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ABSTRACT In the early phase of bone damage, low concentrations of the cytokine
tumor necrosis factor alpha (TNF-«) favor osteoblast differentiation. In contrast,
chronic high doses of the same cytokine contribute to bone loss, demonstrating op-
posite effects depending on its concentration and on the time of exposure. In the
bone microenvironment, TNF-a modulates the expression/function of different G
protein-coupled receptors (GPCRs) and of their regulatory proteins, GPCR-regulated
kinases (GRKs), thus dictating their final biological outcome in controlling bone
anabolic processes. Here, the effects of TNF-a were investigated on the expression/
responsiveness of the A,g adenosine receptor (A,gzAR), a Gs-coupled receptor that
promotes mesenchymal stem cell (MSC) differentiation into osteoblasts. Low TNF-«
concentrations exerted a prodifferentiating effect on MSCs, pushing them toward an
osteoblast phenotype. By regulating GRK2 turnover and expression, the cytokine im-
paired A,zAR desensitization, accelerating receptor-mediated osteoblast differentia-
tion. These data supported the anabolic effect of TNF-a submaximal concentration
and demonstrated that the cytokine regulates GPCR responses by interfering with
the receptor desensitization machinery, thereby enhancing the anabolic responses
evoked by A,zAR ligands. Overall, these results indicated that GPCR desensitization
plays a pivotal role in osteogenesis and that its manipulation is an effective strategy
to favor bone remodeling.

KEYWORDS A2B adenosine receptor, G protein-coupled receptor kinases, tumor
necrosis factor alpha, mesenchymal stem cells, osteoblasts, proteasome

one diseases, characterized by a progressive reduction of bone strength and

susceptibility to fracture, are increasingly frequent pathologies, especially due to
the remarkable increase in the average age of the population. Currently, no Food and
Drug Administration-approved therapy is available to effectively promote bone regen-
eration (1, 2). For this reason, understanding molecular pathways involved in fracture
reparative processes is pivotal to develop new, simple, and cost-effective therapeutic
agents and strategies.

In a healthy body, injury is usually followed by both inflammation and immunologic
reaction that is caused by local necrosis and bacterial infection. Inflammatory cells and
factors released in the injured site influence the microenvironment of bone tissue in
order to favor osteogenic reparative processes (3-5). Among the inflammatory players,
tumor necrosis factor alpha (TNF-«) assumes an important role in bone healing,
affecting mesenchymal stem cell (MSC) behavior in a dose- and time-dependent
manner. In the early inflammatory phase, immediately after fracture, TNF-« is released
at low levels and favors MSC migration, survival, and differentiation, thus promoting
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bone repair (6). In contrast, in the late and chronic uncontrolled phase of inflammation,
higher doses of the same cytokine have destructive effects on bone and contributed to
bone loss. However, the intracellular pathways and mechanisms involved in bone
remodeling and responsible for the paradoxical effects of TNF-a remain unclear (7-9).
For that matter, it is uncertain whether or not TNF-« dialogues with different G
protein-coupled receptors (GPCRs) and, through the modulation of the expression
and/or functional activity of these receptors, may interfere with the biological re-
sponses evoked by receptor stimulation under physiological and pathological condi-
tions.

Several GPCRs, such as the parathyroid hormone receptor (PTH1R), E series prosta-
glandin receptors (EP2 and EP4), P1 and P2Y purinergic receptors, and many others, are
directly involved in bone remodeling (10, 11). Clinical trials with PTH R-targeted
molecules demonstrated that receptor desensitization, subsequent to the continuous
administration of receptor agonists, may explain the switch from anabolic to catabolic
effects of PTH on bone (12-14). Based on these pieces of evidence, the investigation of
the molecular mechanisms underlying desensitization processes of GPCRs may be
crucial to understanding the final biological outcome of these receptors to controlling
bone remodeling and to propose new and alternative therapeutic strategies for bone
diseases.

Among GPCRs, the adenosine A, receptors (A,zARs) have been demonstrated to
promote MSC differentiation and increase osteogenesis both in vitro and in vivo,
suggesting this receptor is an innovative target for bone diseases (15-19). A,zARs are
functionally activated by endogenous adenosine only in damaged and inflamed tissues
in which adenosine is massively released following ATP degradation. Moreover, several
studies have demonstrated that the responses evoked by A,zARs are selectively
regulated by proinflammatory cytokines in both chronic and acute inflammation (20,
21). In particular, TNF-a has been shown to modulate the A,AR desensitization process
through a direct effect on GPCR receptor kinase 2 (GRK2) in human astroglial cells, thus
modifying the receptor-mediated responses (22, 23). Indeed, GPCR desensitization is
largely mediated by direct phosphorylation of receptor serine and threonine residues
by a family of kinases, termed GRKs. Among the different isoforms, GRK2 and GRK3 are
the most common kinases involved in the regulation of GPCR responsiveness in bone
(24). The expression of GRK2 is temporally regulated during osteoblast development,
and this kinase has been shown to modulate GPCR responsiveness during the osteo-
genic process (25). It is worth noting that the activity of GRKs is regulated by the
inflammatory microenvironment. Several studies have demonstrated that TNF-a de-
creases the cellular levels of GRK2 in in vitro and in vivo models of inflammatory
diseases and may contribute to the regulation of the desensitization processes of
different GPCRs, thereby prolonging agonist-mediated receptor activation over time
(26-28).

To date, no data are available on the regulation of A ;AR desensitization in bone
under inflammatory conditions. Based on this evidence, the aim of this work was to
investigate the effect of TNF-a on the kinetics of A,zAR desensitization (taken as a
model of Gs protein-coupled receptors) in the regulation of osteoblast differentiation
from MSCs. We demonstrated that a low TNF-a concentration, mimicking a submaximal
inflammatory state, induced a significant inhibition of GRK2 activity, thereby impairing
agonist-induced A,;AR desensitization. Therefore, the inflammatory cytokine increased
the osteogenic effects elicited by the purinergic system, contributing to osteoblast
differentiation. These data indicate that local inflammatory environment manipulation
is a simple and effective way to enhance bone formation and accelerate fracture repair.

RESULTS

MSC proliferation and differentiation to osteoblasts: effects of TNF-a. MSCs
were cultured in complete growth medium. To induce differentiation into osteoblasts,
a specific osteogenic medium was used (15). The time course and complete cell
osteogenic process were monitored as described previously (15).
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The effects of different concentrations of TNF-a (0.1 ng/ml to 10 ng/ml) on MSC
proliferation were evaluated. TNF-a did not induce any significant effect on the
proliferation rate of both undifferentiated MSCs (Fig. 1A) and cells differentiated for 5
days in osteogenic medium (Fig. 1B). These data demonstrated that the cytokine, in our
culture experimental medium, did not have a toxic effect up to a 10 ng/ml concentra-
tion.

We then investigated the effects of TNF-a on MSC differentiation to osteoblasts.
MSCs were subjected to the proinflammatory stimulus during their differentiation in
osteogenic medium. The effects of TNF-a (1 ng/ml) on the expression of Runx2, a
pivotal transcription factor that drives cells toward an osteoblast phenotype, and ALP,
an early marker of osteoblast differentiation, were evaluated at different stages of
differentiation. TNF-a induced a time-dependent increase in the expression levels
of both Runx2 (19.69- = 2.69-fold versus 12.44- = 0.91-fold in the control after 15 days
of treatment) (Fig. 1C) and ALP (20.37- = 1.34-fold versus 13.26- = 1.09-fold in the
control after 15 days of treatment) (Fig. 1D).

In addition to the induction of osteogenic markers, calcium deposition after 15 days
of cell incubation with the cytokine in osteogenic medium was measured as a late
indicator of osteogenic differentiation. TNF-« significantly increased calcium deposi-
tion, confirming it favored matrix mineralization (Fig. 1E and F). In contrast, any
significant effects were observed in MSCs cultured in growth medium (data not shown).
These results suggested the proinflammatory cytokine contributes to the early osteo-
genic differentiation of MSCs, potentiating the effects of prodifferentiating factors.

Osteoblast differentiation: interplay between TNF-« and A,zAR. It is known that
proinflammatory cytokines regulate the expression and activity of several intracellular
proteins; therefore, it contributes to the modulation of the responses evoked by GPCRs
(22, 29). Among these, TNF-a has been shown to modulate expression and functionality
of the A,gAR (21, 23), a GPCR involved in MSC differentiation (17).

Based on this evidence, the modulation of TNF-« on A,zAR-induced MSC differen-
tiation was evaluated. Consistent with literature data, the selective A,zAR agonist
BAY60-6583 caused a time-dependent increase in both ALP and Runx2 expression after
5 and 15 days of cell treatment (Fig. 2A and B). These results confirmed that A,zAR
stimulation induced a significant enhancement of osteogenic processes. Moreover, the
treatment with BAY60-6583 for 15 or 21 days produced an evident increase of miner-
alization (Fig. 2C and D), as previously reported (15).

When BAY60-6583 was used in combination with TNF-q, the pro-osteogenic effects
of A,zAR agonist were significantly increased. Indeed, the expression levels of Runx2
and ALP induced by BAY60-6583 in the proinflammatory medium were 1.28- and
1.25-fold higher than those obtained with the agonist alone (Fig. 2A and B).

These results were confirmed by the mineralization assay (Fig. 2C and D). Indeed,
a significant increase in matrix mineralization was detected when TNF-a and
BAY60-6583 were used in combination. The percentage of calcium deposit induced
by the A,gAR stimulation in the presence of cytokine was 144.6% = 5.1% and
155.3% * 4.8% after 15 and 21 days of differentiation, respectively, and it was
127.1% * 6.0% and 136.5% * 7.6% in the absence of TNF-a.

The effect of TNF-a on the responses evoked by BAY60-6583 was completely
abrogated by the selective A ;AR antagonist MRS1706, confirming it is selectively
ascribed to the activation of the A,zAR subtype. Notably, the effect of TNF-« alone was
slightly decreased by the treatment with MRS1706, pointing out that the A,zAR
activation could be one of several mechanisms at the basis of TNF-« osteoblastogenesis
induction.

These data, taken together, suggested that the MSC inflammatory microenviron-
ment modulates the mineralization process, favoring the responses evoked by A,zAR
stimulation.

Agonist-induced A, AR desensitization at different stages of MSC differentia-
tion: effect of TNF-a. The putative molecular mechanisms involved in the effects of
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FIG 1 Effect of TNF-a on MSCs and osteoblast viability and differentiation. (A and B) MSCs were cultured in
proliferation medium for 72 h (A) or in osteogenic medium for 5 days (B) in the presence of TNF-« (0.1 ng/ml to 10
ng/ml). After treatments, cell viability was detected using the MTS assay. The data were expressed as percentages
of cell viability with respect to the untreated cells (control, OM), which was set to 100%, and they were presented
as the mean values == SEM from three independent experiments, each performed in triplicate. (C and D) MSCs were
cultured in osteogenic medium for different times (0 to 15 days), in the absence (control, OM) or in the presence
of 1 ng/ml TNF-a. At each time, mRNA expression levels of transcription factors Runx2 (C) and ALP (D) were
quantified by real-time RT-PCR. The data were expressed as fold changes with respect to the basal value, which was
set to 1 (mean values = SEM; n = 3). ***, P < 0.001 versus basal; ##, P < 0.01 versus untreated cells. (E and F) MSC
mineralization was evaluated after 15 days of differentiation in the absence (control) or presence of TNF-a (1 ng/ml).
After treatments, cells were stained with alizarin red S, representative images were taken (E), and absorbance was
counted using a plate reader (530 nm) (F). The data were expressed as a percentage of MSC mineralization with respect
to that for the untreated cells (control), which was set to 100% (mean values = SEM; n = 3).*, P < 0.05 versus the control.
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FIG 2 TNF-a modulation of A,;AR-mediated MSC mineralization. (A and B) MSCs were cultured in osteogenic medium for different times
(0 to 15 days), in the absence (control) or in the presence of 5 nM BAY60-6583 or 1 ng/ml TNF-q, alone or in combination. At each time,
mRNA expression levels of transcription factors Runx2 (A) and ALP (B) were quantified by real-time RT-PCR. The data were expressed as fold
changes with respect to the basal value (set to 1), and they were presented as the mean values += SEM from three independent experiments.
The significance of the differences was determined by one-way ANOVA, followed by Bonferroni’s post hoc test. ***, P < 0.001 versus basal;
##, P < 0.01; ###, P < 0.001 versus untreated cells; §, P < 0.05 versus BAY60-6583 alone. (C and D) The MSC mineralizations were evaluated
after 15 (C) or 21 (D) days of differentiation in the absence (control, OM) or presence of BAY60-6583 (5 nM), TNF-a (1 ng/ml), MRS1706 (1
M), and KRX29 (1 uM), alone or in combination. After treatments, cells were stained with alizarin red S and absorbance was counted using a
plate reader (530 nm). The data were expressed as a percentage of MSC mineralization with respect to that for the untreated cells (control), which
was set to 100% (mean values + SEM; n = 3).* P < 0.05; **, P < 0.01; ***, P < 0.001 versus the control; #, P < 0.05; ##, P < 0.01; ###, P < 0.001.

TNF-a on A AR responses were investigated. First, the modulation of A,zAR gene and
protein expression evoked by the cytokine was investigated. As shown in Fig. 3, a
significant upregulation of A,;AR gene (2.03- = 0.17-fold versus the control) and
protein (147% = 8% versus the control) expression was detected after 48 h of MSC
treatment with the cytokine (Fig. 3A, C, and D). In contrast, challenging MSCs for 5 days
in osteogenic medium did not affect A,zAR content at either gene or protein levels (Fig.
3B, C, and D).

The effects of TNF-a on A,zAR functional responsiveness then were investigated.
A,sARs are mainly coupled to Gs proteins and activated adenylyl cyclase, thereby
increasing intracellular cyclic AMP (cAMP) levels. Desensitization is one of the main
processes that regulate GPCR functionality. On this basis, TNF-a modulation on agonist-
mediated A,zAR desensitization was evaluated at different stages of MSC differentia-
tion (0 to 5 and 15 days). For this purpose, control and TNF-a-treated cells were
preincubated with A,zAR agonist (BAY60-6583) for different times (5 to 120 min),
washed, and stimulated with the same agonist for 15 min. As depicted in Fig. 4, A,gAR
functional responses were quickly impaired by cell prechallenge with the agonist
BAY60-6583 (Fig. 4) (30, 31). The desensitization kinetics appeared to be faster in
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FIG 3 Effect of TNF-a on AZBAR and GRK2 expression. (A to D) MSCs were cultured in osteogenic medium for 48 h (A, C, and
D) or for 5 days (B, C, and D) in the absence (control) or in the presence of TNF-« (1 ng/ml). (A to C) At the end of the treatment,
cells were lysed and the A,;AR and GRK2 protein (A to C) or mRNA (D) levels were evaluated using Western blotting or
real-time RT-PCR analyses, respectively. (A and B) Representative Western blots; GAPDH was the loading control. (C)
Densitometric analysis of the immunoreactive bands, performed using the Image) program. The data were expressed as
optical density (OD) percentage with respect to the untreated cells (control; set to 100%) and are mean values = SEM (n =
3). (D) Real-time PCR data, expressed as fold changes with respect to the control value, set to 1 (mean values = SEM; n = 3).
(E and F) MSCs were pretreated with saline or 10 uM MG-132 and then incubated in osteogenic medium for 48 h in the
absence (control) or in the presence of TNF-a (1 ng/ml). At the end of the treatment, GRK2 protein levels were evaluated using
Western blot analysis as reported for panels A to C. (G) MSCs were treated as described for panel A. At the end of the treatment

(Continued on next page)
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undifferentiated MSCs (half-life [t, 5], 1.46 = 0.008 min—') and in the early phase of
differentiation (t,,,, 4.17 = 0.021 min—") (Fig. 4A and B). In contrast, in the late phase
of the differentiation program, A,zAR functional responses remained preserved for a
longer time, showing slower desensitization kinetics (t; 5, 16.32 = 1.12 min—") (Fig. 4Q).
These differences may be ascribed to the different expression of A,zARs along with
MSC maturation.

TNF-a did not significantly alter the basal response of A,zAR to agonist but
substantially impaired the degree and the rate of receptor desensitization. These
effects were already evident in undifferentiated cells (t,,5, 17.61 = 1.22 min—") and
became more significant at different stages of the differentiation process (5 days,
t,, of 36.75 = 2.15 min—"; 15 days, t,,, of 50.77 = 3.81 min—"). The diverse effect
of TNF-a during the differentiation process could reflect the presence of different
cell phenotypes that are characterized by the expression of peculiar intracellular
proteins involved in the receptor regulatory machinery.

Effects of TNF-a on GRK2 expression. GRKs, particularly the isoform 2, are the
most relevant kinases involved in the phosphorylation and desensitization of GPCRs,
including A,zARs (32, 33). To elucidate the mechanism through which TNF-« impaired
ALAR functionality, we investigated the effects of the inflammatory cytokine on GRK2
expression and on its association with A,zARs upon agonist-mediated receptor stimu-
lation. Notably, the cytokine caused a significant and time-dependent inhibition of
GRK2 protein levels (Fig. 3A to C).

In order to dissect if a TNF-a-mediated decrease in GRK2 levels could involve a
transcriptional mechanism, a real-time PCR analysis was performed. The results showed
that the cytokine did not affect the expression of GRK2 mRNA after 48 h or after 5 days
of differentiation (Fig. 3D). Based on such data, posttranscriptional regulation of GRK2
by TNF-a was investigated, considering, in particular, the involvement of the protea-
some pathway, which has been identified as a major mechanism for modulating GRK2
expression levels (34-36). For this purpose, MSCs were challenged with the proteasome
inhibitor MG-132 (37) in the absence or presence of the inflammatory cytokine for 48
h. As depicted in Fig. 3E and F, MG-132 significantly, but not completely, prevented
TNF-a-mediated decrease of GRK2 expression.

Because several proteins are targeted to the proteasome pathway go through
polyubiquitination (34, 38, 39), the potential role of ubiquitination in GRK2 degradation
was examined by assessing the kinase association with the mouse double minute 2
(Mdm2) ubiquitin ligase (38, 40). The results showed that the cytokine induced a
significant GRK2 association with Mdm2 following both 48 h and 5 days of treatment
(Fig. 3G). Altogether, our data indicate that TNF-« regulation of GRK2 involves, at least
partially, the ubiquitin-dependent proteasome pathway.

Effects of TNF-a on GRK2 association with A,gARs. The stimulation with BAY60-
6583 caused a significant increase of A,;AR-GRK2 association (148.6% = 4.8%; P value
of <0.001 versus basal expression) (Fig. 4D). Moreover, A,;AR-GRK2 association de-
creased during different time points of MSC differentiation to osteoblasts. The degree
of this association paralleled the rate of desensitization induced by the agonist (Fig. 4A
to Q). In addition, a reduction in GRK2 association with A,;ARs was detected when
the MSCs were maintained in the presence of TNF-q, particularly in the early phase
of the MSC differentiation process (Fig. 4D). These data suggest the cytokine modulates
the desensitization machinery of different Gs-coupled receptors in MSCs, thereby
favoring the functional activity of these receptors in response to agonist stimulation, as
was demonstrated for the A,gAR.

Effect of GRK2 inhibition/overexpression on the kinetics of A ;AR desensitiza-
tion. In order to corroborate the hypothesis that TNF-a affected the GRK2 activity

FIG 3 Legend (Continued)

period, the interaction between Mdm2 and GRK2 was quantified by an ELISA method as reported in Materials and Methods.
The data were expressed as percentages of GRK2 association with respect to the untreated cells (mean values = SEM; n = 3).

*, P < 0.05; **, P < 0.01; ***, P < 0.001 versus the control; #, P < 0.05 versus cells treated with TNF-a.
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FIG 4 Effect of TNF-a on A,zAR functional response during MSC differentiation. (A to C) MSCs were cultured in osteogenic medium in the absence or
presence of 1 ng/ml TNF-a for 0 (A), 5 (B), or 15 (C) days. At each time point, MSCs were incubated with 5 nM BAY60-6583 for different times (5 to 120
min). After extensive washing, cells were treated for 15 min with 5 nM BAY60-6583. Intracellular cAMP levels were evaluated as reported in Materials
and Methods. The data were expressed as cCAMP percentages with respect to the level for untreated cells (basal), which was set to 100% (mean values
+ SEM; n = 3).**, P < 0.01; ***, P < 0.001 versus respective BAY60-65383 treatments; #, P < 0.05; ##, P < 0.01 versus TNF-a. (D) MSCs were differentiated
for 0, 5, or 15 days in the absence or in the presence of TNF-« (1 ng/ml) and then were stimulated for 5 min with 5 nM BAY60-6583. At the end of the
treatment period, cells were collected and the interaction between A,;AR and GRK2 was quantified by an ELISA method as reported in Materials and
Methods. The data were expressed as a percentage of GRK2 association with respect to that for the untreated cells (basal), which was set to 100% (mean
values = SEM; n = 3). %, P < 0.05; ***, P < 0.001 versus the basal level; #, P < 0.05; ###, P < 0.001 versus the respective control.

leading to the impairment of Gs-coupled receptor desensitization, the effects of
selective GRK2 inhibition and overexpression on A ;AR desensitization were evaluated.
Challenging MSCs with the synthetic GRK2 inhibitor KRX29 (33, 41) completely pre-
vented A,AR desensitization at all of the osteoblast differentiation stages (Fig. 5A to C).
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FIG 5 Effect of the GRK2 inhibitor on A,zAR functional response during MSC differentiation. MSCs, cultured in osteogenic medium for 0
(A), 5 (B), or 15 (C) days, were treated with 5 nM BAY60-6583 for different times (5 to 120 min) in the absence or presence of 1 uM KRX29.
After extensive washing, cells were treated for 15 min with 5 nM BAY60-6583. Intracellular cAMP levels were evaluated as reported in
Materials and Methods. The data were expressed as CAMP percentages with respect to the level for the untreated cells (basal), which was
set to 100% (mean values = SEM; n = 3). *, P < 0.05; **, P < 0.01; ***, P < 0.001 versus respective BAY60-65383 treatments; #, P < 0.05;

##, P < 0.01; ###, P < 0.001 versus KRX29.

The data are in accordance with the effect of KRX29 on mineralization (Fig. 2C and D).
In fact, the inhibitor slightly increased the mineralization induced by the agonist
BAY60-6583, producing an effect comparable to that exerted by TNF-a. The similar
effect exerted by the cytokine and the kinase inhibitor highlighted the involvement of
GRK2 in agonist-mediated A,zAR desensitization.

In parallel, we also evaluated the effect of GRK2 overexpression on TNF-a-mediated
impairment of A,gAR functional responses. MSC transfection with GRK2 plasmid in-
duced a significant increase in protein expression (2.5-fold versus empty vector-
transfected cells; P < 0.001), as demonstrated by Western blotting (Fig. 6A and B) (38).
GRK2 overexpression induced a significant increase in the degree of A,zAR desensiti-
zation, as shown in Fig. 6C. Furthermore, the high levels of GRK2 protein were able to
overcome almost completely the inhibitory effect of TNF-a on A,zAR functionality (Fig.
6D). The receptor reduced functional responses to its selective agonist in a time-
dependent manner even in the presence of the cytokine. These data support our
hypothesis that TNF-« impaired Gs protein-coupled receptor desensitization by affect-
ing, at least in part, the activity of intracellular GRK2 proteins, as demonstrated for the
A:AR.

DISCUSSION

TNF-a has been widely reported to exert opposite and conflicting effects on MSCs
(6-9), primarily depending on cytokine concentration, time of exposure, and stage of
cell differentiation (7, 9). In this study, a low concentration of TNF-a was demonstrated
to enhance and accelerate the A,z;AR-mediated differentiation of MSCs toward an
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FIG 6 Effect of GRK2 overexpression on A,;AR functional response during MSC differentiation. (A and B) MSCs were cultured in
osteogenic medium and then transfected with a GRK2 plasmid as reported in Materials and Methods. At the end of the treatment
period, the cells were lysed and the GRK2 protein levels were evaluated using Western blot analysis. GAPDH was used as the loading
control. (A) Representative Western blots. (B) Densitometric analysis of the immunoreactive bands performed using the Image)
program. The data were expressed as percent optical density (OD) with respect to the level for untreated cells (empty vector), which
was set to 100% (mean values + SEM; n = 3). *** P < 0.001 versus the control. (C and D) MSCs were cultured in osteogenic medium
in the absence (C) or presence (D) of TNF-a and then transfected with a GRK2 plasmid as reported in Materials and Methods. On the
5th day of differentiation, cells were incubated with 5 nM BAY60-6583 for different times (5 to 120 min) in the absence or presence
of 1 ng/ml TNF-a. After extensive washing, cells were treated for 15 min with 5 nM BAY60-6583. Intracellular cCAMP levels were
evaluated as reported in Materials and Methods. The data were expressed as CAMP percentages with respect to the level for untreated
cells (basal), which was set to 100% (mean values = SEM; n = 3).*, P < 0.05; **, P < 0.01; ***, P < 0.001 versus respective BAY60-65383
treatments; #, P < 0.05; ##, P < 0.01; ###, P < 0.001 versus TNF-a.

osteoblast phenotype according to the consolidated evidence that low, submaximal
concentrations (1 to 10 ng/ml) of TNF-a, particularly in the early phase of tissue injury,
have an anabolic effect (42, 43). The mechanisms involved in the cytokine-elicited
action on osteogenesis remain to be elucidated. Dissecting such molecular aspects is a
crucial goal for a therapeutic intervention aimed at controlling bone remodeling, under
both physiological and pathological conditions. Here, the interplay between TNF-« and
the A,gzAR was investigated in MSCs, examining in particular GPCR desensitization, a
process primarily mediated by intracellular GRK proteins (32, 44, 45). The induction of
osteogenesis mediated by low TNF-a concentrations was primarily related to a reduc-
tion of GRK2 expression, leading to an enhancement of A,zAR functionality.

Several pharmacological strategies targeting GPCRs for promoting osteogenesis (10,
14, 15, 18) have been limited by the loss of receptor functionality that reduces the
response to agonists over time. Notably, the occurrence of desensitization processes
has been linked to the switch from anabolic to catabolic events in bone remodeling,
suggesting that manipulating the GPCR desensitization machinery is a useful strategy
for the treatment of bone diseases (12, 13, 46).

TNF-a has been demonstrated to play an important role in bone healing by affecting
MSC behavior (7). Consistent with recent literature (42, 43), here a low TNF-a concen-
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tration was confirmed to stimulate MSC differentiation to osteoblasts within 15 days of
cell treatment. The presence of the cytokine in osteogenic medium significantly in-
creased Runx2 and ALP expression levels, thereby favoring MSC mineralization. Of note,
this effect was not associated with significant changes in cell proliferation. TNF-a not
only affects the differentiation processes, it also positively or negatively influences the
rate of proliferation (47, 48). In our experimental model of induced MSC differentiation,
TNF-a caused a complete switch to a differentiation process blocking the proliferative
machinery.

Among the different GPCRs involved in bone remodeling and osteoblastogenesis,
the purinergic receptor A,zAR has arisen recently (15-19). Of note, this receptor
responds to micromolar concentrations of adenosine, which is released under patho-
logical conditions, such as stress or inflammation (49).

A functional interplay between A,z;ARs and TNF-a has been shown in different cell
models, including glioma (23), intestinal epithelial (21), and vascular smooth-muscle
(20) cells. In particular, the cytokine has been shown to enhance the adenosine-
mediated responses under inflammatory conditions by regulating A,zAR responses at
different levels, including an upregulation of protein expression and/or an increase of
receptor functional responsiveness by inhibiting receptor phosphorylation (21, 23).

To date, no evidence is available on the regulation of A,gARs by TNF-« in MSCs or
the role of this dialogue in controlling the bone remodelling process. Here, TNF-a was
shown to induce a significant increase in the A,zAR-mediated osteogenic effects. The
cytokine treatment increased the receptor mRNA and protein levels only in undiffer-
entiated cells. Thus, the enhancement of the GPCR responses elicited by TNF-a was
primarily ascribed to a direct effect on GRK2, which is the most important kinase
involved in GPCR desensitization in response to agonist stimulation. Spurney et al. have
demonstrated that GRK2 and B-arrestin are temporally regulated during osteoblast
differentiation in a pattern that would tend to enhance GPCR responsiveness and favor
MSC differentiation (13). When an injury occurs, the release of cytokines and other
soluble factors in the cellular microenvironment may regulate the activity of these
kinases and in turn affect the GPCR final biological outcome (50, 51). In particular, the
increase of Gs-coupled receptor responsiveness and the consequent accumulation of
higher levels of cAMP are crucial events in pushing osteoblast precursors to a differ-
entiated phenotype. In this respect, Sinha and collaborators have recently demon-
strated that cCAMP signaling downstream of Gs-coupled receptors plays a critical role in
determining the commitment of osteoblast precursors to bone with respect to adi-
pocyte (52).

TNF-a has been shown to prevent Gs-coupled receptor desensitization by regulat-
ing GRK2 association with plasma membranes, thereby inhibiting receptor phosphor-
ylation and desensitization in different cell lines (22). These data may support a
beneficial role of low cytokine concentrations in potentiating GPCR functional re-
sponses. In MSCs, we demonstrated that TNF-« caused a significant downregulation of
GRK2 protein level without affecting its gene expression. Kinase regulation was shown
to partially involve the Mdm2-ubiquitin-dependent proteasome pathway, consistent
with previous data (34, 36, 37, 40). Because TNF-a-mediated GRK2 downregulation was
not completely counteracted by the use of a proteasome inhibitor, we speculate that
additional mechanisms are involved in such an outcome. In this respect, GRK2 turnover
has been linked to its phosphorylation by c-Src (53) or by mitogen-activated protein
kinase (54); these effects, together with Mdm2 recruitment, can be favored by the
B-arrestin machinery (35), which has been demonstrated to play different scaffold
functions to coordinate both Mdm2-dependent and -independent processes impli-
cated in GRK2 stability (35, 40, 53, 54).

The decrease in GRK2 expression was accompanied by a reduction of GRK2-A,zAR
association in response to agonist stimulation. Globally, these events caused an im-
pairment of receptor desensitization, producing a time-prolonged accumulation of
intracellular cAMP upon A AR stimulation (Fig. 7). In this scenario, it is likely that
proinflammatory soluble factors regulate the commitment of MSC toward osteoblasts
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FIG 7 Cartoon illustrating the modulatory effect of TNF-a on A,;AR responses in MSCs. (A) Agonist-mediated A,zAR
stimulation induces GRK2 recruitment, with consequent receptor phosphorylation and reduction of the functional respon-
siveness. (B) TNF-a reduces GRK2 levels and its association with A,zAR by recruitment of the Mdm2/ubiquitin proteasome
pathway. The GPCR desensitization process was impaired in the presence of the cytokine, thus enhancing the prodifferenti-
ating effects elicited by A,zAR stimulation.

by modulating the activity of desensitizing proteins and consequently increasing
Gs-coupled receptor activity.

The unequivocal involvement of GRK2 in TNF-a-mediated regulation of A,zAR was
demonstrated by using a specific GRK2 inhibitor and by overexpressing GRK2 in MSCs.
The chemical inhibition of GRK2 by the synthetic peptide KRX29 enhanced the osteo-
genic effects evoked by the A,zAR agonist, similarly to the TNF-a-evoked effect.
Otherwise, the overexpression of the GRK2 isoform in MSCs almost completely over-
came the inhibitory effect of TNF-a on A,AR desensitization, thus confirming GRK2 as
a target for the cytokine. Because GRK2 overexpression did not show a complete
reversal of A,zAR desensitization kinetics, additional factors, such as TNF-a-induced
A,gAR upregulation or the involvement of other GRK subtypes, can be speculated.

These data indicate that the release of cytokines in the inflammatory environment
dictates MSC differentiation and represents a useful target to enhance bone formation,
favoring the response evoked by different Gs-coupled receptors endowed with ana-
bolic properties on bone.

MATERIALS AND METHODS

Materials. The chemicals 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyllpyridin-2-ylsulfanyl]
acetamide (BAY60-6583) and N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-
yl)phenoxyl-acetamide (MRS1706) were purchased from Tocris Bioscience (Bristol, United Kingdom). An
RNeasy minikit was obtained from Qiagen. The Script cDNA synthesis kit was furnished by Bio-Rad s.r..
Fluocycle Il SYBR was from Euroclone (Milan, Italy). TNF-a was purchased from Sigma-Aldrich.

Cell cultures. Human bone marrow MSCs and cell culture medium were purchased from Lonza
(Milan, Italy). The cell line was monitored for DNA profiling by HLA-DP beta and confirmed as human by
PCR. The cells were used until passage 5 for fewer than 6 months after resuscitation.

Cells were subcultured in normal growth medium (MSCGM; Lonza) and plated (5 X 103 cells/cm?).
The medium was changed to remove nonadherent cells every 3 to 4 days, and the cells were used at
passages 0 to 3. For osteoblast differentiation studies, cells were seeded (9 X 103 cells/cm?) and cultured
as previously described (15).

Cell viability assay. MSCs were seeded in 96-well microplates (5 X 103 cells/well) and cultured in
proliferation or osteogenic medium for the indicated days in the absence (control) or in the presence
of TNF-a (0.1 ng/ml to 10 ng/ml). To evaluate cell viability, a 3-(4,5-dimethylthiazol-2-yl)-5-(3-
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TABLE 1 Human primers used for real time RT-PCR

Molecular and Cellular Biology

Protein Primer nucleotide sequences? Product size (bp)
Runx2 FOR, 5'-GGCCCTGGTGTTTAAATGGT-3'; REV, 5'-AGGCTGTTTGACGCCATAGT-3’ 178
ALP FOR, 5'-CTGCAAGGACATCGCCTATC-3'; REV, 5'-CATCAGTTCTGTTCTTGGGGTA-3’ 101
A,zAR FOR, 5'-TCCATCTTCAGCCTTCTGGC-3'; REV, 5'-AAAGGCAAGGACCCAGAGGA-3’ 128
B-Actin FOR, 5'-GCACTCTTCCAGCCTTCCTTCC-3'; REV, 5'-GAGCCGCCGATCCACACG-3’ 254

aFOR, forward; REV, reverse.

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolium (MTS) assay was used by following the man-
ufacturer’s instructions (Promega, Milan, Italy).

Real-time RT-PCR analysis. MSCs were cultured in normal growth medium and were treated with
osteogenic medium in the presence or absence of TNF-a (1 ng/ml) and BAY60-6583 (5 nM), alone or in
combination. The treatments were repeated every 3 days, and the expression levels of osteogenic
markers (Runx2, osterix, ALP, and osteocalcin) were quantified after 0, 5, and 15 days of treatment.
Moreover, MSCs were cultured in the presence or absence of TNF-a (1 ng/ml) in normal growth medium
for 48 h or in osteogenic medium for 5 days. Gene expression then was assessed by real-time reverse
transcription-PCR (RT-PCR) as previously described (55), and the primers used for the analysis are
indicated in Table 1.

Mineralization assay. MSCs were seeded (9 X 103 cells/cm?) and then treated in the absence
(control) or in the presence of TNF-a (1 ng/ml), BAY60-6583 (5 nM), MRS1706 (1 M), and KRX29 (1 uM),
either alone or in combination. Treatments were repeated every 3 days, and the mineralization was
quantified after 15 or 21 days of treatment. The rate of mineralization was quantified using alizarin red
staining (19).

Western blot analysis. MSCs were differentiated under osteogenic conditions for 48 h or 5 days in
the absence (control) or presence of TNF-a (1 ng/ml). When indicated, MSCs were pretreated with 10 uM
proteasome/calpain inhibitor MG-132 (37) for 3 h and then incubated in osteogenic medium for 48 h in
the absence (control) or presence of TNF-a (1 ng/ml).

Thereafter, cells were lysed (and 30 ug of protein added with Laemmli solution) and loaded for
SDS-PAGE (7.5%). Proteins were electrotransferred into polyvinylidene difluoride (PVDF) membranes and
incubated overnight at 4°C using the primary antibodies anti-A,;AR (sc-28996; 1:150; Santa Cruz
Biotechnology), anti-GRK2 (sc-562; 1:200; Santa Cruz Biotechnology), and anti-glyceraldehyde-3-
phosphate dehydrogenase (anti-GAPDH) (G9545; 1:5,000; Sigma-Aldrich) and by the appropriate
peroxidase-conjugated secondary antibodies. Signals were detected using a chemiluminescent substrate
(ECL; PerkinElmer, Waltham, MA). ImageJ software was used to perform the densitometric analysis of the
immunoreactive bands (version 1.41; NIH, Bethesda, MD).

Measurement of cAMP levels during BAY60-6583 desensitization induction in MSCs. MSCs (2 X
104 cells/well) were plated in 24-well plates, and after 24 h, osteogenic differentiation was induced in the
presence or absence of TNF-a (1 ng/ml) for 0, 5, or 15 days. At each time of differentiation, cells were
stimulated with BAY60-6583 (5 nM) for 15 min and cAMP levels were quantified. In the desensitization
assays, MSCs (differentiated for 0, 5, or 15 days in the absence or presence of TNF-a) were pretreated with
BAY60-6583 (5 nM) for different times (5 to 120 min) and then washed and stimulated with BAY60-6583
(5 nM) for 15 min in the presence of 1 U/ml of adenosine deaminase (ADA) and the phosphodiesterase
inhibitor Ro 20-1724 (20 uM) (56). At the end of treatments, intracellular cAMP levels were quantified
using a competitive protein binding method (57).

In order to investigate the effect of GRK2 inhibition on A,zAR functional responses during MSC
differentiation, the cells were cultured in osteogenic medium for 0, 5, or 15 days. At each time point, the
cells were challenged with 5 nM BAY60-6583 for different times (5 to 120 min) in the absence or presence
of the GRK2 inhibitor KRX29 (1 uM).

GRK2 association with A ;AR or Mdm2. To test the A,;AR-mediated recruitment/association with
GRK2, as well as Mdm2 involvement in GRK2 regulation, a quantitative immune-enzymatic assay on
crude MSC lysates was used (38, 58, 59). MSCs were differentiated for 0, 5, or 15 days in the absence or
presence of TNF-a (1 ng/ml) and then stimulated for 5 min with 5 nM BAY60-6583. Conversely, for
Mdm2-GRK2 association, MSCs were incubated in osteogenic medium for 48 h or 5 days in the absence
or presence of TNF-a (1 ng/ml). At the end of treatments, cells were suspended in lysis buffer containing
1% protease inhibitor cocktail (Sigma-Aldrich, Milan, Italy). Cell lysates (30 ug/well) were incubated for
60 min into wells precoated with a rabbit anti-A,gAR or anti-Mdm2 antibody; after washes, each well was
incubated for 15 min with 1% bovine serum albumin (BSA) to block nonspecific sites and then for 2 h
at room temperature with a mouse primary anti-GRK2 antibody. Wells then were washed and incubated
for 1 h with an anti-mouse horseradish peroxidase (HRP)-conjugated antibody and washed again (38).
The colorimetric substrate kit allowed a colorimetric quantification of the receptor-GRK2 association.

GRK2 overexpression. GRK2 overexpression was obtained by transfecting MSCs using the polyeth-
yleneimine method (38). MSCs were cultured in osteogenic medium for 48 h in the absence or presence
of TNF-a. The cells were incubated with 1 ug of either GRK2 plasmid (OriGene, MD) or the corresponding
empty vector (OriGene, MD) for 30 h. Transfected MSCs were rapidly seeded in 24-well plates and
subjected to the cCAMP assay as described above. GRK2 overexpression was confirmed by Western blot
analysis.

Statistical analysis. A nonlinear multipurpose curve-fitting program, GraphPad Prism (version 5.00),
was used for data analysis and graphic presentation. Data are reported as the means =+ standard errors
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of the means (SEM) from 3 or 4 different experiments. Statistical analyses were performed using a
one-way analysis of variance (ANOVA) study followed by the Bonferroni test for repeated measurements.
Differences were considered statistically significant for P values of <0.05.
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