent (Fig. 1i) cells (3, 2 and 1 generation before the identified marker onset).

The combination of single-cell transcriptomic profiling10 with our approach would in 

principle allow to compare expression patterns of early committed cells after stratification in 

accordance to their lineage score to identify differentially expressed regulators. Since the 

usefulness of our approach for such an experiment is hard to assess from the AUCs, we 

evaluated our method with the expression of PU.1, a transcription factor that is tagged with 

eYFP in our cells (see Methods). As expected6,11, PU.1-eYPF was upregulated in GM-

annotated cells (Fig. 2a), downregulated in MegE-annotated cells (Fig. 2b), and showed 

intermediate expression in cells without annotated marker expression (Fig. 2c). If our 

proposed method was capable of reliably predicting early lineage choice, we should be able 

to in silico stratify all cells at every timepoint of a hypothetical experiment into GM- or 

MegE-committed cells. These groups in turn are expected to differentially express PU.1-

eYFP. Thus we classified every latent and unknown cell into two groups by analyzing if its 

lineage score was above (GM) or below (MegE) a threshold of 0.5 (Fig. 2d, Supplementary 

Fig. 5a,b). We found the two groups to differentially express PU.1-eYFP from 2 generations 

after experiment start onwards (P<0.01 in generation 2, P<0.001 in generations 3-8, 

unpaired Wilcoxon rank-sum test, Fig. 2d) with at least 89 cells per generation (Fig. 2e). As 

only 2±1% (mean±sd, n=3 rounds) of GM and 15±8% (mean±sd, n=3 rounds) of MegE 

marker onsets were annotated earlier than four generations after experiment start, our 

method is clearly superior to lineage identification based on traditional molecular markers in 

that particular time window (Supplementary Fig. 5c).
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Different automated methods have been used for single-cell classification12–15. We 

compared the performance of our CNN-RNN to several other approaches. To this end, we 

trained a random forest model and a support vector machine (SVM) with a set of 87 

morphological features and displacement. In addition, we evaluated the algorithmic 

information theoretic prediction (AITP)15, a method designed to predict the differentiation 

fate of retinal progenitor cells using a set of six movement and size features as well as a 

conditional random field (CRF) approach based on SIFT features13,16. Finally, we 

quantified the performance of two CNN models, where we averaged patch-wise lineage 

scores to obtain cell-specific predictions (Supplementary Fig. 6). We evaluated all methods 

in terms of AUC; in addition, to quantify performance in terms of precision and recall, we 

further compared the F1 scores of all methods. While our CNN-RNN outperformed the 

SVM on annotated cells and was on par on latent cells, we found the AUCs for random 

forest to be slightly higher on both sets (Supplementary Fig. 7a). However, the CNN-RNN 

achieved considerably higher F1 scores than the random forest, AITP and CRF-based 

approach (Supplementary Fig. 7b), indicating a poorer calibration of these methods. Using 

an RNN to model cell dynamics rather than simple averaging in the CNN approach yielded a 

slight but consistent increase in predictive power (in terms of F1 score). This suggests that 

the CNN-RNN yields more robust results when applied to new experiments that were not 

part of the training procedure.

The computation of hand-crafted features can be time-consuming and biased since 

appropriate features have to be chosen carefully for every new dataset. Instead, our CNN-

RNN takes as input only raw brightfield image patches, rendering the explicit computation 

of features obsolete. Yet, knowing which interpretable features are most important for 

lineage prediction could support the design of novel experiments to study hematopoietic 

differentiation2. Since the features implicitly derived within the CNN are difficult to extract 

and interpret, we evaluated the feature importance reported by the trained random forest 

model17. We found that multiple features - most importantly displacement and simple 

morphological features (maximal/mean pixel intensity and cell size) - are required for 

correct random forest classification (Supplementary Fig. 8). To investigate the relevance of 

the displacement feature, we re-trained our CNN-RNN model omitting displacement, 

resulting in a somewhat lower predictive power for latent cells (from 0.79±0.02 to 

0.76±0.04), illustrating that displacement is indeed used by the network. Moreover, we 

found slight differences in displacement and cell diameter for GM vs. MegE predicted cells 

(Supplementary Fig. 9).

Previously, computational image analysis has been used to predict the fate of rat retinal 

progenitor cells15 and to identify characteristic features of two populations of progenitor 

cells in the cerebral cortex18. In the hematopoietic system, long cell cycle times and trailing 

cellular projections19 as well as reduced proliferation and increased asynchronous 

divisions20 have been identified as key features of HSPC self-renewal via time-lapse 

microscopy. Our method allows to prospectively discriminate between two different lineages 

arising from hematopoietic progenitors and performs robustly on multiple independent time-

lapse experiments. For a single cell, this prediction relies on a sequence of brightfield 

images and the combination of multiple features - single images and single features do not 

suffice. In future experimental applications, the brightfield-based prediction frees fluorescent 
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channels that are currently used for lineage marker annotation. Moreover, the differential 

expression of PU.1-eYFP implies that our method can be used to identify important 

regulators of lineage choice when combined with single-cell profiling. While parameterizing 

deep neural networks requires large quantities of training data, the application of this 

approach matches the large amount of labeled image data that emerges from the diligent and 

careful annotation of time-lapse microscopy movies4,6 and can be used for training the 

networks. Compared to other machine learning methods, our CNN-RNN method predicts 

fast and robustly for new experiments not used for training. While it is independent of a cell-

type specific, curated feature set and requires no high-level feature calculation, the 

interpretation of the derived features is challenging and an active field of research. In 

summary, our approach is versatile and well suited to analyze differentiation processes in 

biological systems where robustness is pivotal, suitable feature sets are unknown or fast 

prediction is required.

Online Methods

Generation of knock-in mice

The generation of knock-in mouse lines with reading frames for yellow (enhanced yellow 

fluorescent protein; eYFP) and red (mCherry) fluorescent proteins knocked into the gene 

loci for PU.1 and Gata1, respectively has previously been described6. The resulting PU.

1eYFP and GATA1mCherry mice were mated to create PU.1eYFPGATA1mCherry mice with no 

discernible phenotype6.

Purification of primary murine hematopoietic stem and progenitor cells

Femurs, tibiae and ilia were removed from 12-14 weeks old mice and bone marrow was 

extracted. HSPCs were sorted to a technical purity of >95% and an expected functional 

purity of at least 40%-60% by flow cytometry21,22. Directly after sorting, cells were 

incubated with CD16/32 Alexa Fluor 647 antibody and seeded on a plastic slide (µ-slide VI 

coated with Fibronectin, Integrated BioDiagnostics GmbH, Munich, Germany) with 

physically separated channels in serum-free medium (StemSpan SFEM, StemCell 

Technologies) supplied with cytokines that only promote differentiation towards myeloid 

cells. Animal experiments were approved by veterinary office of Canton Basel-Stadt, 

Switzerland and Regierung von Oberbayern, Germany.

Long-term time-lapse microscopy data

For each experiment, channels of a plastic slide were subdivided into 72-78 overlapping 

fields of view. Each field of view corresponds to a 1388x1040 pixel image that was saved in 

8-bit png format. Images were acquired using Axio Observer Z1 microscopes (Zeiss), 

equipped with a 0.63x TV-adapter (Zeiss), an AxioCamHRm camera (Zeiss) and a 10x fluar 

objective (Zeiss). Microscopes were surrounded by an incubator to keep a constant 

temperature of 37°C, cells were maintained in 5% CO2. Each field of view was imaged in 

intervals of 60-120 seconds (brightfield channel), 25-40 minutes (PU.1-eYFP and GATA1-

mCherry channels) and 120-240 minutes (CD16/32 channel) for up to 8 days 

(Supplementary Fig. 1). Automatic focusing was achieved using a hardware autofocus 
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(Zeiss), which was set to 18µm below the optimal focal plane to acquire slightly blurred 

images optimal for cell detection23.

Time-lapse experiments from PU.1eYFPGATA1mCherry mice (3 experiments, 150 

genealogies, 5922 cells, 2477784 cell patches, Supplementary Fig. 2) and non-genetically 

modified C57BL/6J mice (1 experiment, 29 genealogies, 266 cells, 157384 cell patches) 

were used in this study, comprising a total size of ~1TB of disc space.

Single-cell tracking and annotation of lineage commitment

Single cells and their progeny were manually followed over time using the tTt software24 

(Supplementary Fig. 1,2 and Supplementary Video 1). Next, we combine automated 

segmentation with cell tracks by linking image patches centered on the cell’s center of mass 

to the nearest track coordinate. To that end, we extended our previously developed 

automated image processing pipeline that identifies and segments single cells with high 

accuracy in time-lapse brightfield microscopy25 (Supplementary Video 2). For a detailed 

description of tracking, identification and segmentation, see Supplementary Notes and 

Supplementary Fig. 10.

Lineage commitment was initially annotated by experts by visually inspecting the 

fluorescence signal of CD16/32 (for the GM lineage) and GATA1-mCherry (for the MegE 

lineage). We amended these annotations by automatically quantifying the concentration of 

CD16/32 and GATA1-mCherry using a self-written user interface (see Supplementary Fig. 

11). Galleries of cells with marker expression are shown in Supplementary Fig. 12. For the 

genetically non-modified mice, we used CD16/32 (for the GM lineage) and a large 

morphology (for the MegE lineage due to the absence of GATA1-mCherry).

Deep neural networks

We combined a convolutional neural network (CNN) for automatically extracting shape-

based features with a recurrent neural network (RNN) architecture, modeling the dynamics 

of the cells.

For the CNN, we extended a model from the LeNet family26 by combining three 

convolutional layers (20 filters with kernel size 5, 60 filters with kernel size 4, and 100 filters 

with kernel size 3, respectively) with two fully connected layers (500 and 50 nodes, 

respectively). Each convolutional layer is followed by a non-linear activation function. We 

chose Rectified Linear Units (ReLU), which have been shown to introduce non-linearities 

without suffering from the vanishing gradient problem27. In addition, we used max-pooling 

layers reducing variance and increasing translational invariance by computing the maximum 

value of a feature over a region28 and dropout layers following the fully connected layer to 

avoid overfitting. Here, we follow largely Ciresan et al.29, where it is shown that this 

combination of layers results in fast training times and good performance on a variety of 

image classification data sets. We further use the recently proposed batch normalization 

strategy to normalize outputs after each layer30. Finally, in order to be able to account for 

non-image-based features, we introduce a concatenation layer that combines spatial features 

with cell displacement (Fig. 1d).
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We used a softmax loss function and trained the network using stochastic gradient descend 

with stratified batches of 128 images. We initialized all weights in the network using the 

Xavier algorithm, which automatically determines the scale of the initialization based on the 

number of input- and output nodes31. We used standard values for the base learning rate 

(0.01), momentum (0.9) and the learning rate policy (stepwise policy decreasing the learning 

rate every 10,000 iterations32).

We then passed the output of the first fully connected layer together with the displacement 

feature (which we interpret as patch features extracted by the CNN) to a bidirectional long-

short-term memory (LSTM) recurrent neural network (Fig. 1e). Specifically, we trained a 

LSTM RNN with 20 hidden nodes using the rprop algorithm33 with cross-entropy loss 

function, taking the mean across all timepoints. We trained the RNN for up to 15 epochs 

with standard positive update parameter of 1.2 and negative update parameter of 0.5.

In order to avoid over-fitting we divided the training data into a training and validation set 

and optimized the weights, both of the CNN and the LSTM RNN, until the performance on 

the validation set started to degrade (early stopping). All images were normalized to mean 

zero and unit variance, to normalize for possible batch effects.

Quantification of morphodynamics and fluorescence signals

On every extracted image patch (27x27 px around the cell’s center of mass), 87 features (14 

basic measurements as provided by MATLAB regionprops method, 27 Zernike moments34, 

3 Ray features35, 13 Haralick texture features36, 2 Gabor wavelet features37, 5 Tamura 

features38, Histograms of oriented Gradients39 with 27 bins) were computed. If a 

fluorescence image was available, the fluorescence concentration was quantified by 

summing up all pixel within the segmented cell in the background corrected fluorescence 

image and dividing by cell size. Quantification errors (clumped cells, dirt, falsely identified 

as cell, cells lost due to border contact, over-segmented cell fragments) were detected by 

fitting a B-spline to the cell size over time. We then discarded those time points with residue 

differences beyond the 98th or below the 2nd percentile of all time points. We computed cell 

displacement si,t for cell i at time point t as the root mean squared displacement between the 

frame t and t-1 divided by the time difference between the frames,

where x and y are the spatial coordinates and Tt is the absolute time after experiment start 

for frame t. We computed s(x,y) for all pairs of adjacent frames for every cell, using the 

track coordinates for the full cell trajectory.

Feature-based classification

A random forest classifier was trained with 200 trees (default parameters) and evaluated by 

out-of-bag prediction. We chose BudgetedSVMs40 with the Pegasos algorithm and a radial 

basis function kernel as a support vector machine (SVM) framework that was able to deal 

with the millions of single image patches in our dataset. We used a grid search with 5-fold 
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cross-validation for every train-test combination to determine optimal hyperparameters. The 

best-performing model was then used for predicting the testset. Note that the 

hyperparameters for SVM had to be determined for every train-test run individually. We 

trained both methods with a set of 87 morphological features and cell displacement (see 

above). We applied the same train-test procedure for model evaluation as for the CNN.

AITP was trained as described15, using a set of 6 features for each cell (movement, net 

movement, movement direction, area and eccentricity of fitted convex hull). As AITP was 

not able to process the full dataset in a single run, we generated three subsets (n=400 cells 

per subset) for every train-test round, which we evaluated separately. We used the averaged 

evaluation results for comparison. As the used version of AITP reported class labels and no 

prediction scores, we used the macro-averaged F1 score for performance evaluation. It is 

worth noting that in contrast to all other methods, AITP inherently uses the full cell 

trajectory for training and prediction.

Recently, conditional random field (CRF) based models have been proposed for sequence 

labeling in the context of mitosis sequence detection13,14. We adapted the approach of Liu 

et al.13 and trained a CRF using SIFT features for our cells. Feature extraction was 

performed based on VLFeat, an open implementation of SIFT features41. The CRF was 

implemented using the pystruct library42.

Evaluation of model performance

Performance of the trained classification models was determined by receiver-operator 

characteristics and macro-averaged F1 score.

The receiver-operator characteristic is a function that evaluates the change in true positive 

(TP) rate with respect to the false positive (FP) rate of a predicted class label in accordance 

to all possible thresholds of a classification score that can be interpreted as probabilities (as 

is the case for random forest, SVM and CNN). The area under the curve (AUC) falls in the 

interval of [0,1] (1 = perfect classification, 0.5 = random guessing) and gives an impression 

of the general performance of the classifier.

The F1 score combines precision and recall in a single score

where FN is the false negative rate. A perfect classifier would reach a score of 1 and a 

random classifier would reach a score of 0.5. To account for the classification performance 

of both classes, the F1 score can be calculated for each class and then averaged resulting in 

the macro-averaged F1 score
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for all class labels C. To determine class membership (i.e. commitment of a cell to GM or 

MegE lineage) a threshold of 0.5 for the cell lineage score was used for all models.

Implementation

Single-cell identification and quantification was implemented using MATLAB (R2014a). 

Code from43 was used to compute histograms of oriented gradients. All quantifications 

were parallelized on single-cell level and processed on a computation cluster (sun grid 

engine version 6.2u5). The average node architecture was equal to an Intel Xeon 2GHz, 4GB 

RAM running a 64bit linux-based operating system. Random forest classification was 

conducted with the python-based scikit-learn package (v0.15). The support vector machine 

was trained using the code provided with the original publication40. AITP was trained using 

the latest version (April 1st, 2014) from the website of the authors after slight adaptation of 

input/output functionality to fit our data. To implement the convolutional neural network, we 

used the caffe framework32 and trained it on a standard PC equipped with an Intel Core 

i7-4770 CPU, 32GB working memory and a 6GB Geforce GTX Titan Black graphics card. 

The recurrent neural network was implemented in Theano44 and trained on that same 

machine. SIFT features were calculated using VLFeat41, and the CRF was implemented 

using the pystruct library42.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Prediction of hematopoietic lineage choice up to three generations before molecular 
marker annotation using deep neural networks.
(a) Hematopoietic stem cells (gray) can differentiate and are annotated as committed 

towards the granulocytic/monocytic (GM, blue) lineage via detection of CD16/32, or 

towards the megakaryocytic/erythroid lineage (MegE, red) via GATA1-mCherry expression. 

These conventional markers necessarily appear after the lineage decision (gray box). (b,c) 

Exemplary image patches of a branch of single cells committing to either GM (b, upper row) 

or MegE (c, upper row) lineage (scale bars: 10µm). Cells with no marker expression are 

called “latent”, cells with marker expression “annotated” (b,c, middle row). Our automatic 

image processing pipeline allows robust cell identification and thus quantification of 

movement and morphology (demonstrated with cell size in lower rows of b and c) (d) A 

single image patch and the according cell’s displacement (white node) with respect to the 

previous time point are fed into a convolutional neural network (CNN) consisting of 

convolutional and fully connected layers (see Methods for more details on the network 

architecture). The last fully connected hidden layer (yellow) can be interpreted as patch-

specific features. (e) To account for temporal dependencies we feed the CNN-derived patch 

features of a cell (yellow) in a recurrent neural network (RNN). The nodes in the hidden 

layer are connected to output nodes as well as all other hidden nodes across time (left); this 

temporal dependency is further illustrated in an unrolled representation of the RNN (right), 

where yellow squares represent the patch feature vectors at a specific time point and 

forward/backward arrows reflect the bidirectional architecture of the RNN. Every patch is 
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assigned a lineage score between 0 and 1 (0=MegE, 1=GM, 0.5=unsure). (f) Two 

experiments are used for training, while one experiment is left out to assess generalization 

quality of the learned model. We repeat this procedure three times in a round-robin fashion. 

(g) Area under the receiver operating characteristics curve (AUC; 1.0=perfect classification, 

0.5=random guessing) determines the performance of the trained models. Annotated cells 

(generations 0,+1,+2) and latent cells up to three generations before marker onset 

(generations -3,-2,-1) show AUCs higher than 0.77 (n=3 rounds, 4204 single cells in total). 

(h,i) AUCs when only (contiguous) subsets of image patches are used to compute the cell 

lineage score. AUCs over 0.75 were reached when using the first ~25% of timepoints in the 

cell cycle from latent (h) and annotated cells (i), respectively.

Buggenthin et al. Page 13

Nat Methods. Author manuscript; available in PMC 2017 August 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Subsets of cells with differential PU.1-eYFP expression can be distinguished two 
generations after experiment start.
(a) Increase of PU.1-eYFP concentration in a branch with annotated GM marker onset. (b) 

Decrease of PU.1-eYFP concentration in a branch with annotated MegE marker onset. 

Concentrations (black dots) are fitted with a B-spline (black/colored line). (c) Cells without 

marker expression (unknown or latent fate, black) show an intermediate PU.1-eYFP 

concentration compared to cells annotated for GM (blue) and MegE (red) lineage. (d) 

Concentration of PU.1-eYFP for unknown and latent cells in generations after experiment 

start, subdivided into predicted GM (blue) and MegE (red), based on CNN-RNN lineage 

score for round 1 (see Supplementary Fig. 4 for rounds 2 and 3). PU.1-eYFP concentration 

is significantly different in generation 2 (P<0.01) and 3-8 (P<0.001, unpaired wilcoxon rank-

sum test) after experiment start between the two predicted groups. (e) Significantly different 
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PU.1-eYFP expression in generation 2 after experiment start is detected in 55 MegE (red) 

vs. 34 GM (blue) predicted cells, respectively.
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