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Quantifying causality between variables from observed time series data is of great importance in various
disciplines but also a challenging task, especially when the observed data are short. Unlike the conventional
methods, we find it possible to detect causality only with very short time series data, based on embedding
theory of an attractor for nonlinear dynamics. Specifically, we first show that measuring the smoothness of a
cross map between two observed variables can be used to detect a causal relation. Then, we provide a very
effective algorithm to computationally evaluate the smoothness of the cross map, or ‘‘Cross Map
Smoothness’’ (CMS), and thus to infer the causality, which can achieve high accuracy even with very short
time series data. Analysis of both mathematical models from various benchmarks and real data from
biological systems validates our method.

D
etecting causal relationship between variables, especially from observed time series, has attracted great
attentions from multiple-disciplines. Though there still has been no universally accepted definition of
causality, various measures of causality have been reported and extensively studied. Among a variety of

methods based on linear regression, Granger causality1 is undoubtedly a widely accepted definition and method
to detect causal relationship between different factors. However, the Granger method mainly focuses on linear
models and needs a key condition of separability, namely, assumes that the driven information from causative
factors can be removed from the effects2. In fact, it has been noted that the causality in Granger sense may be not
suitable to detect directional coupling between nonlinear systems3, especially deterministic dynamical systems
with weak or moderate couplings. To quantify causal relationship between the intertwined variables of nonlinear
systems, methods developed from transfer entropy4, conditional mutual information5, recurrence plots6,7 and
nonlinear extension of Granger causality8,9 have been proposed and extensively studied. Moreover, various kinds
of mutual nonlinear cross map methods based on state space reconstruction (SSR) technique have been also
studied both theoretically10–13 and numerically14 for a long time. In particular, recently the mutual cross map
method has been successfully applied to solve complex relationship in ecological systems2,15.

Though these methods have been demonstrated to correctly identify causal relations for many systems, they all
require sufficiently long time series to achieve a reasonable result. This stems from the fact that training regression
models, calculating correlations, determining transition probabilities and finding nearest neighbors all need a
sufficiently large training set or a large number of samples.

However, in practical situations, the measured time series are always limited rather than sufficiently long, and
sometimes are even rather short, e.g., the high throughput microarray or RNA-seq data for gene expressions of a
biological process are typically measured less than 20 time points due to both experimental and economical
constraints16. Though various methods based on Bayesian inference, regression analysis, econometrics models
and standard similarity measures have been used to analyze such short time series data17–19, inferring genetic
networks from short data is still regarded as an ‘ill-posed’ inverse problem and a challenging task20,21. On the other
hand, in some occasions even though long-term data can be measured, only short (recent) pieces can correctly
reflect the causal relation between subsystems due to the nonstationary and fast switching property of the
concerned systems. Therefore it is in urgent need of developing new methods to detect causality based on
short-term data or a small number of samples.

In contrast to the traditional knowledge that short-term data cannot provide enough information to infer the
causal relation, here we show that we can detect causality from very short time series in an accurate manner by
exploiting global information of data. Specifically, we propose a measurement ‘‘Cross Map Smoothness’’ (CMS)
based on the embedding theory of attractors22,23 in this paper, which can not only detect causal relationship but
also derive a cross map between any two observed variables even with short-term time series data, and then we
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provide an efficient algorithm to construct such a map for inferring
the causal relation. The key idea behind our method is that mea-
suring smoothness of a cross map between two observed variables
implies causal relations, which can be computationally achieved even
with short time series data, comparing with the traditional methods,
e.g., the nearest neighbor method. Analysis of mathematical models
from various benchmarks validates our results and real data from
biological systems confirms the method can be used to infer genetic
networks from short data.

Methods
To begin, we revisit the mutual cross map method based on state space reconstruc-
tion. Consider two scalar time series x(t) and y(t) measured from two variables x and y
in an unknown nonlinear dynamical system. With appropriately chosen embedding
dimension L and proper delay t24,25, one can obtain time delayed coordinate vectors
x(t) 5 [x(t), x(t 2 t), …, x(t 2 (L 2 1)t)]T and y(t) 5 [y(t), y(t 2 t), …, y(t 2 (L 2

1)t)]T respectively. According to delayed embedding theory22, the set of vectors x(t)
forms the reconstructed attractor Mx, and one can define My in an analogous way. For
each point y(t0) on My, one can find its k nearest neighbors y(ty1), y(ty2), …, y(tyk) with
time indices ty1, ty2, …, tyk. Moreover, one can define the mutual neighbors for x(t0) g
Mx as x(ty1), x(ty2), …, x(tyk) and the map from nearest neighbors to mutual neighbors
is defined as cross map Wyx: My R Mx. In the case that x is causally influencing y, or x
is a driving factor of y (i.e., x R y), the information of x is included in the dynamics of
y, and thus two close states on My correspond to two close states on Mx, or explicitly,
the mutual neighbors of x(t0) are also in the neighborhood of x(t0). Inversely, in the
case that y has no influence over x, the dynamics of x is insensitive to the state of y and
the mutual neighbors of y(t0) are not necessarily to be close to y(t0), as illustrated in
Figs. 1(a) and (b). Therefore, the geometry property of mutual neighbors can be used
to detect causality2,10,11. The details of mutual neighbors and cross map are revisited in
Supplementary Information.

Here, it should be stressed that one requirement is essential, that is, the nearest
neighbors for both x and y are required to be sufficiently close to the true neighbor-
hood so that the local geometric information can be correctly measured. If this
requirement is not fulfilled, contradictory results may be derived, e.g., the studies of
refs. 10 and 11 used different assumptions for mutual predictions which both gave the
same result. In fact, due to the computational way of state space reconstruction using
delayed embedding technique, sufficiently long time series are required to guarantee
that the nearest neighbors on the reconstructed attractor converge to the true

neighborhood. Figure 2 shows the relationship between nearest neighbors and the
time series length, where the nearest neighbors found on the attractor reconstructed
from short time series (Fig. 2(b)) are apparently far away from the true neighborhood
of the underlying center point (Fig. 2(a)). Detailed discussions and explanations on
the necessity of convergence of nearest neighbors can be further referred to ref. 2.
Thus, detecting causality based on nearest neighbors and mutual neighbors essen-
tially requires sufficiently long time series data to make reliable causality detection.

Here, we notice that the key idea behind the method of finding mutual
neighbors is actually measuring the smoothness of the map. Specifically, if x
causally influences y, the nearest neighbors of y(t0) are mapped to close states of
x(t0), i.e., the cross map Wyx: My R Mx maps the neighborhood of y(t0) to the
neighborhood of x(t0), which actually implies that Wyx is locally smooth around
y(t0), as shown in Fig. 1(a). On the reverse direction, if y has no influence over x,
the image of x(t0)’s neighborhood under the cross map Wxy: Mx R My is not
necessarily the neighborhood of y(t0), thus the cross map Wxy is not necessarily
smooth around x(t0), as shown in Fig. 1(b). If the cross map W is locally smooth in
the neighborhood of every point on the attractor, then the map is globally smooth
on the whole attractor, and vice versa. Thus, the global smoothness of Wyx and Wxy

can be built from local properties, as illustrated in Figs. 1(c) and (d). Moreover,
when the coupling strength increases, information becomes more distinct in the
causally influenced variables. As a result, their attractors will contain stronger
historical information from the causes. Thus, within one system, the relative
smoothness can indicate the relative strength of causative effectiveness.

Therefore, finding mutual nearest neighbors is equivalent to measuring the
smoothness of the cross map W, i.e., the smoothness of Wyx indicates the strength of
causative effectiveness from x to y. While mutual neighbors only use the local
information around one point, we propose a new framework, i.e., Cross Map
Smoothness (CMS), to measure the smoothness of W using global information, and
consequently we can detect causality even from short time series in an accurate
manner. In other words, instead of finding nearest neighbors which requires a large
number of samples, we computationally evaluate the smoothness of the cross map by
designing an efficient algorithm for the global attractor.

Our fundamental idea is based on the fact that any smooth map can be
approximated by a neural network N 26 while training a neural network to
approximate an unsmooth map will fail with large training errors, as illustrated in
Figs. 3(a)–(d). Furthermore, the training errors reflects the relative smoothness,
and thus can be a measure of the relative strength of causative effectiveness.
Therefore we can train the neural network N to approximate the map Wyx, using
the whole set of data y(t) on My as input and the whole set of data x(t) on Mx as
output. Thus the training error (i.e., the measurement of the relative smoothness)
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Figure 1 | Illustration of mutual neighbors, cross map and smoothness. (a) For one point y(t0) g My and its counterpart x(t0) g Mx, one can find the
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(b) In the case y does not causally influence x, the cross map Wxy does not necessarily map a neighborhood to a neighborhood. (c) and (d) The global

smoothness of Wyx and Wxy built from local smoothness.
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between W and N indicates the strength of the causative influence from x to y.
The sketch of the Cross Map Smoothness (CMS) with the neural network (NN)
method is illustrated in Figs. 3(e) and (f).

Thus, we propose the Cross Map Smoothness(CMS) algorithm using a Radial Basis
Function (RBF) network to detect causality between two variables x and y. The details
of the algorithm is listed in Supplementary Information Section 2. Here we adopt a
leave-one-out strategy to fully use the short time series, i.e., we train one RBF network
based on each leave-one-out data set and make prediction on the one test point.
Finally, we compute the causality index Rxy based on the the normalized training
error, which measures the causative effective strength from x to y.

Results
To validate the method, several representative examples are consid-
ered as benchmarks.

Theoretical model validation. Let us begin with several represent-
ative causality patterns which can be used as motifs in many complex
situations. We first consider two coupled variables with both
unidirectional and bidirectional couplings in the following form,
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Figure 2 | Illustration for the time series length and convergence of nearest neighbors. Here the time series are generated by one chaotic Lotka-Volterra

system. (a) A reconstructed attractor from time series of 7000 samples, and the 5 nearest neighbors (5NN) of one center point. (b) A reconstructed

attractor from time series of only 100 sampled points and the 5 nearest neighbors of the same center point. Inset: the comparison of the 5 nearest neighbors

for both (a) and (b), where the latter set of points are apparently not close to the center point at all.
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Figure 3 | Sketch of the cross map smoothness learned by a neural network (NN). (a) and (b) Illustrations for the neural network’s approximation ability

for smooth map and unsmooth map. Here the map surface in (a) is assumed to be x 5 y1 1 y2 and the surface in (b) is simply generated by random points.

(c) and (d) The prediction error (or the smoothness of W) for cases in (a) and (b) respectively, where the leave-one-out scheme is used to calculate errors.

(e) Assume that x causally influences y, the information of x has been encoded in My and consequently W: My R Mx maps a neighborhood of y to a

neighborhood of x, implying Wyx is smooth. Thus a neural networkN can be trained to approximate the map based on the measured data on Mx and My.

(f) Assume that y has no impact on x, then Mx has no information from y. Training a neural network to approximate the unsmooth map W: Mx R My will

fail.
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X tz1ð Þ~X tð Þ rx{rxX tð Þ{cxyY tð Þ
h i

,

Y tz1ð Þ~Y tð Þ ry{ryY tð Þ{cyxX tð Þ
h i

,

ð1Þ

where rx 5 3.7 and ry 5 3.8 are two coefficients. Here cxy and cyx are
two coupling parameters and indicate the strength of causative
effectiveness. In the first case, we set cxy 5 0 and cyx 5 0.32, which
implies that X and Y have a driving-response relation, namely there is
unidirectional causality from X to Y, while the inverse is not true. We
use time series with length of 20 time points and apply the CMS
method to the data set. The causality detection result obtained by
CMS Algorithm is shown in Fig. 4(a), where nonzero Rxy and zero Ryx

clearly fit with the unidirectional causality pattern. Then we set cyx 5

0.1 and cxy 5 0.02 which makes it a mutually coupled system, and
thus there is mutual causative effectiveness between X and Y. With
the same setting in the first case, we detect the causality between X
and Y using CMS, as shown in Fig. 4(b). The detected result with Rxy

5 0.69 and Ryx 5 0.32 not only shows the bidirectional causality
between X and Y but also indicates that the relative strength of the

causative effectiveness from X to Y is stronger than the inverse
direction.

Here it is stressed that within one system when all the other con-
ditions are the same, as the coupling strength increases, information
becomes more distinct in the causally influenced variables, and con-
sequently larger causality indices will be detected. However, this
strength of causative effectiveness is relative but not absolute, i.e.,
the relation is not always monotonous between the coupling para-
meter values and the coupling strength. Therefore, the detected index
reflects the relative strength of the causative effectiveness between
different pairs of variables within one system. To this end, we con-
sider varying coupling strength values. In the unidirectional case, we
fix cxy 5 0 and vary the values of cyx in the range [0, 0.32]. For each
value of cyx, we generate data and use the CMS algorithm to detect
causal relations with the same setting. The result is shown in Fig. 5(a)
where the detected Ryx is always zero while Rxy firstly jumps from
zero to nonzero, then shows an ascending trend as the coupling
strength increases. In the bidirectional case, we consider the follow-
ing varying form: cyx 5 a, cxy 5 0.2 2 a where a is a varying factor in
the range [0, 0.2] measuring the coupling strength in both directions.
With the same setting as in the unidirectional case, the detected result
is shown in Fig. 5(b) where zero causality indices reflect zero cou-
plings and the detected causality indices Rxy and Ryx show ascending
or descending trend as the coupling strength varies in the same way.
Moreover, for small a, it clearly shows Ryx . Rxy which coincides
with the fact of relative stronger causative effectiveness from X to Y,
and vice versa.

Then we consider a more complicated system involving three
variables as follows:

Yj tz1ð Þ~Yj tð Þ cjj{
X

i~1,2,3

cjiYi tð Þ
 !

, j~1,2,3, ð2Þ

where cij are coupling parameters. With particular settings of the
coupling parameters, shown in Supplementary Information, the cau-
sal relations between the three variables can show fan-out or fan-in
patterns, as shown in Figs. 4(c) and (d). For the fan-out case in
Fig. 4(c), there are two unidirectional couplings from Y1 to Y2 and
Y3, while Y2 and Y3 have no direct relationship with each other. Since
Y2 and Y3 are both driven by the common source from Y1, the
dynamics of Y2 and Y3 both contain the information from Y1.
Thus the time series Y2(t) and Y3(t) are correlated but have no caus-
ality between them, which is a difficult situation for causality detec-
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Figure 4 | Coupling relationship patterns (coupling strength c in the left
column) and the corresponding causality patterns (detected index R in
the right column), where only the significantly detected causal relations
above threshold are shown. (a) Unidirectional causality pattern in the 2

species model. (b) Bidirectional causality pattern in the 2 species model.

(c) Fan-out causality pattern. (d) Fan-in causality pattern.

Figure 5 | Causality index detected for varying the coupling strength
values. Dotted lines are the fitted trend curves. (a) Unidirectional case.

(b) Bidirectional case.
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tion7. Here we apply the CMS method to the time series with length
of 20 points, and get the mutual relationship between Y1, Y2 and Y3,
which is shown in Fig. 4(c), where only the detected causality over
significance threshold is shown. The result in Fig. 4(c) indicates that
we can detect causality from Y1 to Y2 and Y3 but not vice versa.
Furthermore, there is no causal relationship detected between Y2

and Y3, which confirms that our method is effective for common
source causality pattern even with short-term data. As for the fan-in
case in Fig. 4(d), there are two unidirectional couplings to Y3, i.e., Y3

is driven by both Y1 and Y2 simultaneously. With the same setting as
the fan-out case, we use CMS to detect the mutual relationship
between the three variables, as shown in Fig. 4(d). The result illus-
trates that we can correctly detect the fan-in causality pattern. Here
we stress that the strength of the detected nonzero causality in
Fig. 4(d) is much weaker than the previous cases. Actually, a fan-in
motif is generally considered as a difficult pattern to infer17, this is
mainly due to the fact that the dynamics of Y3 are affected by both Y1

and Y2 at the same time, which weakens the effect of each single
driving force.

The above cases validate that our method can be effective for
discrete-time dynamical systems. To test our method with continu-
ous-time systems, we consider the Lorenz system driven by a chaotic
signal from the Rössler system, which was used as a benchmark in ref.
11. We use the standard parameter values with which the coupled
system has chaotic dynamics. We assume that 50 time points with an
even measurement interval are observed from the systems and use
CMS to detect the causality between the two systems. The detected
causality indices are RLR 5 0 and RRL 5 0.27, which clearly shows the
unidirectional causal relation from the Rössler system to the Lorenz
system.

Here we note that though we use the normalized error in CMS
Algorithm, the final causality index RYX for non-causal situation does
not reach exactly zero. Therefore in order to decide whether the
causality relation exists, we set a threshold value j based on the
significance test18,27–29. Our statistical analysis is based on the per-
mutation test: we run 1000 independent permutations uniformly at
random, shuffle the time points according to the permutations, and
run CMS on the shuffled data. With the empirical distribution, we
estimate the threshold as j 5 0.001 at a significance level p , 0.05,
i.e., we treat a causality index below 0.001 as zero. The details of the
significant test is shown in Supplementary Information.

The above illustrations show that our method is effective even for
the situations where only short-term data can be obtained. On the
other hand, in many occasions, owing to strong nonstationary and
irregular behavior of many real-world systems, the causal relation-
ship between system variables may switch quickly and thus even if a
long time series is available the causality detected based on the long-
term time series is meaningless. To consider such problems, we
assume that the coupling parameters in system (1) are no longer
constant but switching at random intervals between two sets of
values so that the causal relationship between the two variables
change from time to time, as shown in Fig. 6. We assume that a time
series of 1000 time points are measured for the system, and it is
obvious that using the whole time series to calculate one constant
causality between X and Y will yield a false result. Therefore we use a
time window of 20 time points moving along the whole time series
and use the CMS method to detect causality from every short piece of
data during one time window. Figure 6 shows the detected result,
where the dashed square waves represent the random switching of
the coupling parameters between zero and nonzero values and the
solid lines represent the detected strengths of causative effectiveness
over each time window. The switching value of cxy decides whether
or not there is causative effectiveness from Y to X and it is clear that
the detected causality from Y to X coincides with the square wave of
cxy quite well in Fig. 6(a). The similar result can be observed for the
causality from X to Y and the switching values of cyx in Fig. 6(b),

which confirms the effectiveness of our method for such causality-
varying situations.

Unraveling gene regulatory networks. How to infer gene regulatory
interactions from transcriptomics time-resolved data, and further
unravel the gene regulatory network (GRN) is of paramount
importance to gain a deeper insight into the complexity and
functions of the underlying biological systems. Due to the limit of
experiment technique and other constraints, usually only very short-
term and often noisy timeresolved measurements can be available in
gene expressions. Though various methods based on Bayesian
inference, regression analysis, econometrics models and standard
similarity measures have been used to analyze such short time
series data17–19, inferring genetic networks from short data is still
regarded as an ‘ill-posed’ inverse problem and a challenging task20,21.

Here, we note that in a gene regulatory network, the regulation
mechanism obeys some biochemistry rules and thus the regulatory
dynamics can be described by standard kinetics models, such as
Michaelis-Menten and Hill kinetics30,31. Therefore, the regulatory
interactions can be measured by causal relationship in nonlinear
dynamical systems and the proposed CMS method can be particu-
larly suitable for such a task, i.e., reverse engineering GRN from
short-term data.

Since in the real time-resolved expression data, e.g., microarray
chip data, not every regulatory subnetwork contains information of
all the participating genes, particularly over a specific time period and
a specific condition of interest. These facts render it challenging to
give a comprehensive evaluation of network inference with real time-
resolved expression data. On the other hand, it is widely accepted
these years to evaluate inference methods using standard synthet-
ically generated data sets17–19. Therefore, before applying our method
with real data, we give a comprehensive validation with synthetically
generated data sets of the bacterium E. coli30, as described in ref. 32.

Specifically, we consider a subsystem consisting of 50 genes picked
out randomly from the whole network, whose regulatory relation is
shown in Fig. 7(a). The regulation network of the selected subsystem
consists of several clusters, as illustrated in Fig. 7(a), which can well
approximate the statistical properties of the whole network30. Here
each node’s dynamics is governed by Michaelis-Menten or Hill kin-
etics, so that the simulated gene expression time series are similar to

Figure 6 | Causality detection for a parameter-varying system in a
piecewise manner. The dashed square waves represent the random

switching of the coupling parameters between zero and nonzero values,

and the solid lines represent the detected strengths of causative

effectiveness over each time window.
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real microarray measurements. We assume that only 10 time points
are available for each gene expression time series to simulate the real
experimental measurements and use CMS to detect causality
between each pair of genes. In order to evaluate the inference effi-
ciency of CMS to detect GRN structure, we use the resulting receiver
operating characteristics (ROC) curves, which plot the true positive
rate (TPR) against the false positive rate (FPR) at various threshold
settings. Actually, ROC curves show the relative trade-offs between
benefits of correctly inferred links (TPR) and the drawbacks of incor-
rectly inferred links (FPR) with different values of threshold to
identify a link. The ROC curve for noise-free data is shown in
Fig. 7(b), from which it can be concluded that the ROC curve is very
close to the perfect classification; i.e., when FPR is controlled to be
less than 2.5%, TPR can reach more than 90%, and the area under
curve (AUC) is 0.98 which is very close to be one. Therefore, the CMS
method can achieve a very good result for noise-free data.
Meanwhile, generally noise-free expression data cannot be obtained
in real experiment, and thus we need to further test the robustness of
the method to include various kinds of noise in the time series. Here
we consider three kinds of noise simultaneously, namely, the bio-
logical noise, the experimental noise and noise on correlated inputs
with three different noise intensities, namely 0.1, 0.2 and 0.3.
Figure 7(b) shows the three ROC curves for data with noisy pertur-
bations, where we can conclude that though the ROC curves for noisy
data are lower than the ROC curve for noise-free data, the accuracy is
still very high; especially all the three ROC curves have AUC values
around 0.9.

Moreover, to consider the influences of network properties such as
size and degree, we further test two additional data sets for
S.cerevisiae with 100 and 150 genes respectively. The selected sub-
systems are shown in Figs. 8(a) and (b), and based on 10 output of the
gene expressions, we apply CMS to infer the network interactions
respectively. The ROC curves for both non-noise and noise disturbed
cases are given in Figs. 8(c) and (d). Here, it is noticed that there are
two central genes which regulate other downstream genes at the same
time for the selected subnetworks of S.cerevisiae, which makes fan-in
and fan-out motifs abundant. As discussed in Figs. 4(c) and (d), the
fan-in motif may lead the causality less significant to be detected,
making it more difficult to detect the true network.

Next, we test our method with real gene expression data. Here we
consider the data of the laboratory rat (Rattus norvegicus) cultured

cells sampled from suprachiasmatic nucleus (SCN) for studying
circadian rhythm, where the gene expression profiles are measured
with Affimetrix microarray (Genechip Rat Genome 230 2.0)33–35.
To elucidate the gene regulation network architecture, we select the
data set consisting of 16 measured time points after the drug
perturbation in the 19th hour. For the mammalian circadian
clocks, it has been identified that there are around 17 genes
involved in the core regulation network, where the transcriptional
circuits are formed by regulation of E/E9 boxes, DBP/E4BP4 bind-
ing elements and RevErbA/ROR binding elements respectively36,37.
Moreover, besides the gene-level interactions, there are also regu-
lation interactions at the protein level; e.g., the transcription factor
Clock is phosphorylated by PFK family genes and the crytochrome
genes Cry1 and Cry2 are phosphorylated by MAPK family genes33.
Therefore, we consider the 17 core circadian genes as well as 18
kinase genes, whose relations are depicted in Fig. 9(a). With 16
time points measured for each gene’s expression, we apply the
CMS method to detect the regulation relation between all the
selected 35 genes. As a comparison, we also apply IOTA, partial
IOTA18 and CCM2 to the same data set, where IOTA is a newly
proposed permutation-based asymmetric association measure to
detect regulatory links from very short time series and CCM is a
mutual cross map-based method. Based on the core regulation
network in ref. 36, we carry out the ROC analysis for the regulation
detection, and the results are shown in Fig. 9(b).

Here, we stress that inference of GRN based on only one single
short-term data set is a challenging task due to the extremely short
measurements. The existing methods for GRN inference can usually
reach an AUC around 0.7 for synthetical data but only around 0.5
for real experimental data21. The CCM method, which relies on
finding nearest neighbors and thus requires long-term data for the
convergence, has AUC around 0.5 in Fig. 9(b). Particularly, the core
transcriptional circuits of mammalian circadian clocks consist of
complexly integrated regulatory loops involving three kinds of mid-
dle elements: E/E9 boxes, DBP/E4BP4 binding elements and
RevErbA/ROR binding elements. Therefore in the circadian data
set we used here, there are many fan-in motifs and the relation
between two interacting subsystems may no longer be monotonic,
and thus the IOTA method and the partial IOTA method may lead to
a false result, as shown in Fig. 9(b) where the AUC of the IOTA
method is less than 0.5.

Figure 7 | (a) Regulatory network with the selected 50 genes of E. coli. (b) The ROC curves of the detection results by our method (CMS), with different

levels of the noise condition.
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Figure 8 | (a) Regulatory network with the selected 100 genes of S.cerevisiae. (b) Regulatory network with the selected 150 genes of S.cerevisiae.

(c) The ROC curves of the results for the network in (a) by our method, with different levels of the noise condition. (d) The ROC curves of the results for

the network in (b) by our method, with different levels of the noise condition.

Figure 9 | (a) Regulatory network with the selected circadian genes, where the solid lines indicate gene-level regulations and the dashed lines imply

protein-level interactions. (b) The ROC curves of the results, with four methods tested on the same data set.
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As shown for the both synthetical GRN data and the real GRN
data, our CMS method which is particularly effective for short-term
data can achieve a very good result in a much accurate way in ROC
analysis.

Discussion
In this section, we discuss several issues related to CMS’ application
in real situations. First a question arises naturally: how short can be
the time series so that CMS can be effective? Or explicitly, what is the
lower bound of the length of time series that CMS requires to guar-
antee a reliable result. Intuitively, the longer the time series can be
observed, the more information the data can provide. Therefore just
as pointed out in ref. 2, one should consider the convergence of the
causality index over different lengths of time series and use the limit
value as the truly detected causality index. Here we use system (1)
with unidirectional causality setting as a benchmark to test the lower
bound for the CMS method. The result is shown in Fig. 10(a), which
indicates that with around 20 time points, it is enough for CMS to
distinguish zero and nonzero causality. Meanwhile, as a comparison,
we also test the CCM2 method for the same data set. Since the CCM
uses the convergence of nearest neighbors to detect causality, it needs
much longer data length to converge. As shown in Fig. 10(b) as well
as the inset there, CCM cannot distinguish zero and nonzero caus-
ality with short length of data, and with as long as 2000 time points,
CCM can give a trend of convergence for nonzero causality though
still no convergence for zero causality is achieved. Therefore, we
conclude that CMS method can be effective for short-term data with
length n , O(10) while the existing neighborhood-based method
requires data with length n , O(103) to reach a reasonable result.

Then we compare our method with some representative existing
methods for causality detection. Here we choose two kinds of meth-
ods for comparison, namely, the mutual cross map based on nearest
neighbors and the composition alignment method. For the former,
we use the newly proposed CCM2 and for the latter, we use IOTA
which is purposely designed for inferring gene networks from short
time series18. We test all the numerical results in our paper with the
same condition for the two methods, and the comparison results for
the theoretical models are shown in Fig. 11. Moreover, for the gene
networks, we consider several criteria to compare the methods, i.e.,
we consider the area under the ROC curve (AUC(ROC)), the Youden
index (YOUDEN 5 max(the true positive rate - the false positive
rate)), and the area under the Precision/Recall curve (AUC(PvsR))
which is based on the comparison between the true edges and the
inferred ones. The results for these ROC analysis are shown in

Table 1. Generally, it is suggested that a method has an excellent
performance if conditions AUC(ROC) . 0.8; YOUDEN . 0.5 and
AUC(PvsR) . 0.05 are satisfied simultaneously19. We highlighted the
scores with the excellent performances in Table 1. Clearly, we see that
CMS performs well in all the three cases. Since CCM needs long term
data for convergence, the accuracy of results by CCM based on short
term data here is poor. As for IOTA, it is specifically designed for
gene network inference, and one crucial point of the IOTA approach
lies on the assumption that two interacting genes have monotonic
relationship. Therefore, for a general nonlinear dynamical system or
gene expression which does not obey the monotonic assumption, the
IOTA method may fail.

The above comparison results also imply that Rxy designed in CMS
Algorithm can indicate the relative probability or the strength of

Figure 10 | (a) The causality detected by CMS based on different lengths of time series. (b) The causality detected by CCM based on different lengths of

time series, where the inset is the enlarged part for the same data length as in (a).

Real CMS CCM IOTA

Unidirec�onal 
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Fan-out 

Fan-in 
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Figure 11 | Comparison results for three methods on theoretical models.
The left column shows the causality patterns in 5 models, where black

blocks shows causality from vertical variables to horizonal variables. The

gray scale represents the strength of the detected causality between 0

(white) and 1 (black).
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causality taking values between 0 and 1. Therefore, we can use the
CMS index R to detect whether there is causality and how strong the
causal relation is between two variables, as shown in the gray scale
used in Fig. 4 and Fig. 11. Note that though the CMS method uses the
prediction error to measure causality, it is different from the mea-
surement of the Granger method which uses a series y(t) to predict
y(t) by constructing x(t) R y(t) correlation; our method uses a series
y(t) to predict x(t) by constructing a y(t) R x(t) map, for inferring the
causality from x(t) to y(t). It is also noted that the prediction error
based methods cannot detect autoregulation, i.e., the causal effect
from one variable to itself.

In conclusion, based on the state space reconstruction theory for
nonlinear dynamics, we have developed a new method of CMS to
detect causality between variables, even with short observed time
series. The key idea of our method is to detect causative effectiveness
by measuring the smoothness of the cross map between two observed
variables rather than finding the nearest neighbors, thereby avoiding
the requirement of long-term time series data. The method is vali-
dated with both theoretical benchmark models and real-world data
from gene networks. Our method is particularly effective in situa-
tions where only short-term data are available, such as high through-
put biological data. In this paper we adopted a neural network model
to train a smooth map, and other methods constructing a smooth
map can be also used in a similar way. As a future topic, we will
consider to extend this method further to detect the causal relations
of the measured variables just before the critical transitions38–40 and
high dimensional measured variables of nonlinear dynamics41.
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