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Reversible tyrosine phosphorylation is a widespread post-
translational modification mechanism underlying cell physiol-
ogy. Thus, understanding the mechanisms responsible for sub-
strate selection by kinases and phosphatases is central to our
ability to model signal transduction at a system level. Classical
protein-tyrosine phosphatases can exhibit substrate specificity
in vivo by combining intrinsic enzymatic specificity with the
network of protein-protein interactions, which positions the
enzymes in close proximity to their substrates. Here we use a
high throughput approach, based on high density phosphopep-
tide chips, to determine the in vitro substrate preference of 16
members of the protein-tyrosine phosphatase family. This
approach helped identify one residue in the substrate binding
pocket of the phosphatase domain that confers specificity for
phosphopeptides in a specific sequence context. We also pres-
ent a Bayesian model that combines intrinsic enzymatic speci-
ficity and interaction information in the context of the human
protein interaction network to infer new phosphatase substrates
at the proteome level.

Reversible tyrosine phosphorylation is one of the prime post-
translational modification mechanisms, modulating a variety of
cell processes (1–3). Given this importance in regulating essen-
tial activities, cells have evolved mechanisms to control their
phosphorylation homeostasis. This is achieved via an intricate
network that links phosphorylated proteins to the activity of
two enzyme families, protein-tyrosine kinases and protein-
tyrosine phosphatases (PTPs),3 which respectively add and

remove phosphate groups from tyrosine residues (4). Although
it is by now clear that in vivo the members of both enzyme
families display remarkable specificity, our understanding of
the rules underlying substrate selection is far from satisfactory
(5, 6). This limits our ability to draw a functional, three-layered
graph linking kinases and phosphatases via their substrates.
However, whereas for most kinases we know a sufficient num-
ber of substrates that help to identify sequence motifs in pep-
tides that are preferentially phosphorylated, we do not have a
comparable number of validated phosphatase substrates (7).

The human genome encodes 108 protein-tyrosine phospha-
tase domains, of which 37 are tyrosine-specific and are some-
times referred to as “classical tyrosine phosphatases” (8 –10).
Tyrosine-specific phosphatases are further subdivided into
receptor and non-transmembrane subgroups (8, 11, 12). The
catalytic domain (PTP domain) involved in substrate recogni-
tion and catalysis has a conserved structural fold (5). Key fea-
tures of the catalytic domain are the PTP signature motif
(I/V)HCXAGXXXR(S/T), the mobile WPD loop, characterized
by a conserved aspartate residue, and the phosphotyrosine rec-
ognition loop containing the KNRY motif (13).

Despite extensive biochemical and structural studies, the
molecular features by which protein-tyrosine phosphatases
recognize their phospho-substrates and display their substrate
preferences remain poorly defined. PTPs exhibit evident sub-
strate specificity in vivo, which is conferred by both the cat-
alytic domains and other accessory and regulatory domains
(5, 11). Subcellular localizations, post-translational modifi-
cation events, or specific tissue distributions also contribute
to specificity.

The identification of physiological phosphatase substrates is
hampered by the transient nature of the interaction between
the catalytic domains and their substrates. The development of
catalytically inactive substrate “trapping” mutants, and the
demonstration that these maintain the ability to bind the phys-
iological substrates without carrying the enzymatic reaction to
the end offered a new tool to study phosphatase specificity (14).
Trapping mutants maintain high affinity for phosphotyrosines
in their natural substrates and remain stably associated with
their substrates because they are unable to dissociate (15–17).
Substrate trapping mutants have been used for isolation and
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identification of potential PTP targets by co-immunoprecipita-
tion and pulldown assays (18, 19), screening of combinatorial
peptide libraries (20), phage display (21), or SPOT synthesis
(22).

Peptide-based microarrays have recently been introduced as
a new platform to interrogate the enzymatic activity of different
classes of phosphatases against a variety of immobilized phos-
phopeptide substrates (23–26). More recently Zhao et al. (27)
used high density phosphotyrosine peptide microarrays to
characterize the preferred substrates of 10 dual specificity
phosphatases, a class of enzymes that can dephosphorylate
both Tyr(P) and Ser(P)/Thr peptides.

Herein, we aim at a complete characterization of classical
PTP recognition specificity. We defined the substrate specific-
ity of 16 PTP domains of classical phosphatases, including 5
receptors and 11 non-transmembrane PTPs. By this approach
we confirmed, on a larger scale, that the catalytic domains of
tyrosine phosphatases display, to various degrees, intrinsic
preference for specific phosphotyrosine sequence contexts. We
also show that this preference can be rationally manipulated by
changing the chemical properties of the PTP substrate-binding
pocket. Substrate preference, as determined by the in vitro
phosphopeptide approach, is encoded using position-specific
scoring matrices (PSSM) that efficiently predict enzymatic
specificity in vitro.

In vivo, enzymatic specificity may be achieved by increasing
the ratio of the catalytic activity of the enzyme toward physio-
logical substrates over the “background” catalytic activity for
similar non-physiological substrates. Alternatively, physiologi-
cal substrates may be favored by increasing their relative local
concentration. Kcat and local relative concentrations are diffi-
cult to measure, especially on a large scale. Here we propose to
use peptide preference, as determined by measuring the bind-
ing of trapping mutants to phosphopeptide arrays and encoded
in a PSSM as a proxy of catalytic preference, and enzyme-sub-
strate distance in the protein interaction network, which takes
into account the different strategies used by phosphatases to
physically approach their substrates, as a proxy of substrate
concentration. We called this latter feature weighted interac-
tion distance (WID). PSSM and WID matrices were combined
in a Bayesian framework to obtain a predictive model that infers
physiological substrates.

Results

PTP Specificity—To obtain a proteome-wide view of classical
tyrosine phosphatase specificity, we made use of phosphopep-
tide chip arrays covering a large number of the tyrosine-phos-
phorylated sequences identified in the human proteome (28).
The chip contains three identical replicas of �6,000 human
phosphorylated peptides (supplemental Fig. S1). Microarrays
were incubated with the substrate-trapping mutants of PTP
domains, fused to the GST tag. The interactions between
phosphopeptides and phosphatases were revealed by an
anti-GST antibody conjugated to a fluorophore). To identify
phosphopeptides that would bind non-specifically either
GST or anti-GST antibodies, we probed one of the chips with
GST alone. Our collection of trapping mutant expression
vectors included 33 catalytic domains. For 22 of them we

were able to express soluble protein in quantities suitable for
the binding assay. With six, however, either the yielded
results were affected by high background or no signal could
be detected over background. Eventually, we could satisfac-
torily profile the specificity of a total of 16 phosphatases (Fig. 1A
and supplemental Spreadsheet S1). We computed for each pep-
tide the median of the three replica spot intensities. Peptides
with an intensity higher than the chip median intensity plus one
standard deviation were considered “binders” (positive data
set), whereas the peptides with a fluorescence signal lower than
the median signal formed the negative data set. The peptide
sequences were aligned on their phosphotyrosine residues and
used as input for the Two Sample Logo software (29) to gener-
ate a logo sequence representing the amino acid enrichment at
each position of the aligned sequences (Fig. 1B). The phosphor-
ylated tyrosine, shared by both interacting and non-interacting
peptides, is shown in the central position. The upper part of the
logo shows the over-represented amino acids in the positive
data set, whereas the lower section displays the under-repre-
sented residues in the positive data set, as compared with the
negative data set.

As an unbiased approach to phosphatase classification
according to specificity, we encoded the sequence information
in the positive and negative data sets in 16 PSSMs (see “Exper-
imental Procedures”). Each PSSM is a 10 � 20 matrix repre-
senting the amino acid preference in the five positions before
and after the phosphorylated tyrosine in the aligned peptides
that either did or did not bind the phosphatase trapping
mutants. The PSSM of each PTP was arrayed in a single column
of 200 rows, and the file containing the 16 PSSMs was used as
input for a Pearson centered clustering analysis. The output of
this approach can be pictured as a tree that groups phosphata-
ses according to their substrate recognition profiles (Fig. 1, B
and C). By cutting the tree at an arbitrary distance from the
root, we define seven specificity groups.

The first specificity group includes the MEG-2, rPTP-�, and
LAR phosphatases. They are characterized by a preference for
aliphatic amino acids in the positions flanking the phosphoty-
rosine. Leucine and tyrosine are preferred at position 6,
whereas leucine, glycine, and arginine are enriched at position
�1 and proline at position �3. By contrast, non-interacting
peptides are generally rich in negatively charged residues.

The logo of SHP-1 defines a second specificity group charac-
terized by substrates frequently displaying a positively charged
arginine at position �1 and serine at position �3, whereas
aspartic acids are over-represented at positions �3, �2 and �2.

A third class displays a preference for peptide substrates con-
taining negatively charged side chains at positions �2 and �1,
whereas leucine and tyrosine are over-represented at position
�1. Conversely, methionine and valine are under-represented
at positions �1 and �3. The four domains assigned to this class
are the non-receptor phosphatases LYP, MEG-1, PEST, and
PTP-H1.

The substrate preference of SHP-2 defines the fourth speci-
ficity class. SHP-2 is peculiar among the phosphatase domains
that we have characterized in that it displays preferential bind-
ing for peptides with negatively charged residues on either side
of the phosphotyrosine. In fact, glutamic and aspartic acids are
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over-represented in positions �5 to �2 and at positions �1,
�2, and �4. Arginine is instead frequent at positions �3, �1,
and �2 of the non-interacting peptides.

The fifth cluster contains the related phosphatases PTP1B
and TC-PTP, whose trapping mutants tend to bind peptides
that have methionine and glutamine at position �1. Acidic res-
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idues are under-represented at the same position. Glutamic
acid is frequent at positions �4 and �2, and leucine, phenylal-
anine, tyrosine, and threonine are enriched at position �1 of
the logo, whereas basic amino acids are under-represented in
the positions at the amino side of the phosphotyrosine.

The sixth group includes PTP-BAS, PTP-�, SAP-1, and
DEP-1, which preferentially bind phosphopeptides containing
glutamic acid at position �2, leucine and tyrosine at position
�1, and glycine at position �1. Positively charged amino acids
are under-represented at positions �3 and �1, whereas methi-
onine is under-represented at positions �1 and �3.

Finally, the seventh specificity group is characterized by the
non-transmembrane, catalytically inert phosphatase HD-PTP.
This PTP binds peptides having negatively charged amino acids
at positions �1, �2, and �3. In addition, HD-PTP preferen-
tially recognizes peptides that are enriched in glutamic acid and
asparagine at position �2.

The Residue at Position 59 Is a Specificity Determinant—To
identify the molecular determinants of peptide recognition
specificity, we next investigated whether specific side chains
forming the catalytic pocket could be used as a diagnostic for
class membership. To identify such residues, the classification
of PTPs of Fig. 1B was used as input in the multi-Harmony
server (30). This server combines the Sequence Harmony (31)
and multi-Relief (32) methods for the detection of the most
probable subgroup specificity determinant residues. Both
methods do not consider groups formed by a single phospha-
tase (SHP-1, SHP-2, and HD-PTP). To include SHP-1 and
SHP-2 in the analysis, these phosphatases were merged into a
larger group including specificity group III with LyPTP, PEST,
MEG-1, and PTP-H1. HD-PTP was not considered in the anal-
ysis. As anticipated from the visual inspection of the sequence
alignment (see supplemental materials for residue numbering),
no single residue or small group of residues could explain in a
simple way the classification in Fig. 2.

The output was filtered to retain positions with a weight
score �0.7 for the multi-Relief analysis, and a z score � �2.5 for
Sequence Harmony. The hits mapping close to the substrate
binding pocket are listed in supplemental Table S1). We
focused on position 59 of the multiple-PTP alignment (supple-
mental materials and Fig. 2A), which immediately follows the
conserved KNRY motif forming the phosphotyrosine recogni-
tion loop in the catalytic pocket. Classical phosphatases have
either asparagine or aspartic acid at that position. PTP-1B and
its close relative TC-PTP, both classified in specificity group V,
have an aspartic acid, whereas the members of class VI all have
an asparagine. In the two experimental structures of the
PTP-1B domain complexed with a substrate peptide, Asp-59
forms a hydrogen bond with the phosphotyrosine amino group
(Fig. 2A). The sequence logos of these two classes differ in sev-

eral respects, most notably at position �1, with Met and Gln
preferred by class V domains, whereas class VI domains bind
preferentially peptides containing a Gly at that position and
tolerate negative charges but cannot accommodate Met, simi-
larly to all domains having a Gln at position 59. In addition, class
V phosphatase are more tolerant to a variety of residues at posi-
tion �3, whereas class VI members disfavor long hydrophobic
residues such as Met or Val while often preferring Pro (Fig. 2B).
The role of residue 59 as specificity determinant was investi-
gated by replacing the aspartic acid in PTP-1B and TC-PTP
trapping mutants with an asparagine. Phosphopeptide chips
were probed with PTP-1B, TC-PTP, and their D59N trapping
mutants, and the corresponding two-sample logos were gener-
ated. Fig. 2 illustrates the logo representing the PTP-1B and
TC-PTP substrate recognition profile (Fig. 2B) and compares it
with that of the D/N mutants (Fig. 2C). Interestingly by chang-
ing the Asp to a Gln at position 59, the class V mutants acquire
the ability to bind peptides that have two of the features of the
class VI logo, namely the preference for Gly and Pro at position
�1 and �3, respectively, and an aversion for Met at these same
positions. To validate these conclusions using a different phos-
phatase assay, we engineered by site-directed mutagenesis a
PTB-1B phosphatase domain carrying the D59N substitution
in a wild type sequence background. The phosphatase activity
of the purified protein was measured in solution by incubating
the phosphatases with 10 phosphopeptides and by monitoring
the release of free phosphate with Malachite Green. The phos-
phopeptide sequences were chosen to test the change in speci-
ficity at positions �1 and �3. Indeed by this approach, which
directly tests catalytic activity in solution, we were able to con-
firm that the PTP-1B D59N mutant has a significantly in-
creased substrate preference for peptides with a Gly at position
�1 and/or a Pro at position �3 (Fig. 2D and supplemental Fig.
S2). The only exception is peptide DSTAETyGKIVHY that,
despite having a Gly at position �1, is a better substrate for wild
type PTP-1B, possibly because the branched hydrophobic side
chain of Ile at �3 does not make it a good substrate for the
mutant having an Asn at position 59. In conclusion, these
results show that the identity of the side chain at position 59
affects the binding specificity of phosphatase trapping mutants
and the substrate preference of wild type phosphatases in a
tangible way that is, at least in part, predictable.

PSSM-based Predictive Model to Infer PTP Peptide Targets—
In a sequence logo, the sum of the sequence conservations at
each position, the total entropy, measures the information con-
tent of the Logo and describes its selectivity (33). When com-
pared with the family of SH2 domains tested in the same exper-
imental set-up (34), the average information content of the
Logos representing phosphatase specificity is significantly
lower (p � 0.004; Fig. 3A). This suggests that a simple sequence-

FIGURE 1. Sequence logo of PTP substrates. A, PTP sequence similarity tree. B, specificity tree of the 16 tyrosine phosphatases profiled with peptide
microarrays. We used the PSSM as input for the EPCLUST software, to group tyrosine phosphatases on their substrate recognition profile. The 16 PTPs are
grouped into 7 specificity groups, according to the similarity in the distribution of the residues in the positions flanking the central phosphorylated tyrosine.
Each specificity group was highlighted with a different color. C, the specificity groups were mapped onto the sequence similarity tree by outlining with
different colors phosphatases that belong to the same group. D, sequence logos representing the phosphopeptide sequences that are preferentially bound by
phosphatase trapping mutants. The logos were generated by the Two Sample Logo software, which calculates and represents the differences in amino acid
sequences in a positive and a negative peptide data set. The upper and lower parts of the logo represent the amino acids that are respectively over- and
under-represented in the interacting peptides. The logos of phosphatases belonging to different specificity classes are framed in different colors.
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based phosphatase predictor is likely to grossly overpredict and
should therefore rather be combined with predictors based on
independent features. With the aim to develop a general strat-
egy to infer physiological PTP substrates, we first trained a pre-
dictive algorithm to assess the “propensity” of a peptide to be a
substrate of classical phosphatases in the in vitro trapping
mutant test. We used the PSSM information, whose scores take
into account the residue enrichment in both positive and neg-
ative peptides data sets generated from interaction data. The
potential of the PSSM-based predictive algorithm was first
assessed by estimating its ability to reproduce the results of our
chip experiments, by measuring the area under the receiver
operating characteristic curve (AUC) (35). The bar graph in Fig.
3B reports the AUC for the 16 phosphatases whose specificity

was determined by the microarray probed with the PTP trap-
ping domain. The AUC, ranging from 0.62 (for SHP-2) to 0.93
(for DEP-1), estimates the performance of the PSSM predictors
in inferring peptides that bind the phosphatase trapping
mutants in the in vitro assay used to generate the PSSM.

We next assessed the performance of the PSSM-based algo-
rithm to infer in vivo physiological substrates. Each phospha-
tase was associated with a list of substrates dubbed “positive
gold standard” and to a list of non-substrates dubbed “negative
gold standard.” Given the intrinsic difficulty to define with cer-
tainty the non-substrates of a tyrosine phosphatase, the nega-
tive gold standard was assembled by random samplings of the
human phosphotyrosine proteome, under the hypothesis that
the majority of protein peptides are not PTPs substrates. PTP-

FIGURE 2. The residue at position 59 is a determinant of PTP substrate specificity. A, structure of the substrate binding pocket of PTP-1B in complex with
two substrate peptides (39, 46). The aspartic acid at position 59 of PTP1B, which has been changed to asparagine in the experiment, is shown as a transparent
section in the surface representation. B, comparison of the substrate preference of class V and class VI phosphatase domains. Class V members have an
aspartate at position 59, whereas those in class VI contain an asparagine. The sequence logos were generated as in Fig. 1, by the Two Sample Logo software.
C, logos describing the substrate specificity of the PTP-1B D/N and TC-PTP D/N mutants. D, graph representing the catalytic activity of GST, GST-PTP-1B,
GST-DEP1, and GST-PTB-1B_D/N. Purified enzyme (1 �g/ml) was incubated with one of 10 phosphopeptides (100 �M) for 30 min. The release of phosphate was
monitored every 5 min by incubating with Malachite Green. Phosphatase activity was obtained by determining the slope of the curve representing the
development of the green color after subtracting the optical density (620 nm) of the sample containing GST. The error bars represent the standard error in the
determination of the slope. Phosphatase activity is expressed as the amount of phosphate (nm) released in these experimental conditions per minute, as
determined by comparison with a standard curve. The asterisks represent p values �0.01 of the null hypothesis that the activities of the phosphatase PTP1B and
its D/N mutant do not differ when tested on the same peptide. See “Experimental Procedures” for statistical details.
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1B, TC-PTP, DEP-1, SHP-1, and SHP-2 phosphatases were
considered for the PSSM-based prediction, because only for
these PTPs was it possible to retrieve a sufficient number of
validated substrates to assemble a sufficiently large positive
gold standard (12). The performance in ranking the positive
and negative partners is reported in Fig. 4 as ROC curves (PSSM
curve, in blue). The AUC values, ranging from 0.69 to 0.78,
attest to the ability of the PSSM-based algorithm to differenti-
ate the positive from the negative in vivo gold standards, albeit
less efficiently than observed when tested on the in vitro chip
data. These results confirm that PTP substrate specificity is not
sufficiently selective to allow the inference of phosphatases
substrates in physiological conditions, but additional features
should be considered.

With the aim to improve the performance of the PSSM-
based prediction, we considered the importance of the protein
interaction network in physically guiding the PTPs to their
functional substrates via a web of protein contacts in the cell.
The interaction information was extracted from four major
protein-protein interaction databases (MINT, DIP, IntAct, and
BIOGRID as integrated in the mentha database (37)) to compile
a “weighted protein network,” where each interaction is associ-

ated to a reliability score (from 0 to 1) that takes into account all
supporting experimental evidence (37, 38). We considered pro-
tein pairs connected with highly reliable edges as “closer” than
proteins connected by edges with little experimental support,
and the weight scores (w) were converted into distances (d �
1 � w).

We next calculated the WID between a phosphatase and any
protein of the weighted network. Finally we evaluated whether
this feature could classify human proteins for PTP substrates
and non-substrates. The AUCs (Fig. 4, red curves) range from
0.71 (DEP1) to 0.94 (PTP1B). Given the good classification
achieved by using the WID parameter, we next developed a
Naïve Bayes approach that integrates the WID conditional
probability with the peptide preference encoded in the PSSM
(23). This combined model (Fig. 4, green curves) produced an
even better classification, characterized by AUC values ranging
from 0.81 (DEP-1) to 0.95 (SHP-2). The TC-PTP, DEP-1,
SHP-1, and SHP-2 combined models outperformed the models
based on one feature at a time. The only exception was PTP-1B,
which showed a marginally better substrate classification with
the WID-based algorithm than with the combined Bayesian
model.

Discussion

The members of the protein-tyrosine phosphatase family
play an important, albeit incompletely understood role in the
propagation of cellular signals. A complete characterization of
the physiological phosphatase substrates is essential to under-
stand the molecular mechanisms modulated by this enzyme
class in regulating many biological processes. Over the past
decades several studies have contributed to shed light on the
molecular mechanisms underlying substrate selection. The
detection of a stable interaction between phosphorylated tyro-
sine-containing proteins and protein-tyrosine phosphatases
trapping mutants is an accepted criterion for the identification
of phosphatase substrates (5) and has been used over the past
decades to identify potential PTP targets in combination with
other methods (22, 40).

On the other hand, miniaturized array-based techniques are
more popular for studying protein-protein interactions and in
large scale analyses across the whole proteome (41). In addition,
the screening of peptide microarrays is a fast and efficient strat-
egy to determine enzyme specificity, such as, for instance, in the
characterization of kinase substrate specificity (42, 43) or
domain binding (34, 44). In this work we combined the versa-
tility of the substrate trapping mutants approach with the high
throughput potential of phosphopeptide microarrays to define
the intrinsic substrate specificity of 16 PTP domains belonging
to the classical tyrosine phosphatase family.

The results of several studies aimed at the characterization of
PTP substrate specificity have already been reported (22–26,
45–52). In addition Knapp and co-workers (11) profiled a large
number of tyrosine phosphatase domains by measuring their
ability to dephosphorylate tyrosines in a panel of phosphoty-
rosine peptides. Finally, Zhao and co-workers (27) monitored
the enzymatic activity of 10 dual specificity phosphatases on
�6,000 phosphotyrosine peptides arrayed on glass slides. Our
work represents the largest screening of human PTP domains

FIGURE 3. A, distribution of logo information content in SH2 and PTP domains.
B, PSSM-based predictions of microarray substrates. We assessed the poten-
tial of our PSSM-based predictive algorithm to reproduce chip results by mea-
suring the AUC (receiver operating characteristic). The ROC curves represent
the true positive rate (sensitivity) versus the false positive rate (specificity) to
classify the interacting and the non-interacting peptides of each experiment.
For each phosphatase we assembled a positive and a negative data set. All
the phosphopeptides with a signal higher than the median plus one standard
deviation were included in the positive data set, whereas the negative data
sets included peptides with a signal lower than the median. The AUC values
validate the ability of the PSSM to differentiate between the two data sets.
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to date, using a large library of phosphorylated peptides cover-
ing most of the human phosphoproteome. Furthermore, we
describe for the first time the peptide binding specificity of HD-
PTP, PTP-BAS, MEG-1, MEG-2, LAR, PTP-H1, and PEST.

However, the enzymatic selectivity that can be measured
in vitro cannot account completely for the substrate speci-
ficity observed in physiological conditions, where additional
mechanisms play a role. Contextual information, such as the
protein subcellular compartmentalization, the co-localization
via anchoring proteins and scaffolds, or the temporal and cell
specific co-expression may play important, even dominant
roles in substrate targeting in vivo (53). These considerations
are even more important when applied to enzymes such as
phosphatases, whose substrate sequence selectivity is less pro-
nounced than the one observed for kinases.

Our microarray-based approach boosted the current amount
of peptides that are known to be in vitro targets of classical
phosphatases and exceeded by �24-fold the number of litera-
ture-reported substrates in a rapid and economic fashion. To
extend our knowledge about phosphorylation-mediated signal-
ing by inferring physiological phosphatase substrates, we com-
bined the information on peptide specificities extracted from
the microarray data with information about enzyme and sub-
strate network context. We extended and improved the Naïve
Bayes approach that we first used to infer new PTP-1B sub-
strates involved in the RAS pathway (23).

Protein-Tyrosine Phosphatase Specificity—Although PTPs
are considered promiscuous enzymes with little specificity
for residues flanking the phosphorylated tyrosine, several
approaches have identified sequence motifs that characterize

FIGURE 4. ROC curves representing the performance of the predictors based on the PSSM, WID, and Bayesian integration of PSSM � WID. We used the
PSSM-based algorithm to assess the ability of the substrate specificity information, extracted from microarray experiments, to classify the literature-reported
substrates (blue curve). The red curve is the WID curve representing the performance of the substrates prediction based on the weight distances between the
phosphatases and their potential substrates in the human interactome. WID and PSSM algorithms are combined (green curve) to build a Bayesian model aimed
at the prediction of PTP physiological substrates.
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aligned substrate sequences. The number of peptides poten-
tially recognized by PTP domains is very high, consistent with
the plasticity of the conserved catalytic domains of tyrosine
phosphatases, as first identified in the active site of PTP-1B (46).
However, our microarray-based approach highlighted that
most PTPs show some preference for specific amino acids
flanking the phosphorylated tyrosine. The logos characterizing
the 16 classical phosphatases differ for the residues on the car-
boxyl-terminal side of the phosphotyrosine. Positive and nega-
tive data sets containing the peptides that bound or did not bind
the PTP trapping domains were used to build a PSSM, which
encodes the positional residue frequencies in both positive and
negative data sets. PSSM information was used to cluster phos-
phatases into seven different specificity groups, according to
their residue preferences.

Our experimental system can reveal both strong and weak
interactions, and its sensitivity is such that it may be used to
reveal any subtle shift in peptide recognition caused by modifi-
cations of the chemical environment of the substrate recogni-
tion pocket. By searching for residues whose identities are con-
served within a specificity group but poorly conserved in the
whole PTP family, we identified the residue at position 59,
which is always an Asp in class V phosphatases, whereas it is an
Asn in class VI members. Microarray binding assays revealed
that this D/N mutation at position 59 in PTP-1B and TC-PTP
catalytic domains (class V) is sufficient to induce a shift in spec-
ificity such that the logos of class V 59 D/N mutants become
similar to the logo of class VI domains. Importantly we show
that the change in specificity is observed not only in the trap-
ping mutants but also in enzymatic assays in solution. Attempts
to rationalize, on a structural basis, the observed specificity
changes by modeling domain mutants and substrate peptide
complexes have failed to reveal simple solid sequence-based
rules. Interestingly the phosphatases of the KIM domain family
have a Thr at position 59 that was suggested to have an inhibi-
tory role on phosphotyrosine peptide binding (54). Consis-
tently we were not able to identify any peptide motif in our array
experiments for these phosphatases.

Bayesian Integration of Orthogonal Features—Despite
advances in high throughput assays, our understanding of the
phosphorylation signaling network is still fragmentary, because
of the difficulty of translating new insights generated in vitro to
the cellular context. The in vitro PTP substrate specificity,
determined by microarray experiments and encoded in the
PSSM, only captures the preference of the enzymatic pocket for
specific sequence motifs, and it may turn out to be insufficient
for the discovery of new substrates of potential physiological
relevance (23). As an example, the small family of the KIM
domain-containing proteins, including HePTP, STEP, and
PCPTP1 requires the interaction of a docking domain in the
substrate protein and the KIM domain in the phosphatase for
substrate selection (54). These specificity determinants cannot
be discovered by our array approach that uses short linear pep-
tides as substrates. As a consequence, training of our PSSM-
based algorithm for the prediction of literature-reported sub-
strates was not sufficiently discriminating, exposing the limits
of the chip binding assays that do not also consider contextual
information such as docking domains, adaptors, protein local-

ization, and expression. Therefore, we decided to combine, in a
Bayesian framework, the microarray data with protein interac-
tion network information. This approach was first developed to
infer new PTP-1B substrates involved in the RAS pathway (23).
We tested and improved this strategy to build an efficient pre-
dictive algorithm for most classical phosphatases. PTP network
information was extracted from different protein interaction
databases and integrated in a single weighted human interac-
tome (10). The protein distance scores were encoded in a WID
matrix, and we showed by ROC analysis that the WID feature
can be used to efficiently discriminate literature-reported sub-
strates from non-substrates. Although we took the precaution
to remove from the interactome data set the evidence based on
enzymatic assays or pulldowns mediated by trapping mutants
to avoid overestimating the WID feature, it is still possible that
the performance of WID in substrate prediction could be
boosted by a “social” bias affecting well characterized proteins
such as those considered here. Once a substrate of functional
significance is reported, researchers are motivated to charac-
terize the local interaction network to link the enzyme to its
substrate. Given the incomplete coverage of the human protein
interaction network, it is unlikely that the WID of less charac-
terized proteins would show a comparable performance at the
present interactome coverage. This analysis is confirmed by the
observation that WID of the most studied tyrosine phosphatase
PTP1B has the highest predictive performance.

Experimental Procedures

DNA Constructs—The pGEX-4TK expression plasmids were
constructed as described previously (55). All PTP domains are
substrate trapping mutants that carry the D/A mutation in
the WPD loop, with the exception of HD-PTP, which carries
the E/A mutation. The catalytic domain of five different PTPs
(SHP1, SHP2, HD-PTP, PTP-1B, and TC-PTP) was further
mutated by using a commercially available site-directed muta-
genesis kit (Stratagene).

Microarray Design and Binding Assays—Microarrays were
co-developed with Jerini Peptide Technology within a project
supported by the Interaction Proteome European Union inte-
grated project. The peptides were synthesized and arrayed
according to their proprietary technology, as previously de-
scribed (34). Microarrays were incubated in dishes containing
5% bovine serum albumin in PBS, pH 7.4 (blocking buffer) for
3 h at 4 °C. After blocking, phosphopeptide arrays were incu-
bated with 1 �g/ml of GST-PTP in blocking buffer, pH 7.4, for
1 h at room temperature. Microarrays were washed in PBS (pH
7.4) three times for 10 min and then incubated with anti-GST
Cy-5-conjugated antibody (Amersham Biosciences), diluted
1:1000 in blocking buffer, for 1 h at room temperature avoiding
light exposure. The chips were extensively washed four times in
PBS for 10 min and then dried. The fluorescence intensity was
revealed with the ScanArray Gx Plus (PerkinElmer Life Sci-
ences). The net signal intensity of a spot is the logarithm of the
ratio of foreground to background intensity (log(FG/BG)). Data
filtering was as described in Ref. 34.

Two Sample Logo Visualization—Peptide recognition speci-
ficity was represented by using the Two Sample Logo web tool
(29). This software requires as input a positive and a negative set
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of aligned amino acids sequences to calculate and visualize the
differences between them. The positive data set includes all
peptides with a binding intensity higher than the median signal
plus one standard deviation, whereas the peptides with a fluo-
rescence signal lower than the chip median signal constitute the
negative data set. Binomial test and p values of �0.05 were
applied. The same phosphopeptide arrays used to profile the
PTPs specificity were also employed in a recent screening car-
ried out in our laboratory to characterize the interaction net-
work mediated by a representative set of human SH2 domains
(34). We exploited the results of this larger screening to reduce
the risk of including, in the negative data set, peptides that did
not give a signal because of technical reasons (e.g. poor synthe-
sis or low phosphorylation). To this aim we considered only the
peptides that have been bound by at least one of the SH2 and
PTP domains tested or by the anti-phosphotyrosine antibody
(�-4G10; Upstate) (28). The resulting filtered data set has been
deposited in the KinomeXplorer resource (56).

PTP Clustering and PSSM—To cluster each PTP according
to peptide specificity, we assembled three amino acid frequency
matrices based on the positive, negative and total data set. The
positive matrix (PM) was composed of 20 rows i, comprising
the 20 naturally occurring amino acids, and 10 columns j, com-
prising 5 positions before and 5 positions after the phosphory-
lated tyrosine. In this matrix the value at row i and column j is
the frequency of the amino acid i at the jth position in the align-
ment of the positive data set. An analogous negative matrix
(NM) was obtained from the alignment of negative data set;
finally, the total matrix (TM) (47) was compiled by determining
the amino acid frequency at each position in the complete list of
all peptides arrayed on the chip. The score assigned in the
PSSM was calculated by adding up over all the positions of the
positive, negative, and total matrices according to,

PSSM � �
j

PMij � NMij

TMij
(Eq. 1)

where PMij, NMij, and TMij are the values for amino acids i in
positions j, respectively, in the positive, negative, and total
matrix. The PSSM of each PTP was arrayed in a single column
of 200 rows, and the file containing the 16 PSSMs was used as
input for a Pearson centered clustering analysis (57).

Phosphatase Substrate Curation—The PubMed database was
queried with the PTP strings and with the names of the 16 PTPs
of interest retrieved from the PIR (58) and the ProThesaurus
(36) resources. The results were combined and downloaded in
XML format. We made use of a Python script to automatically
parse the title and abstract fields of the XML formatted
PubMed entries to select the papers containing keywords
related to the PTP domains, such as “dephosphorylation reac-
tion” or “trapping mutant.” We collected thousands of PubMed
entries that were reviewed by expert curators. 270 of them were
considered relevant for the project. We defined as PTP sub-
strate every protein or phosphopeptide of the human proteome
that was linked to a phosphatase by one of the following rela-
tionships: de-phosphorylation reaction, indirect de-phosphor-
ylation, phosphatase trapping, and indirect phosphatase trap-
ping. Both in vitro and in vivo experimental systems were

considered. 13-residue-long substrate peptides containing the
target phosphotyrosine at position 7 were annotated for the
enzymatic specificity and network context analysis.

Malachite Green-based Phosphatase Activity Assay—Lyoph-
ilized phosphotyrosine-containing peptides (in 96-well micro-
titer plates; JPT Peptide Technologies GmbH Berlin Germany)
were diluted under gentle agitation in assay buffer (10 mM Tris-
HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA) for 1 h at room tem-
perature. Reaction solution was prepared containing phospha-
tase (PTP1B, PTP1Bdn, and DEP1), as well as a GST control. 50
�l of phosphatase solution were transferred into each well
using a matrix multi-pipette resulting in final concentrations of
1 �g/ml enzyme and 100 �M substrate peptide in a final volume
of 100 �l. Additionally, buffer control and phosphatase nega-
tive control (buffer only and phosphatase without substrate,
respectively) were performed. Microtiter plates were sealed and
incubated for 2 h at 37 °C in a humidity chamber. Subsequently,
the microtiter plate was adjusted to room temperature for 15
min. 50 �l of BIOMOL Green solution (Enzo Life sciences)
were added to each well.

UV-visible absorbance was read using a SpectroStar Nano
(BMG Labtech) microtiter plate reader at 620 nm. For detec-
tion of color development different time points were recorded
starting immediately after putting plate into the reader, as well
as after 5, 10, 15, 20, 25, and 30 min. Phosphatase activity is
determined by applying linear regression analysis to estimate
the slopes of the kinetic curves by a least square method. For the
analysis of the significance of the differences observed in the
slopes of the linear regression of the kinetic data, we used the F
test, which is often utilized to compare statistical models that
have been fitted to a data set. To this end we have used the
procedure implemented in the jmp statistical software package.
The results are presented as p values of the null hypothesis that
the slopes are the same in the kinetic experiments that are
compared.
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24. Köhn, M., Gutierrez-Rodriguez, M., Jonkheijm, P., Wetzel, S., Wacker, R.,
Schroeder, H., Prinz, H., Niemeyer, C. M., Breinbauer, R., Szedlacsek, S. E.,
and Waldmann, H. (2007) A microarray strategy for mapping the sub-
strate specificity of protein tyrosine phosphatase. Angew. Chem. Int. Ed.
Engl. 46, 7700 –7703

25. Sacco, F., Tinti, M., Palma, A., Ferrari, E., Nardozza, A. P., Hooft van
Huijsduijnen, R., Takahashi, T., Castagnoli, L., and Cesareni, G. (2009)
Tumor suppressor density-enhanced phosphatase-1 (DEP-1) inhibits the
RAS pathway by direct dephosphorylation of ERK1/2 kinases. J. Biol.
Chem. 284, 22048 –22058

26. Sun, H., Tan, L. P., Gao, L., and Yao, S. Q. (2009) High-throughput screen-
ing of catalytically inactive mutants of protein tyrosine phosphatases
(PTPs) in a phosphopeptide microarray. Chem. Commun. (Camb.) 14,
677– 679

27. Zhao, B. M., Keasey, S. L., Tropea, J. E., Lountos, G. T., Dyas, B. K., Cherry,
S., Raran-Kurussi, S., Waugh, D. S., and Ulrich, R. G. (2015) Phosphoty-
rosine substrate sequence motifs for dual specificity phosphatases. PLoS
One 10, e0134984 –19

28. Tinti, M., Nardozza, A. P., Ferrari, E., Sacco, F., Corallino, S., Castagnoli,
L., and Cesareni, G. (2012) The 4G10, pY20 and p-TYR-100 antibody
specificity: profiling by peptide microarrays. N. Biotechnol. 29, 571–577

29. Vacic, V., Iakoucheva, L. M., and Radivojac, P. (2006) Two Sample Logo: a
graphical representation of the differences between two sets of sequence
alignments. Bioinformatics 22, 1536 –1537

30. Brandt, B. W., Feenstra, K. A., and Heringa, J. (2010) Multi-Harmony:
detecting functional specificity from sequence alignment. Nucleic Acids
Res. 38, W35–W40

31. Feenstra, K. A., Pirovano, W., Krab, K., and Heringa, J. (2007) Sequence
harmony: detecting functional specificity from alignments. Nucleic Acids
Res. 35, W495–W498

32. Ye, K., Feenstra, K. A., Heringa, J., Ijzerman, A. P., and Marchiori, E. (2008)
Multi-RELIEF: a method to recognize specificity determining residues
from multiple sequence alignments using a Machine-Learning approach
for feature weighting. Bioinformatics 24, 18 –25

33. Crooks, G. E., Hon, G., Chandonia, J.-M., and Brenner, S. E. (2004) We-
bLogo: a sequence logo generator. Genome Res. 14, 1188 –1190

34. Tinti, M., Kiemer, L., Costa, S., Miller, M. L., Sacco, F., Olsen, J. V., Car-
ducci, M., Paoluzi, S., Langone, F., Workman, C. T., Blom, N., Machida, K.,
Thompson, C. M., Schutkowski, M., Brunak, S., et al. (2013) The SH2
Domain Interaction Landscape. Cell Reports 3, 1293–1305

35. Sonego, P., Kocsor, A., and Pongor, S. (2008) ROC analysis: applications to
the classification of biological sequences and 3D structures. Brief Bioin-
form. 9, 198 –209

36. Fundel, K., and Zimmer, R. (2006) Gene and protein nomenclature in
public databases. BMC Bioinformatics 7, 372

37. Calderone, A., Castagnoli, L., and Cesareni, G. (2013) mentha: a resource
for browsing integrated protein-interaction networks. Nat. Methods 10,
690 – 691

38. Ceol, A., Chatr Aryamontri, A., Licata, L., Peluso, D., Briganti, L., Perfetto,
L., Castagnoli, L., and Cesareni, G. (2010) MINT, the molecular interac-
tion database: 2009 update. Nucleic Acids Res. 38, D532–D539

39. Jia, Z., Barford, D., Flint, A. J., and Tonks, N. K. (1995) Structural basis for
phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B.
Science 268, 1754 –1758

40. Gross, S., Blanchetot, C., Schepens, J., Albet, S., Lammers, R., den Hertog,
J., and Hendriks, W. (2002) Multimerization of the protein-tyrosine phos-
phatase (PTP)-like insulin-dependent diabetes mellitus autoantigens IA-2
and IA-2� with receptor PTPs (RPTPs). Inhibition of RPTP� enzymatic
activity. J. Biol. Chem. 277, 48139 – 48145

41. Tomizaki, K. Y., Usui, K., and Mihara, H. (2010) Protein-protein interac-
tions and selection: array-based techniques for screening disease-associ-
ated biomarkers in predictive/early diagnosis. FEBS J. 277, 1996 –2005

42. Lizcano, J. M., Deak, M., Morrice, N., Kieloch, A., Hastie, C. J., Dong, L.,
Schutkowski, M., Reimer, U., and Alessi, D. R. (2002) Molecular basis for
the substrate specificity of NIMA-related kinase-6 (NEK6). Evidence that
NEK6 does not phosphorylate the hydrophobic motif of ribosomal S6
protein kinase and serum- and glucocorticoid-induced protein kinase in
vivo. J. Biol. Chem. 277, 27839 –27849

43. Thiele, A., Zerweck, J., and Schutkowski, M. (2009) Peptide arrays for
enzyme profiling. Methods Mol. Biol. 570, 19 – 65

44. Carducci, M., Perfetto, L., Briganti, L., Paoluzi, S., Costa, S., Zerweck, J.,
Schutkowski, M., Castagnoli, L., and Cesareni, G. (2012) The protein in-
teraction network mediated by human SH3 domains. Biotechnol. Adv. 30,
4 –15

45. Garaud, M., and Pei, D. (2007) Substrate profiling of protein tyrosine
phosphatase PTP1B by screening a combinatorial peptide library. J. Am.
Chem. Soc. 129, 5366 –5367

Substrate Specificity of Classical Tyrosine Phosphatases

MARCH 24, 2017 • VOLUME 292 • NUMBER 12 JOURNAL OF BIOLOGICAL CHEMISTRY 4951



46. Sarmiento, M., Puius, Y. A., Vetter, S. W., Keng, Y. F., Wu, L., Zhao, Y.,
Lawrence, D. S., Almo, S. C., and Zhang, Z. Y. (2000) Structural basis of
plasticity in protein tyrosine phosphatase 1B substrate recognition. Bio-
chemistry 39, 8171– 8179

47. Kovalenko, M., Denner, K., Sandström, J., Persson, C., Gross, S., Jandt,
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