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Epigenetically-driven anatomical diversity
of synovial fibroblasts guides joint-specific
fibroblast functions
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A number of human diseases, such as arthritis and atherosclerosis, include characteristic

pathology in specific anatomical locations. Here we show transcriptomic differences in

synovial fibroblasts from different joint locations and that HOX gene signatures reflect the

joint-specific origins of mouse and human synovial fibroblasts and synovial tissues. Alongside

DNA methylation and histone modifications, bromodomain and extra-terminal reader

proteins regulate joint-specific HOX gene expression. Anatomical transcriptional diversity

translates into joint-specific synovial fibroblast phenotypes with distinct adhesive,

proliferative, chemotactic and matrix-degrading characteristics and differential responsive-

ness to TNF, creating a unique microenvironment in each joint. These findings indicate that

local stroma might control positional disease patterns not only in arthritis but in any disease

with a prominent stromal component.
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F
ormation of joint-specific structures during embryogenesis
is accompanied by tightly controlled topographical and
temporal expression of specific sets of positional genes,

including homeobox (HOX) transcription factors1. The highly
conserved HOX transcription factors specify regional identities of
cells and tissues throughout the body and regulate the correct
formation of the body axes2,3. Adult human cells and tissues, such
as skin fibroblasts4–6, aortic smooth muscle cells7 and adipose
tissue depots8, retain key features of embryonic positional
HOX gene expression. The unique topographical signature of
HOX transcription factors and downstream effector molecules in
skin fibroblasts provides critical signals to guide the site-specific
fate of neighbouring cells, such as keratinocytes9.

Most forms of arthritis, including rheumatoid arthritis (RA),
osteoarthritis (OA) and spondyloarthropathies, occur with
a distinctive topographical pattern of joint involvement10. RA is
a symmetric, destructive polyarticular arthritis that is typically
localized distally in small joints of the hands and feet, in
particular metacarpophalangeal joints and metatarsophalangeal
(MTP) joints. Proximal, larger joints, like knees and shoulders,
are involved less often and usually later in disease.
In spondyloarthropathies, on the other hand, involvement of
the spine together with peripheral oligoarthritis, affecting
primarily the joints of the lower extremity, is typical. OA,
which is a chronic, primarily degenerative disease of the cartilage,
is also found mainly in knees and hips. In addition, OA can affect
the feet, typically the MTP I joint, and hands, where distal
interphalangeal joints are primarily involved.

Arthritis-specific topographical patterns of joint involvement
form despite common systemic activation of the adaptive
immune system and common systemic and environmental risk
factors, arguing for a local predisposing factor within the
synovium. Resident stromal cells of the synovium have a central
function in the pathogenesis of arthritis. Synovial fibroblasts
(SFs), the most abundant resident stromal cells of the synovium,
are major local effectors of joint inflammation and destruction in
arthritis, producing a variety of proinflammatory and matrix-
degrading molecules11–13. In vivo studies suggest that SFs from
patients with RA can transmigrate into vasculature, spreading
RA from oligoarticular to polyarticular disease12.

Here we demonstrate that SFs of different anatomical origins
have different transcriptomes that translates into unique
joint-specific phenotypes of SFs. This finding might underlie
the joint-specific occurrence and severity of arthritis.

Results
SFs cluster according to joint of origin. Site-specific transcrip-
tional programmes regulate regional diversity of skin9,14,15.
Similar to skin, joints show remarkable anatomical diversity
in structure, function and susceptibility to disease. To investigate
the anatomical diversity of transcriptional programmes in SFs, we
sequenced total RNA from cultured knee, shoulder and hand SFs
from RA and OA patients and from knees of non-arthritic
subjects with joint pain (see Supplementary Table 1 for patient
characteristics). Joint locations were selected to span the
proximal–distal (shoulder versus hand) and upper–lower
(shoulder and hand versus knee) extremities in concordance
with developmental limb axes16. Unsupervised hierarchical
cluster analysis of RNA sequencing data showed that SFs
cluster according to anatomical joint location rather than
diagnosis (Fig. 1). When based on messenger RNA (mRNA)
expression (Fig. 1a) the accuracy of positional clustering was
comparable to what was reported for adult dermal fibroblasts9.
The accuracy of the topographical clustering in SFs was improved
when clustering was based on long noncoding RNA (lncRNA)

(Fig. 1b) and a perfect clustering into shoulder, hand and
knee SFs was achieved based on microRNA (Fig. 1c). We
confirmed differential expression of six of the most significantly
changed microRNAs in an additional set of SFs from hands,
shoulders and knees with real-time PCR (Supplementary Fig. 1).
Among the noncoding RNA, lncRNA HOTAIR and HOTTIP
were the most differentially expressed transcripts between
upper versus lower extremity SFs and distal versus proximal
SFs, respectively. In addition, several transcripts with known
roles in arthritis were positionally enriched in specific joint
locations including MMP1, MMP13, interleukin (IL) 1R, IL34 and
CXCL12 (refs 17–20).

Next, we searched for genes that would explicitly distinguish
between SFs from different anatomical locations and within
each joint between different diagnoses using supervised cluster
analysis (Fig. 1d). Our model of supervised clustering retrieved
196 transcripts (Supplementary Data 1) that were uniquely
expressed in SFs at specific anatomical locations and within
each location exclusively discriminated between SFs from
distinct disease states. The identified genes included several
factors involved in positional cell identity and limb patterning
(HOTAIR, HOXA11, HOXA13, HOTTIP, TBX5, TBX2,
HAND2, MEIS1, MEIS2), molecules implicated in wnt signalling
(SFRP4, ROR2), chemotaxis and inflammation (IL18, IL17D,
CCL28) and cell–cell interactions (ITGA8, ITG2B).

These data showed that clear topographical differences in
gene expression patterns exist between SFs from joints of
different anatomical locations. The noncoding transcriptome
exhibited the most distinct differences between SFs from various
joints.

HOX genes define anatomical origin of SFs. Since a substantial
number of the most differentially expressed transcripts
between different joint locations were transcripts encoded in the
HOX loci, we explored whether the transcripts in the HOX loci
are sufficient to assign SF samples to the correct joint location.
Cluster analysis of RNA sequencing data using exclusively
transcripts encoded in HOX loci and expressed above the
threshold level showed that protein-coding transcripts (Fig. 2a) as
well as lncRNA (Fig. 2b) and microRNA (Fig. 2c) encoded in the
HOX loci are sufficient to cluster SFs according to joint location.
Transcripts encoded in the 50 end of the HOXA (HOXA11-AS,
HOXA13, HOTTIP) and HOXD (HOXD10, HOXD11, HOXD13)
clusters reflected the positional identity to SFs from distal
(hands) compared with more proximal (shoulder, knee) joints.
Shoulder-specific expression in SFs was found in HOX transcripts
encoded in the 30 end of the HOXA, HOXB and HOXD
clusters. Transcripts encoded in the 50 end of HOXC locus
(miR-196a, HOXC-AS1, HOXC-AS2, HOXC-AS3, HOTAIR and
HOXC13) distinguished knee from upper extremity SFs. This
HOX signature recapitulated key features of the embryonic
positional HOX gene expression along the proximal–distal and
anterior–posterior developmental axes2,16,21.

Measuring selected HOX transcripts in cultured SFs
from hands, elbows, shoulders, hips, knees and ankles
(see Supplementary Table 2 for patient characteristics) by
real-time PCR further confirmed the selective transcriptional
activation of the 50 end of the HOXA and HOXC clusters in SFs
from distal (hands and ankles) and lower extremity joints,
respectively (Fig. 3a, Supplementary Data 2). The lncRNA
HOTAIR, which was reported to be expressed at posterior and
distal anatomical sites22, was repressed in upper extremity joints
and expressed in lower extremity joints. HOTAIR expression did
not differ between hip, knee and ankle SFs, but SFs from proximal
interphalangeal joints of the toe (n¼ 1, Supplementary Fig. 2)
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expressed higher levels of HOTAIR. Moving along the HOXA
and HOXC clusters in a 50 to 30 direction, the transcripts
were expressed sequentially in SFs from proximal joints

(hip, shoulder) and joints of the upper extremity, respectively.
This corresponded to the developmental body axes and the spatial
collinearity of HOX genes with their genomic 50 to 30 position
in the cluster. Yet, the expression of HOXA11, which was
demonstrated as central to the morphogenesis of mouse
zeugopod (elbow), while largely dispensable for autopod (paw),
was higher in hand (human autopod) compared with elbow
(zeugopod) SFs.

Positional HOX signature is maintained in synovial tissues.
RA synovial tissues are characterized by a heterotrophic
lining layer, neoangiogenesis and leukocyte infiltration and are
highly heterogeneous with respect to synovial histomorphology
and type of infiltrating leukocytes23. OA synovium can show
signs of patchy synovitis of lower grade compared with RA
synovium24. Despite cellular heterogeneity, the positional pattern
of HOXA and HOXC gene expression of SFs was largely
reproduced in synovial tissues (Fig. 3b and Supplementary
Data 2) from different joints of RA and OA patients
(see Supplementary Table 3 for patient characteristics). Given
this, SFs appear the principal cell type conferring positional
identity on the synovium; yet, the contribution of other cells,
including endothelial25 and vascular smooth muscle cells7,
remains to be explored. Maintenance of positional HOX
signatures in the synovium also demonstrates that positional
expression of HOX transcripts in SFs is not an in vitro artefact of
cell culture conditions.

HOX gene signatures are conserved in mouse SF. In
concordance with human SFs, adult mouse SFs from wild-type
and tumour necrosis factor (TNF) transgenic C57BL/6 mice
(Supplementary Table 4) showed a strict positional expression
pattern of the measured coding and noncoding HoxA and HoxC
transcripts (Fig. 3c, Supplementary Fig. 3 and Supplementary
Data 2). TNF transgenic mice spontaneously develop a chronic,
destructive arthritis26. None of the measured positional 50 HoxA
and HoxC transcripts differed significantly between healthy wild-
type and arthritic TNF transgenic mouse SFs, nor between
RA and OA SFs or synovial tissues of the same anatomical
location (Fig. 3 and Supplementary Data 2). This infers that
the expression of these HOX transcripts is not arthritis
dependent, but position specific. Similar to the topographical
expression during embryogenesis21, location-specific expression
of 50-encoded HOXA and HOXC transcripts in adult SFs
appeared to be mainly conserved across humans and mice.
However, several lncRNA species, in particular in the HOXA
locus, are not conserved between human and mice and might
therefore confer human-specific functions. In addition, the
expression of miR-196a encoded in HOXC did not follow the
strict anterior–posterior pattern in mouse (Supplementary Fig. 3)
as seen in human SFs (Supplementary Fig. 1).

Together, these data confirm that adult human and mouse SFs
from different anatomical locations exhibit joint-specific HOXA
and HOXC signatures that are maintained over several passages
in cell culture conditions, are arthritis independent and
reproduced in whole synovial tissues.

Positional HOX gene expression is epigenetically regulated.
It has been previously shown that the expression of positional
HOX determinants during embryogenesis is stabilized via
epigenetic mechanisms, including DNA methylation27, histone
acetylation28 and histone methylation28. Our analysis of
the HOXA and HOXC loci in SFs showed less methyl marks in
the 50 HOXA locus in hand compared with shoulder and
knee SFs, corresponding to the exclusive expression of
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Figure 1 | Cluster analysis of RNA sequencing in human SFs from

different locations. Unsupervised hierarchical clustering of SFs (n¼ 21)

from knees (KN, blue), shoulders (SH, grey) and hands (HA, orange) of

rheumatoid arthritis (RA) and osteoarthritis (OA) patients and knees of

non-arthritic subjects (norm) (see Supplementary Table 1) based on

RNA-seq data. The 100 genes (protein coding, long noncoding and

microRNA) with the biggest variance across all samples were used. The

cluster analysis is based on normalized reads after log transformation with

an offset of 10 counts added: (a) mRNA—one hand OA sample clustered

into the knee SF group, and one OA knee and one RA knee samples

clustered with upper extremity joints; (b) long noncoding RNA—increased

accuracy of topographical clustering of SF, one RA and one OA knee

SF clustered into the upper extremity joint group; and (c) microRNA—

accurate topographical clustering into shoulder, hand and knee SFs.

(d) Supervised cluster analysis showing 196 long transcripts

(see Supplementary Data 1) identified as the 25 most significant genes

(satisfying a minimum log2 difference of 0.5 and maximum P value of 0.05)

in pairwise comparisons between joint locations (knee, shoulder, hand)

and diagnoses (RA, OA, norm). Heatmaps display Z-scores of normalized

read counts.
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the transcripts from the 50 end of the HOXA locus in
hand SFs (Fig. 4a). In the HOXC locus, DNA methylation
patterns at the 50 tip and central part of the cluster (HOTAIR to
HOXC9) discriminated knee from hand and shoulder
SFs (posterior versus anterior body axis); however, the
relationship between joint-specific DNA methylation patterns
and positional gene expression was more complex than in the
HOXA locus. DNA of the central part of the HOXC cluster
(between HOXC10 promoter and HOXC9 locus) was
hypermethylated in hands and shoulders versus knees (Fig. 4b),

corresponding to transcriptional repression of these loci in upper
extremity joints (Fig. 3a). In contrast, DNA at the 50 tip of
the HOXC cluster (HOXC11, HOTAIR) was hypomethylated
in upper extremity joints, where the locus is transcriptionally
silent, compared with knees, where the locus is actively
transcribed. Indeed, DNA hypermethylation of HOTAIR
was previously shown to be connected to its expression29,30,
further underlining the fact that from DNA methylation data
alone transcriptional activation of a gene cannot be unequivocally
deduced.
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Figure 2 | Cluster analysis based on HOX-encoded transcripts in human SFs from different locations. Cluster analysis of RNA sequencing data using

(a) protein-coding RNA, (b) long noncoding RNA and (c) microRNA transcripts encoded in HOX loci clearly discriminated between SFs of different

anatomical locations (n¼ 21). Heatmaps display Z-scores of normalized read counts. Genes encoded within HOX loci were identified using the HOX gene

annotation in GRCh38.p2, Ensembl Release 80 (May 2015). Only transcripts expressed above the threshold level were used in the cluster analysis.

HA, hand; KN, knee; Nor, non-arthritic joint pain; OA, osteoarthritis; RA, rheumatoid arthritis; SH, shoulder.
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Temporal28 and spatial31 collinear activation of HOX genes
during patterning of rostrocaudal axis in mouse embryos is
closely associated with the successive removal of repressive
H3 lysine 27 trimethylation (H3K27me3) marks and increased
deposition of activating H3K4me3 and H3 acetylation (H3ac)
marks in actively transcribed HOX chromatin domains.
Analysis of these histone marks by chromatin immuno-
precipitation (ChIP) DNA-sequencing followed by visualization
of significantly enriched numbers of mapped reads using SICER32

showed an increase of repressive H3K27me3 marks in knee
and shoulder compared with hand SFs in the HOXA13 locus.
This was accompanied by less enriched active H3K4me3 and
H3K27ac marks in knee and shoulder across the 50 end of HOXA
(Fig. 5a; coverage plots are shown in Supplementary Fig. 4).
In HOXC, H3K27me3 marks were mostly absent and the active
marks enriched in knee SFs corresponding to the high expression
of 50 HOXC-encoded transcripts in these joints. In shoulder
SFs the absolute H3K27me3 enrichment was decreasing and
active marks increasing from the 50 to 30 end of the HOXC locus,
coinciding with gradual increase of 30 HOXC transcription
in these joints. In hand SFs the whole locus was enriched for

H3K27me3 and active marks were only enriched at single
peaks (Fig. 5a).

To assess the reader proteins of joint-specific HOX marks,
we treated SFs from different joints with I-BET151, a selective
inhibitor of the bromodomain and extra-terminal (BET) protein
family members BRD2, BRD3 and BRD4. Proteins of the
BET bromodomain family bind e-N-acetylated lysines of
histone 3 (H3) and H4, thereby acting as reader proteins for
histone acetylation at actively transcribed sites33. BET inhibition
significantly reduced the expression of transcripts encoded in
the 50 end of the HOXA cluster in hands and to a minor extent in
shoulders, but not in knees (Fig. 5b). In contrast, the positionally
regulated transcripts from the 50 tip of the HOXC locus
(HOTAIR, HOXC11), which are expressed exclusively in
SFs from the lower extremities, were not affected (Fig. 5b).
Only the expression of HOXC4, which lies at the 30 end of
the cluster, was dependent on BET reading.

These results show a complex and joint-specific relationship
between DNA methylation, histone marks and reader proteins
in regulating the transcriptional activation of the HOXA and
HOXC locus in SFs at different anatomical locations.
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Arthritis-relevant pathways are positionally enriched. To
explore whether positional transcriptional diversity of SFs
translates into joint-specific and/or arthritis-relevant functional
phenotypes of SFs, we conducted pathway enrichment analysis of
RNA sequencing data by MetaCore using a two-step approach.
First, we compared the joints of the upper versus lower
extremities (hands and shoulders versus knees) to address the
differences along the anteroposterior body axis (nota bene:
spondyloarthropathies for instance affect predominantly lower
extremity joints). In the second step, we conducted pairwise
comparisons between different joints (hand versus knee, hand
versus shoulder and shoulder versus knee). By doing this we
assessed not only the specific contribution of hands and shoulders
to the anteroposterior differences, but also explored pathway
differences along the proximodistal limb axis. The list of
positionally enriched process networks is available in
Supplementary Data 3. Out of 16 process networks 12, which
were enriched in the upper versus lower extremity comparison,
appeared also enriched in the pairwise comparisons between
hands and knees and/or shoulders and knees (anteroposterior
axis). Of these, eight were common to hand versus knee
and shoulder versus knee comparisons. Among networks
uniquely enriched between joints, 2 were present in hand
versus knee, 7 in shoulder versus knee and 10 in hand versus

shoulder comparisons. This suggested a deep functional specia-
lization of SFs along proximodistal limb axis (shoulder versus
hand) and anteroposterior body axis (shoulder and hand
versus knee).

Joint-specific networks, for example, ossification and bone
remodelling (Supplementary Fig. 5a), were significantly enriched
between different anatomical locations, pointing to anatomical
molecular diversity at different joint locations. In addition,
a number of arthritis-relevant networks (Fig. 6 and Suppleme-
ntary Fig. 5b) were identified as positionally enriched between
upper versus lower extremities and different joint locations,
in particular networks regulating cell adhesion (Fig. 6a),
cell–matrix interactions (Fig. 6b and Supplementary Fig. 5b),
immune response (Fig. 6c), chemoattraction and cell–cell
interactions (Fig. 6c,d and Supplementary Data 3). Chronic
arthritis often takes a more destructive course when hand joints
are affected, for example, the more aggressive subtype of erosive
OA is almost exclusively found in interphalangeal joints of the
hands34,35. In our enrichment analysis Proteolysis_Connective
tissue degradation (Supplementary Fig. 5b) and cell adhesion_cell
matrix interaction (Fig. 6b) networks showed clear enrichment in
SFs from upper extremity joints versus knees and hands versus
shoulders. MMP1 (Fig. 6b and Supplementary Fig. 5b) and
MMP13 (Fig. 6b and Supplementary Fig. 5b), both of
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which contribute to cartilage degradation in chronic arthritis20,
might confer stronger matrix degradation properties to upper
versus lower extremity SFs and to distal versus proximal
SFs, respectively.

HOTAIR can modulate MMP1 expression. The lncRNA
HOTAIR regulates the expression of hundreds of genomic loci
by recruitment of polycomb repressive complex 2 (PRC2) and
lysine-specific demethylase 1 (LSD1) for concomitant H3K27
methylation/H3K4 demethylation and transcriptional repres-
sion36. Due to the widespread effects of HOTAIR on gene
transcription37 and its sharp lower versus upper extremity
expression pattern in SFs, we explored the potential
contribution of positional HOTAIR expression to the positional
regulation of MMP1 (higher in upper versus lower extremity,

Fig. 6b,c and Supplementary Fig. 5b) in SFs. Silencing of
HOTAIR in knee SFs, which have endogenously high
HOTAIR expression, significantly increased basal and
TNF-induced MMP1 mRNA and protein expression (Fig. 7a),
showing that HOTAIR can restrict MMP1 production in knee
SFs (Fig. 6a using short interfering RNA (siRNA), Supplementary
Fig. 6 using GapmeR). Stimulation of knee SFs with
TNF significantly repressed HOTAIR expression (Fig. 7b),
indicating that inflammation-driven decrease of positional
HOTAIR expression can facilitate matrix-destructive behaviour
of lower extremity SFs.

These experiments show that a positionally expressed
lncRNA in the HOX cluster can be influenced by an
inflammatory environment that might contribute to activate
joint destructive and inflammatory pathways in a location-
specific manner.
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Figure 5 | Joint-specific histone marks in HOXA and HOXC clusters in SFs. (a) Regulation of the positional HOX signatures in knee (blue), shoulder

(grey) and hand (orange) SFs by histone modifications. H3K27me3, H3K4me3 and H3K27ac marks were measured by chromatin immunoprecipitation

DNA sequencing (ChIP-seq) and significant enrichment calculated by the peak calling algorithm SICER. Data are visualized using Integrative Genomics

Viewer (IGV) (b). Joint-specific effects of I-BET151, an inhibitor of BET reader proteins, on the expression of HOXA and C transcripts in hand (n¼4),

shoulder (n¼ 3) and knee (n¼ 3) RA SFs (x-fold calculations; expression in hand and knee RA SFs, respectively, was set to 1). Statistics: one-sample t-test
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Figure 6 | MetaCore pathway analysis of transcriptomes from different joints. Process Network Enrichment analysis of RNA sequencing data (n¼ 21)

between joint locations (knee versus hand, knee versus shoulder and hand versus shoulder) and upper versus lower extremities using MetaCore from

Thomson Reuters (see also Supplementary Data 3). (a–d) Heatmaps of the enriched transcripts for selected arthritis-relevant process networks among all

significantly enriched process networks between joints are shown. Red arrows point to the transcripts further studied or discussed in the paper. Heatmaps

display Z-scores of normalized read counts.
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Positional transcriptomes translate into specific phenotypes.
TNF is a major pro-inflammatory cytokine in the pathogenesis of
RA and therapeutic anti-TNF antibodies have become an
important pillar for successful RA management. The induction
of MMP1 in response to TNF was significantly larger in knee
compared with upper extremity SFs (Fig. 7c), showing that
not only basal expression of arthritis-relevant molecules, but
also the response to TNF differs between joints. TNF-induced
decrease of HOTAIR could also play a role in the stronger
induction of MMP1 in response to TNF in knee compared

with upper extremity SFs (Fig. 7b). In vivo, TNF levels were
higher in synovial tissues from lower extremity joints compared
with synovial tissues from upper extremity joints (Fig. 7d). Fur-
thermore, measurements of MMP expression in whole synovial
tissue explants showed that RA synovial tissues from hand joints
expressed significantly more MMP13 than synovial tissues from
knees of RA or OA patients (Fig. 7e). However, there was
no difference in MMP1 or MMP3 production between hand,
shoulder and knee synovial tissues (Supplementary Fig. 7).
The higher basal expression of MMP1 in hand SFs might
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therefore be levelled out by the increased amounts of TNF and
the stronger response to TNF in knee joints.

In cultured cells, real-time analysis of proliferation and
adhesion of SFs to tissue culture wells revealed that shoulder
SFs exhibit more pronounced adhesive characteristics compared
with hand SFs (Fig. 7f), while knee and hand SFs have
significantly higher proliferative potential (Fig. 7g). Functional
studies in SFs confirmed the enhanced chemotactic characteristics
of hand and knee compared with shoulder SFs (Fig. 7h).
Increased production of CXCL12 by hand SFs might contribute
to the increased chemotactic properties (Fig. 6c). Furthermore,
scoring synovial tissue sections from different joints of
RA patients (Supplementary Table 5) with an established
synovitis score (Krenn score)38 showed that the infiltration of
immune cells is significantly higher in synovium from hands
versus shoulders or hips (Fig. 7i). The density of the synovial
stroma was significantly different between the analysed RA joints,
in particular hands and knees (Fig. 7i).

All in all, this analysis suggests that RA might manifest
differently at different joint locations that might be exploited in
the design of joint-specific therapeutic approaches.

Discussion
While fibroblasts from different tissues were long considered
as functionally homogenous cells, involved primarily in extra-
cellular matrix production, it is now accepted that these cells
perform a number of specialized functions9,39,40. The crucial role
of cancer-associated fibroblasts in cancerogenesis41 and of SFs in
arthritis11 is widely acknowledged.

Our work demonstrates that SFs from different anatomical
locations exhibit significant differences in transcriptome, epigen-
ome and function. Previous studies have recognized differences
between hip and knee joints, mainly in the context of OA.
In particular, DNA methylation patterns in chondrocytes and
SFs were found to differ between these two joint locations42–44.
Here we study SFs from a large number of joint locations,
including small joints of the hands and feet, that are
characteristically and severely affected by RA. We show that
transcriptional and epigenetic differences are not confined to
hip and knee SFs exclusively, but include all joint locations along
limb axes, and follow a pattern that was imprinted during
embryonic development. Although we could obtain non-arthritic
human SFs only from knee joints, the conservation of principal
positional genes between species and diseases shows that
a number of positional gene signatures in SFs are arthritis
independent. Still, it can be expected that some of the site-specific
differences in gene expression reflect disease-specific mechanisms

in SFs that differ in different joints, as suggested recently43.
We demonstrate that the transcriptional diversity of SFs trans-
lates into pronounced functional diversity, thereby creating
a unique microenvironment for each joint. Future studies
should endeavour to answer in how far these distinct
microenvironments at different anatomical location influence
arthritis development.

As in dermal fibroblasts5, positional HOX gene signatures
are sufficient to discriminate SFs from different anatomical
locations. We demonstrate that DNA methylation and histone
marks tightly regulate joint-specific HOX gene expression in SFs.
The role of epigenetics in positional HOX gene regulation
has previously been established during embryogenesis1,28,45 and
in specific adult cells and tissues22,42,46,47. To our knowledge, this
is the first study to demonstrate that BET reading is involved
in the transcriptional regulation of specific HOX genes, in
particular in a joint-specific manner. In accordance with this,
alleles of fs(1)h, a homologue BET protein in Drosophila
melanogaster, were shown to cause segmental abnormalities48.
BET proteins, unlike other acetylated histone-binding proteins,
remain associated with acetylated histones during mitosis and are
likely to contribute to the transmission of transcriptional memory
during cell division49,50. Our results show that inhibition of
BET reading by I-BET151 in hand SFs reduces the expression of
all measured 50 HOXA transcripts with the strongest repression
of HOTTIP. HOTTIP is a key locus control element of 50 HOXA
genes and distal identity, coordinating 50 HOX gene activation by
maintaining H3K4me3 across the 50 end of the cluster21. Hence,
in addition to directly inhibiting BET reading, I-BET151 might
repress the 50 HOXA transcription in distal SFs via reduction
of HOTTIP expression. Furthermore, HOTTIP might integrate
the roles of histone acetylation and histone methylation to
regulate the transcription of the 50 HOXA-encoded genes.

Despite the widely studied role of HOX genes in tissue
regeneration, repair51 and human malignancies52, the under-
standing of whether positional stromal transcriptional programs
confer site-specific susceptibility of adult tissues to a particular
disease is only beginning to be elucidated7,8,47. A recent study
demonstrated that distinct positional HOX signatures
pre-imprint aortic vascular smooth muscle cells to differentially
respond to TNF, partly explaining the characteristic segmental
susceptibility of aorta to atherosclerosis7. Likewise, a distinct
positional signature of developmental genes, including HOX
genes, was associated with the limited inflammatory nature
of lower body adipose tissues, explicating reduced metabolic
complications in subjects with lower body fat accumulation8.
Apart from the HOX genes, a recent study reported that the
outcome of KRAS mutations and the status of DNA mismatch

Figure 7 | Functional analysis of SFs from different locations. (a) Increased constitutive and TNF-induced expression of matrix metalloproteinase 1 (MMP1)

mRNA (n¼ 11, qPCR, mean±s.d., mean DCT±s.d.¼ 9.79±0.94 of MMP1 in unsilenced, untreated knee SFs) and MMP1 protein (n¼8, ELISA, box and

whiskers: min to max) in knee OA SFs transfected with HOTAIR siRNA versus control siRNA (scr) for 72 h (TNF (10 ng ml� 1) for 24 h). (b) Suppression

of HOTAIR in knee SFs (n¼ 5) by TNF (10 ng ml� 1, 24 h) qPCR. (c) Increased MMP1 production in response to TNF (10 ng ml� 1) in knee SFs. Fold change

(x-fold) of MMP1 in TNF-stimulated (24 h) versus unstimulated SFs from upper extremity joints (hands: dark grey; elbows: light grey; shoulders: black) and

knees, qPCR. (d) Higher expression of TNF in synovial tissues from lower extremity (ankles: dark grey; knees: light grey; hips: black) than from upper

extremity joints (hands: dark grey; elbows: light grey; shoulders: black), qPCR. (e) Increased MMP13 expression in hand compared with knee synovial

tissues, qPCR. (f) Increased adhesion to culture wells (xCELLigence system) of shoulder versus hand SFs. (g) Lower proliferative potential of shoulder

versus hand and knee SFs (doubling time (hours), xCELLigence system). (h) Increased leukocyte migration towards supernatants of hand versus shoulder

SFs. Number of leukocytes migrating towards supernatants from SFs of different locations or towards medium. Data were normalized to the number of

SFs migrating towards the supernatant from one knee SF. Healthy donors are denoted with black or grey shapes. (i) Increased leukocyte infiltration in the

synovium from hands versus shoulders and hips. Increased density of synovial stroma in hands versus knees. Haematoxylin/eosin-stained RA synovial

tissues from different locations (see Supplementary Table 5) were scored with a synovitis score38, composed of changes in stroma, synovial lining

thickness and leukocyte infiltration. Statistics: paired (a (qPCR), b) or unpaired (c,d) t-test, two-tailed Wilcoxon matched-pairs signed rank test

(a (ELISA)), one-way analysis of variance (ANOVA) with Bonferroni’s (e–h) or Dunn’s (i) post tests. *Po0.05; **Po0.01, ***Po0.001. Open shapes are

OA SFs and closed shapes are RA SFs.
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repair genes in patients with stage III colon cancer should be
interpreted in the context of the primary tumour location
with regard to the proximal versus distal colon53. Our
results demonstrate that SFs from different joints are
functionally specialized cells not only differentially responding
to pro-inflammatory stimuli (TNF), but also exhibiting distinct
adhesive, proliferative, chemotactic and matrix destructive
characteristics. In particular, hand SFs display prominent
chemotactic and matrix-destructive characteristics that may
explain why inflammatory arthritis tends to be more aggressive
and destructive in hands compared with other joints.

In conclusion, our findings deeply alter the current under-
standing of synovial biology in health and disease. The existence
of positionally imprinted ‘risk’ signatures of SFs provides
a mechanistic insight into the early stages of joint pathologies
and might prove critical for understanding late-stage arthritis—its
chronicity, spreading and lack of therapeutic response. Our data
offer a concept that the local identity of stromal cells predisposes
to development of positional disease patterns, not only in arthritis
but in any disease with a prominent stromal component.
Anatomical location undoubtedly matters in disease development
and should be considered in future in diagnosis, treatment
and prognosis.

Methods
Patients and cell culture. Synovial tissues from joints of hands, elbows, shoulders,
hips and knees were obtained from OA and RA patients undergoing joint
replacement surgery at the Schulthess Clinic Zurich, Switzerland. Synovial biopsies
from knees of patients experiencing joint pain without inflammation or cartilage
destruction (healthy) and from ankles of patients with resolving arthritis were
gathered at the Queen Elizabeth Hospital in Birmingham, UK. RA patients fulfilled
the 2010 ACR/EULAR (American College of Rheumatology/European League
Against Rheumatism) criteria for the classification of RA54. The studies were
approved by the local ethic committees of the University Hospital Zurich,
Switzerland, and the University of Birmingham, UK. Informed consent was
obtained from all patients. Snap frozen synovial tissues were minced and RNA was
isolated using TRIzol (Life Technologies) according to the manufacturer’s protocol
followed by DNA digestion and purification with miRNeasy Mini kit (Qiagen).
Synovial tissues were digested with dispase (37 �C, 1 h) and SFs were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Life Technologies) supplemented
with 10% fetal calf serum (FCS), 50 U ml� 1 penicillin/streptomycin, 2 mM
L-glutamine, 10 mM HEPES and 0.2% amphotericin B (all from Life Technologies).
Purity of synovial fibroblast cultures was confirmed by flow cytometry showing the
presence of the fibroblast surface marker CD90 (Thy-1) and the absence
of leukocytes (CD45), macrophages (CD14; CD68), T lymphocytes (CD3),
B lymphocytes (CD19) and endothelial cells (CD31). Cell cultures were negative for
mycoplasma contamination as assessed by MycoAlert mycoplasma detection kit
(Lonza). SFs from passages 5 to 8 were used for deep RNA sequencing and
functional studies. Total RNA from SFs was isolated with the miRNeasy Mini kit
(Qiagen) including on-column DNAaseI digestion.

Animals and cell culture. Wild-type and TNF transgenic (TghuTNF) C57BL/6
mice (n¼ 10 each, see Supplementary Table 4) were generated as previously
described26 and housed under specific pathogen-free conditions in the animal
facilities of the Biomedical Sciences Research Centre (BSRC) Alexander Fleming.
All experiments were approved by the local ethics committee and in accordance
with the institutional care and use committee of BSRC Alexander Fleming. Fully
diseased TghuTNF and healthy wild-type mice were killed at 6–8 weeks of age.
The sample size for animal experiments was chosen based on previous laboratory
experience and published evidence from other groups. A sample size larger
than five animals is usually adequate for analysing responses of mouse SFs.
No randomization was used and no blinding was done. TghuTNF animals have
a 100% penetrance of joint disease. At the age of 6–8 weeks, joint disease is
considered as established. Mice were randomly selected from three individual
breedings (TghuTNF and wild-type controls) and each group was co-housed.
TghuTNF and wild-type littermate controls were randomly chosen from the
litters. Mouse fibroblasts were isolated from ankles, knees and front paws
(see Supplementary Table 4) as described in ref. 55. The purity of mouse SFs
was determined as follows: 480% CD90.2þ and o5% CD11bþ , with
490% Vcam1þ within CD90.2þ population. The cultures of SFs with
lower purity were excluded from further analysis (see Supplementary Table 4).
Total RNA from mouse SFs was isolated using TRIzol as described above.

Treatment of SFs. SFs from RA patients were treated with the BET bromodomain
inhibitor I-BET151 hydrochloride (1mM; Tocris Bioscience) or equal amounts of
dimethyl sulfoxide (control treatment) for 24 h as previously described56. I-BET151
treatment did not affect cell viability or impaired receptor-proximal signalling
events56. RNA was isolated from SFs using the ReliaPrep RNA Cell Miniprep
System (Promega), including on-column DNaseI digestion.

RNA sequencing of healthy and arthritic SFs. Total RNA from SF (RNA
integrity number Z9.5, n¼ 21, patient’s characteristics in Supplementary Table 1)
was used for generation of both long and small RNA libraries for sequencing. The
RNA quantity and quality were evaluated using the Qubit RNA BR Assay Kit (Life
Technologies) and the Agilent RNA 6000 Nano kit with Agilent 2100 Bioanalyzer
instrument (Agilent Technologies, Inc.), respectively.

The Illumina TruSeq Stranded total RNA protocol with the TruSeq Stranded
total RNA Sample Preparation Kit was used to produce the long RNA-seq libraries
from 550 ng of total RNA as follows: (1) ribosomal RNA removal with human-
specific probes (Epicentre); (2) fragmentation of enriched RNA; (3) first-strand
complementary DNA (cDNA) synthesis using reverse transcriptase and
random hexamers; (4) second-strand cDNA synthesis with DNA polymerase;
(5) adenylation of 30 ends of the blunt fragments; (6) ligation of multiple indexing
adapter to the ends of cDNA; and (7) PCR amplification of cDNA to enrich
DNA fragments having adapter molecules on both ends and to amplify the amount
of DNA in the library. The Illumina TruSeq Small RNA protocol was used to
produce the small RNA-seq library from 1 mg of total RNA as follows: (1) ligation
of the RNA 30 and RNA 50 adapters to the sample; (2) reverse transcription to
create single-stranded cDNA; (3) PCR amplification of cDNA with a common
primer and a primer containing one of 48 index sequences; and (4) gel excision
(between 145 and 160 bp) and gel purification of amplified cDNA construct.
The quality and quantity of the generated libraries were determined by Agilent
Technologies 2100 Bioanalyzer with DNA-specific chip and quantitative
PCR (qPCR) using Illumina adapter-specific primers using the Roche LightCycler
system (Roche Diagnostics), respectively.

Diluted indexed long RNA-seq (10 nM) and small RNA-seq (1 nM) libraries
were pooled in equal volumes, used for cluster generation (TruSeq SR Cluster
Kit v3-cBot-HS reagents, according to the manufacturer’s recommendations)
and sequenced (TruSeq SBS Kit v3-HS reagents, Illumina HiSeq 2500, the high
output mode with single read approaches: 100 bp (long RNA-seq) and 50 bp
(small RNA-seq)).

Bioinformatics analysis of RNA sequencing data. For protein coding
RNA and lncRNA, sequencing data reads were quality-checked with FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were trimmed
with Trimmomatic (4 bases hard-trimming from the start, and adapter trimming at
the end). We aligned the trimmed reads to the reference genome and transcriptome
(FASTA and GTF files, respectively, Ensembl GRCh37) with STAR version 2.5.1b
(ref. 57). The average number of high-quality reads, reads aligned and reads
uniquely aligned per sample were 33.8, 33.2 and 28.6 million, respectively, for
ribo-depleted libraries. Gene expression was quantified using the R/Bioconductor
package Rsubread58 version 1.22. Differentially expressed genes between joints and
diagnoses were identified using the R/Bioconductor packages DESeq2 (ref. 59)
version 1.12.4. For each comparison the set of differentially expressed genes was
identified as genes with an absolute value of the log2 ratio 40.5 and a P value
o0.05. Heatmaps and sample clustering are based on DESeq2 normalized values.
Heatmaps display Z-scores of normalized read counts.

For the small RNA experiment, ncPRO-seq with default settings was used to
quality control (QC), map and quantify the abundances of microRNA60. The
average number of trimmed reads for small RNA libraries was 11.5 million reads.
Differentially expressed microRNA between joints and diagnoses were identified
using the R/Bioconductor packages edgeR61 version 3.14.0. For each comparison
the set of differentially expressed microRNA was identified as the microRNAs
with an absolute value of the log2 ratio 40.5 and a P value o0.05. Heatmaps and
clustering of microRNAs are based on the expression counts normalized with
edgeR TMM method. Heatmaps display Z-scores of normalized read counts.

The unsupervised hierarchical cluster analysis of RNA-seq data (Fig. 1) is based
on normalized reads after log transformation with an offset of 10 counts added.
The 100 genes (protein coding, long noncoding and microRNA) with the biggest
variance across all samples were used.

Supervised clustering was based on the union of genes found differentially
expressed in each individual comparison. From each comparison the 25 most
significant genes (satisfying a minimum log2 difference of 0.5 and maximum
P value of 0.05) were used. Heatmaps highlighting the discriminating power of
HOX genes (Fig. 2a–c) are based on the clustering of the transcripts encoded in
HOXA, HOXB, HOXC and HOXD clusters (microRNAs were normalized by
edgeR and protein coding and noncoding genes were normalized by DESeq2).
Genes encoded within HOX loci were identified using the HOX gene annotation in
GRCh38.p2, Ensembl Release 80 (May 2015)62. Only transcripts expressed above
the threshold level were used in the cluster analysis.

Pathway enrichment analyses of genes differentially expressed between joint
localizations (knee versus hand, knee versus shoulder and hand versus shoulder)
were performed with MetaCore from Thomson Reuters (version 6.22, build 67265)
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using MetaCore ontologies including Pathway Maps, Process Networks, Diseases
(by Biomarkers) and GO Processes and default settings (threshold of log
(fold change)¼ 0.5, P value¼ 0.05, upregulated and downregulated genes both
included). We reported process networks that are significantly enriched for
differentially expressed genes and show the P value (o0.05) and false discovery
rate (FDR o0.05) as provided by MetaCore (Supplementary Data 3). The
heatmaps in Fig. 6 and Supplementary Fig. 5 show the differentially expressed
genes that are contained in the respective network (colours represent Z-scores
of normalized read counts). Each of the selected arthritis-relevant and joint-specific
Process Networks is present among the significantly enriched Network Processes
between joints.

Quantitative real-time PCR. Total RNA was transcribed using random hexamers
for mRNA and lncRNA or target-specific stem-loop reverse transcription primers
(Life Technologies) for microRNA followed by real-time PCR (7500 or 7900HT
real-time PCR system, Life Technologies) using TaqMan assays for microRNA
(Life Technologies) and self-designed primers (see Supplementary Tables 6 and 7)
in combination with SYBR green or TaqMan probes for mRNA and lncRNA.
No template control samples, dissociation curves and samples containing the
untranscribed RNA were measured in parallel. Data were analysed with the
comparative CT methods and presented as DCT or 2�DDCT as described in ref. 63.
For normalization of mRNA and lncRNA expression HPRT1 was used in synovial
tissues and I-BET151 experiments and beta2-microglobulin in human and mouse
SFs. The expression of microRNA was normalized to RNU6B in human SFs and
synovial tissues and to snoU6 in mouse SFs. Heatmaps of HOX transcripts (Fig. 3)
are based on the log2 ratios of sample DCT (CT target gene�CT endogenous
control gene) expression values relative to the average DCT of a gene across all
the samples as measured by qPCR. Supplementary Data 2 shows DCT values of
HOX genes used to generate the relative expression heatmaps in Fig. 3.

HumanMethylation 450 BeadChip. DNA was isolated from SFs (QIAamp DNA
blood kit, Qiagen) obtained from hands (n¼ 1 OA/4 RA), shoulders (n¼ 3 OA/4
OA) and knees (n¼ 1 OA/4 RA) of RA and OA patients. Samples were subjected to
the Illumina HumanMethylation 450 array. After QC, we calculated differentially
methylated CpG sites and islands using the COHCAP Bioconductor package
(version 3.3) in R statistical program. First, we calculated the b-values for each
CpG site from the array using the minfi package. Second, QC of the data was
performed and principal component analysis plots from the sample b-values were
generated with the COHCAP algorithm. Last, the CpG sites were defined as
methylated if they had b-values of 40.7 and unmethylated if they had b-values of
o0.3. In addition, we calculated the delta-b-value for each pair of joints and
identified differential methylated sites as significant between joints with Po0.05
and FDR o0.05. Differentially methylated CpG sites were calculated using analysis
of variance F-statistic for averaged b-values per group of samples (hand–knee,
hand–shoulder and shoulder–knee). The FDR values were calculated using
Benjamini and Hochberg test. For data visualization, we generated average wig
files for each anatomical location and graphs using the tools from the University of
California Santa Cruz (UCSC) Genome Browser.

ChIP DNA sequencing. Chromatin was prepared on pellets of fixed cells from
OA and RA knee, shoulder and hand SFs (n¼ 1 per each diagnosis and location)
and normal knee SFs (n¼ 1) using the iDeal ChIP seq kit for Histones (Diagenode)
with a shearing of 12 cycles (300 0ON 300 0OFF, Bioruptor Pico). The shearing
efficiency was analysed using an automated capillary electrophoresis system
Fragment Analyser (High sensitivity NGS fragment kit) after RNase treatment,
reversion of crosslinking and purification of DNA. ChIP assays were performed
using 1 million cells per IP and the following antibodies: H3K4me3 (0.5 mg,
C15411003, Diagenode), H3K27me3 (1mg, C15410195, Diagenode) and H3K27ac
(1mg, C15410196, Diagenode). A control library was processed in parallel using the
same amount of control Diagenode ChIP’d DNA. Immunoprecipitated DNA was
quantified by Qubit dsDNA HS kit and analysed by qPCR to evaluate the specificity
of the IP (see Supplementary Table 8 for positive and negative control regions
tested for each mark). Libraries were prepared from 1 ng of IP and input
DNA using the MicroPLEX v2 protocol, quantified by BioAnalyzer, purified
(AMPure beads) and eluted in TE. Purified libraries were quantified (Qubit ds
DNA HS kit), analysed for size (Fragment Analyzer) and diluted to 20 nM
concentration. Libraries were pooled followed by sequencing on an Illumina HiSeq
2500 (50 bp, single end) as follows: H3K4me3, 7 libraries per lane; input, 6 libraries
per lane; H3K27ac, 5 libraries per lane; and H3K27me3, 4 libraries per lane.
Quality of sequencing reads was assessed using FastQC, alignment was performed
using bwa v. 0.7.5a and peak calling for different histone marks was performed
using SICER v1.1 (ref. 32). The average±s.d. number of total reads per mark was
as follows: H3K4me3 32.5±4.0 Mio, H3K27ac 41.4±4.4, H3K27me3 51.2±1.7
and input 43.4±15.6. Data were visualized using Integrative Genomics
Viewer (IGV)64,65.

HOTAIR silencing. Knee SFs were transfected with 25 nM siRNA targeting
HOTAIR (Hs HOTAIR 3 siRNA, Cat. No. SI04446036, Qiagen, Sequence:
50-CACGGAACCCATGGACTCATA-30) or 50 nM antisense LNA HOTAIR

GapmeR (Cat. No. 300600, Design ID 542251-1, Exiqon, Sequence: 50-AGGCT
TCTAAATCCGT-30) using Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s instructions. AllStars Negative siRNA control (25 nM, Qiagen) or
Antisense LNA GapmeR Negative Control A (Cat No 300610) were used as
transfection controls. At 24 h after transfection the medium was replaced and
cells were lysed 48 and 72 h after GapmeR and siRNA transfection, respectively.
In TNF stimulation experiments, 48 h after transfection with siRNA, SFs were
stimulated with TNF (10 ng ml� 1, R&D Systems, 210-TA-010) for additional
24 h, before supernatants were collected and RNA isolated for enzyme-linked
immunosorbent assay (ELISA) and real-time PCR analysis. Transfection with
siHOTAIR and HOTAIR GapmeR reduced the expression of HOTAIR in SFs
for 48±21% (mean±s.d.) and 92% (median; min 62%—max 94%), respectively
(Supplementary Fig. 6).

Chemotaxis assay. Peripheral blood leukocytes were isolated using 8 volumes of
hypotonic erythrocyte lysis buffer (ELB; 155 mM NH4Cl, 10 mM NaHCO3,
0.1 mM EDTA, pH 7.4) on fresh blood from healthy donors (diluted with 1 volume
isotonic NaCl solution), incubation on ice for 5 min and centrifugation for 10 min
at 350� g at 4 �C. Cell pellets were resuspended in isotonic NaCl and again treated
with ELB (4 volumes and then 1.5 volumes), washed twice with ice-cold phosphate-
buffered saline, and resuspended in DMEM. Conditioned medium from SFs
(100,000 cells, 1 ml of medium, 24 h) or control medium was added to the feeder
tray of a 96-well transwell plate (5 mm polycarbonate membrane, Corning Costar).
Leukocytes (1� 106 in 100ml) were seeded air-bubble-free into the top inserts and
allowed to migrate for 16 h. Then, 50 ml of ice-cold 20 mM EDTA/0.5% FCS in
phosphate-buffered saline was added to the bottom wells and plates were incubated
on ice for 15 min to facilitate detachment of any adhered cells. Migrated cells
were counted with a CASY Cell Counter (Schärfe Systems). The ratio of migrated
leukocytes for each donor was calculated as the number of cells migrating
towards the conditioned or control medium normalized to the number of
leukocytes migrating towards the conditioned medium from knee SFs, sample
number 272. The experiment was performed three times using leukocytes from
two healthy donors; leukocytes from the second healthy donor were isolated at
two different time points.

Synovitis score. Formalin-fixed, paraffin-embedded synovial tissues of
RA patients (n¼ 42, see Supplementary Table 5) were cut, put on slides and stained
with haematoxylin/eosin. Synovitis was assessed by evaluation of the thickness
of the lining cell layer, the cellular density of synovial stroma and leukocyte
infiltration as described by Krenn et al.38.

Real-time cell analysis (RTCA). For RTCA of cell adhesion and proliferation of
SFs, the xCELLigence RTCA DP Instrument (ACEA Biosciences, Inc.) was used.
The 16-well E-plates were equilibrated with 100ml of DMEM, 10% FCS for 30 min
at room temperature. The impedance, expressed as arbitrary Cell Index (CI) units,
of the wells with media alone (background impedance–Rb) was measured
before adding the cells. SFs were detached with accutase, resuspended in DMEM
10% FCS, and seeded at cell density of 2,500 cells per well. Cell adhesion and
spreading, measured as changes in impedance, was monitored every 5 min for
a period of first 12 h and every 15 min after that for the next 12 h. The CI at each
time point is defined as (Rn�Rb)/15, where Rn is the cell-electrode impedance
of the well when it contains cells and Rb is the background impedance. Stable
adhesion and spreading of SFs with no further fluctuations in CI were achieved
at 16 h of measurement. At 24 h after seeding, 100ml of medium per well in
E-plates were exchanged with fresh 100 ml of medium. The proliferation of cells
was monitored every 30 min for additional 90 h and was calculated as doubling
time (CI¼A� 2^(t/CI doubling-time) in the period between 35 and 96 h after
starting the measurement.

Enzyme-linked immunosorbent assay. The concentration of MMP1 in super-
natants of synovial fibroblasts transfected with HOTAIR siRNA or AllStars
Negative siRNA control was measured using the human total MMP1 ELISA kit
(R&D Systems, according to the manufacturer’s instructions) and the GloMax-
MultiþDetection System (Promega) with Instinct Software (Promega).

Statistical analysis. Data were analysed with GraphPad Prism version 6.0 and
IBM SPSS Statistics software. Data distribution was tested with Kolmogorov–
Smirnov (small sample size) or D’Agostino and Pearson omnibus (large sample
size) normality tests. The equality of variances was tested with Brown–Forsythe
or Levene’s tests. Multiple group comparisons were performed by analysis of
variance (normal distribution) or Kruskal–Wallis (distribution not normal)
test with adjustments for multiple comparisons using Bonferroni, Dunnett,
Games-–owell (variances not equal) or Dunn’s post hoc test. Paired samples
were compared with two-tailed paired t-test or Wilcoxon matched-pairs signed
rank test. One-sample t-test was used to compare x-fold change of treated
versus control (set to theoretical mean of 1) groups. Unpaired t-test with Welch’s
correction was used when two samples with unequal variances were compared.
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Correlations were tested using Spearman’s correlation coefficient. P value of
o0.05 was considered statistically significant.

Data availability. Sequence data that support this study have been deposited
in European Nucleotide Archive (ENA) with the primary accession codes
PRJEB14422 and PRJEB14595. Other data that support the findings of this
study are available from the authors on request.
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