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This study investigates the consequences of elevating sphin-
gomyelin synthase 1 (SMS1) activity, which generates the main
mammalian sphingolipid, sphingomyelin. HepG2 cells stably
transfected with SMS1 (HepG2-SMS1) exhibit elevated enzyme
activity in vitro and increased sphingomyelin content (mainly
C22:0- and C24:0-sphingomyelin) but lower hexosylceramide
(Hex-Cer) levels. HepG2-SMS1 cells have fewer triacylglycerols
than controls but similar diacylglycerol acyltransferase activity,
triacylglycerol secretion, and mitochondrial function. Treat-
ment with 1 mM palmitate increases de novo ceramide synthesis
in both cell lines to a similar degree, causing accumulation of
C16:0-ceramide (and some C18:0-, C20:0-, and C22:0-cer-
amides) as well as C16:0- and C18:0-Hex-Cers. In these experi-
ments, the palmitic acid is delivered as a complex with delipi-
dated BSA (2:1, mol/mol) and does not induce significant
lipotoxicity. Based on precursor labeling, the flux through SM
synthase also increases, which is exacerbated in HepG2-SMS1
cells. In contrast, palmitate-induced lipid droplet formation is
significantly reduced in HepG2-SMS1 cells. [14C]Choline and
[3H]palmitate tracking shows that SMS1 overexpression appar-
ently affects the partitioning of palmitate-enriched diacylglyc-
erol between the phosphatidylcholine and triacylglycerol path-
ways, to the benefit of the former. Furthermore, triacylglycerols
from HepG2-SMS1 cells are enriched in polyunsaturated fatty
acids, which is indicative of active remodeling. Together, these
results delineate novel metabolic interactions between glycer-
olipids and sphingolipids.

The sphingomyelin synthase (SMS)2 generates the main
mammalian sphingolipid, sphingomyelin (SM), by transferring

a phosphocholine group from phosphatidylcholine (PC) to cer-
amide and in the process produces diacylglycerols (DGs) (1, 2).
Thus, SMS controls the homeostasis of two key bioactive lipids,
ceramide and DG, and presents a point of convergence for glyc-
erolipid and sphingolipid metabolism.

Sphingolipids are a class of lipid molecules characterized by
the presence of an 18-carbon aliphatic chain called a sphingoid
base. Sphingosine and sphinganine are the main sphingoid
bases in mammalian cells. Sphinganine, a precursor for most
mammalian sphingolipids, is produced in the endoplasmic
reticulum (ER) from L-serine and palmitoyl-CoA by the action
of serine palmitoyltransferase (SPT). Sphinganine is then acy-
lated by ceramide synthases, a family of six acyltransferases
with distinct specificity for acyl-CoAs of particular chain
lengths, to form dihydroceramide. With the desaturation of the
4,5-carbon bond in the sphingoid base, dihydroceramide is
converted to ceramide (3) and then transferred from the ER to
the Golgi (4), where phosphorylcholine or a glucose group is
added to the primary hydroxyl of ceramide to produce SM or
glucosylceramide.

Glycerolipids, in turn, are structurally and metabolically a
distinct class of lipids, the synthesis of which begins with the
acylation of glycerol 3-phosphate with two acyl-CoA molecules
to form 1,2-diacylglycerol phosphate (phosphatidic acid). The
phosphate is then removed, generating DG, a key intermediate
in several lipid metabolic pathways. The acylation of DG by
acyl-CoA:diacylglycerol acyltransferase (DGAT) leads to the
formation of triacylglycerols (TG) (5–7). Alternatively, the
addition of a phosphobase (from CDP-choline or CDP-ethanol-
amine) to DG by the choline/ethanolamine phosphotransferase
1 (CEPT1) produces PC or phosphatidylethanolamine (PE), the
two main glycerophospholipids. There is evidence suggesting
that TG and phospholipid synthesis pathways utilize a common
pool of DG in a competitive manner. Decreased incorporation
of DG into TG, for example, is observed in proliferating cells
that have an increased necessity for phospholipids for mem-
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brane formation (8). Also, the direct inhibition of CEPT1 or the
genetic deletion of phosphoethanolamine cytidylyltransferase,
which catalyzes the formation of CDP-ethanolamine for PE
synthesis, has been shown to stimulate the synthesis of TG by as
much as 10-fold (8, 9). The overexpression of DGAT1, on the
other hand, has been shown to inhibit the synthesis of glycero-
phospholipids (10).

Despite the fact that SMS activity also influences DG home-
ostasis in the cells, the impact it has on glycerolipid metabolism
is unknown. Several studies in mice indicate that the rate of SM
synthesis influences TG synthesis and/or degradation (11, 12).
High fat diet-induced accumulation of TG in the liver, for
example, was substantially reduced in the acid sphingomyeli-
nase knock-out mouse model, where stimulation of sphingo-
lipid synthesis was exacerbated by the disruption of the
negative feedback regulatory mechanisms (11). In contrast,
reduction in hepatic SM levels was found to correlate with
increased TG accumulation (12).

SM synthase exists in two isoforms: the Golgi-localized
SMS1 and the plasma membrane-associated SMS2. To directly
test the relationship between SMS1 and glycerolipid synthesis,
we stably overexpressed SMS1 in HepG2 cells. We show that
HepG2-SMS1 cells exhibit an attenuated rate of TG synthesis,
especially in the presence of excess palmitic acid. The chronic
up-regulation of SMS1 activity appears to activate PC deple-
tion-sensing mechanisms at the Golgi and to stimulate the Ken-
nedy pathway of de novo PC synthesis, thus diverting DG pre-
cursors away from DGAT and TG synthesis.

Results

HepG2-SMS1 Cells Produce Functionally Active SMS1—The
full-length human V5-tagged SMS1 was stably transfected in

HepG2 cells, creating the HepG2-SMS1 cell line. Similarly, the
empty vector was used to make the HepG2-EV control cell line.
Indirect immunofluorescence confirmed that SMS1 was over-
expressed and that the protein co-localized with the Golgi
marker WGA (Fig. 1A). To determine whether the protein was
functionally active, in vitro enzymatic activity assay and in situ
labeling studies were done. The SMS1-overexpressing cells had
6-fold higher SMS activity than the HepG2-EV cells (Fig. 1B).
Labeling experiments with NBD-ceramide and with 3H- or
BODIPY�-labeled palmitic acid (precursor for the de novo sph-
ingolipid biosynthesis) also showed that HepG2-SMS1 cells
have elevated synthesis of SM (Fig. 1, C–E). The SMS1-overex-
pressing cells also had higher levels of SM, as compared with the
control cells, based on quantification of the total inorganic
phosphate following TLC separation (Fig. 1F). Surprisingly, the
levels of ceramide were similar in the two cell lines (data not
shown).

SMS1 Overexpression in Hepatic Cells Affects Hexosylcer-
amide (Hex-Cer) Homeostasis—To obtain a more comprehen-
sive picture of the changes in sphingolipid homeostasis evoked
by SMS1 overexpression, a mass spectrometry-based analysis
of SM, ceramide, and Hex-Cer was done. Several SM species
followed a trend of increase (Fig. 2A), but only for C22:0- and
C24:0-SM were the differences statistically significant. It
should be noted that liver produces mainly sphingolipids with
C22 and C24 chain lengths because of the high levels of Cers2
expression. With regard to Hex-Cer levels, the C18:1, C20:0,
C26:0, C16:0, and C24:1 were significantly lower in HepG2-
SMS1 cells (Fig. 2B).

In situ labeling with NBD-ceramide, which is known to local-
ize to the Golgi, indicated that there is a competition for avail-

FIGURE 1. Characterization of SMS1 protein expression and activity in HepG2 cells. The HepG2-SMS1 cell line stably overexpresses the human V5-tagged
SMS1 (HepG2-SMS1), whereas HepG2-EV is the empty vector control cell line. A, expression and subcellular localization of the V5-tagged SMS1 protein (green)
visualized by indirect immunofluorescence in permeabilized cells using antibody against the V5 tag. Hoechst 33258 (blue) and wheat germ agglutinin (WGA;
red) were used for staining of the nuclei and Golgi. B, SM synthase activity measured in vitro. C–E, in situ labeling of SM in live cells using NBD-ceramide (C),
[3H]palmitic acid (D), and BODIPY�-palmitic acid (E) as tracers. F, mass of SM measured by TLC separation of total lipid extract and quantification of inorganic
phosphate. Mean values � S.D. (error bars) are shown (n � 3 dishes/point). Results were confirmed in at least three independent experiments, and represen-
tative data are shown. *, p � 0.05; **, p � 0.01; ***, p � 0.001 according to Student’s t test.
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able ceramide between the SMS1 and GCS. As seen in Fig. 2C,
HepG2-SMS1 cells produced less NBD-glucosylceramide than
the control cells (Fig. 2C). Treatment of HepG2-SMS1 cells
with PDMP, a GCS inhibitor, blocked the formation of NBD-
glucosylceramide and increased the incorporation of the label
into NBD-SM (Fig. 2, D and E). Hence, SMS1 utilizes, at least in
part, the same pool of ceramide, as does GCS. These results also
suggest that the ceramide levels in the Golgi may be a rate-
limiting factor for SM synthesis.

Treatment with Palmitic Acid Leads to Increased Levels of
Ceramide and Hex-Cer—To increase the availability of cer-
amide in the cells we added palmitic acid, which is known to
stimulate the de novo ceramide synthesis (13). The palmitate
was supplemented at 1 mM final concentration. Following treat-
ment, cell viability was �90% at 18 h, indicating that palmitate-
associated toxicity was relatively low. As anticipated, the palmi-
tate treatment increased most ceramide species by 25–50%,
whereas C16:0-ceramide increased almost 100% (Fig. 3A). This
widespread effect is consistent with stimulation of SPT activity.
The augmented response seen in C16-ceramide levels probably
reflects the increased abundance of C16-palmitic acid in the
overall pool of fatty acids available for the ceramide synthases
(especially for CerS6, which has a preference for C16 palmitic
acid).

Next, we examined how palmitate addition affects the levels
of Hex-Cer (Fig. 3C) and SM (Fig. 3B). C16:0 Hex-Cer (and to a
lesser extent C18:0 Hex-Cer) increased, whereas C20:0- and
C22:0-Hex-Cer were not affected despite the observed elevated
abundance of the respective ceramide precursors. None of the
examined SM species increased following the palmitate treat-
ment. SMS1 overexpression did not alter the palmitic acid
effects on ceramide, Hex-Cer, and SM (data not shown). It
should be pointed out, however, that even for C16-ceramide,
the most abundant of all ceramide species, the amplitude of
palmitate-induced change was around 400 pmol/mg protein,
which is within the standard deviation of the measurement of
the respective C16-SM (�300 pmol/mg protein). Therefore,
mass measurements may have limited power in detecting
palmitate-induced changes in SM because of the high basal lev-
els of that lipid.

As an alternative approach, we compared the incorporation
of [3H]palmitic acid into ceramide and SM at low (0.1 mM) and
high (1 mM) palmitate concentrations, delivered at a constant
specific labeling. The labeling of ceramide in cells treated with 1
mM [3H]palmitic acid was 15 times higher than in cells treated
with 0.1 mM [3H]palmitate (i.e. 0.789 �Ci/mg protein versus
0.050 �Ci/mg protein). This confirms the potent stimulatory
effects of palmitate on SPT and the de novo ceramide synthesis.

FIGURE 2. Effect of SMS1 overexpression on SM and Hex-Cer levels and synthesis. A and B, quantification of sphingomyelin (A) and hexosylceramide (B)
species in total lipid extracts of HepG2-SMS1 and control cells by mass spectrometry. C, NBD-ceramide incorporation into glucosylceramide in control and
SMS1-overexpressing cells. D and E, effects of GCS inhibition using PDMP on the formation of NBD-glucosylceramide and NBD-SM. PDMP (25 �M) was added
1 h before the addition of NBD-ceramide, and cells were harvested at the indicated time points. Conversion of NBD-Cer to NBD-glucosylceramide or NBD-SM
was quantified using HPLC. Data are shown as mean values � S.D. (error bars) (n � 3 dishes/point). *, p � 0.05; **, p � 0.01; ***, p � 0.001 according to Student’s
t test. Results were confirmed in two independent experiments.
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Statistically significant increases were also seen for SM,
although these increases were somewhat smaller in magnitude
(i.e. 0.339 �Ci/mg protein versus 0.130 �Ci/mg protein, a 3-fold
difference).

Together, these data indicate that palmitate supplementa-
tion stimulates de novo synthesis and accumulation of cer-
amide. A portion of the newly synthesized ceramide can be
effectively converted to glucosylceramide and SM, although a
net increase in mass could be detected only for the former.

SMS1 Overexpression Affects the Ability of Cells to Accumu-
late TG—In hepatocytes, elevated fatty acid supply is known to
result in the formation of lipid droplets containing TG. We
used Oil Red-O (a fat-soluble dye that stains neutral lipids like
TG and esterified cholesterol) to visualize lipid droplet forma-
tion in HepG2-EV and HepG2-SMS1 cells. The control cells
were seen to contain some lipid droplets, even in the absence of
palmitate. As expected, the abundance of these lipid droplets
increased substantially after overnight incubation with 1 mM

palmitic acid (Fig. 4A). The HepG2-SMS1 cells, however, were
virtually devoid of any stained droplets and even after incuba-
tion with 1 mM palmitic acid had very few Oil Red-O-positive
droplets, as compared with the control cells (Fig. 4A). Measure-
ment of TG mass confirmed these differences in the TG accu-
mulation (Fig. 4B). Notably, the effects were TG-specific,

because the levels of total cholesterol (free and esterified) were
similar in the two cell lines (Fig. 4C).

To eliminate the possibility that these observations were an
artifact of the stable transfection, similar experiments were per-
formed in HepG2 cells transiently transfected with the overex-
pressing SMS1 construct. Western blotting analysis with
anti-V5 antibody confirmed overexpression of the V5-tagged
SMS1 (data not shown). This overexpression led to increased
SMS activity, as judged by the increased conversion of radiola-
beled [3H]palmitic acid into SM (Fig. 4D) in SMS1-overex-
pressing cells, and the effect was greater in cells treated with 1
mM palmitic acid. As seen with the stably transfected cells,
palmitate incorporation into TG in SMS1-overexpressing cells
was diminished both at the basal state and after treatment with
1 mM palmitic acid (Fig. 4, E and F).

Decreased TG Accumulation in HepG2-SMS1 Cells Is Not
Due to Impaired DGAT Activity or Increased Fat Export—Next,
we sought to identify the mechanism(s) responsible for the
diminished TG accumulation seen in HepG2-SMS1 cells.
Labeling experiments using BODIPY-palmitic acid (Fig. 5A)
confirmed that these cells have reduced incorporation of the
precursor into TG. To further explore more directly the effects
on the rate of TG synthesis, we assessed the activity of DGAT in
live cells using radioactive acyl-CoA as a donor, exogenously

FIGURE 3. Effect of palmitic acid on the levels of different sphingolipids. HepG2 cells were cultured for 18 h in the presence of either 1 mM palmitic acid
delivered as a BSA complex (2:1, mol/mol) or 0.5 mM BSA as a vehicle control. Total lipid extracts were prepared, and ceramide (A), SM (B), and Hex-Cer (C) species
were measured by mass spectrometry. Data are shown as mean values � S.D. (error bars) (n � 3 dishes/point). *, p � 0.05 according to Student’s t test. Results
were confirmed in two independent experiments.
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added DG as an acceptor substrate, and a permeabilization pro-
cedure that allowed for the quantification of the overt (associ-
ated with the cytosol) and latent (associated with the ER lumen)
DGAT activity. We tried using two different DG species as
acceptor substrates for DGAT, dipalmitoylglycerol and dio-
leoylglycerol (with the corresponding acyl-CoAs as donors),
but the former failed to yield reproducible and reliable results for
the latent component of DGAT activity (data not shown). This
may either indicate true substrate preference or be due to differ-
ences in the efficacy of substrate delivery to the luminal ER space,
attributable to the biophysical characteristics of the substrates.

The total, overt, and latent DGAT activities assessed using
dioleoylglycerol as an acceptor and [3H]oleoyl-CoA as a donor
were found to be similar in the HepG2-EV and HepG2-SMS1
cell lines (Fig. 5, D and E). This implies that SMS1 overexpres-
sion does not affect the active DGAT enzyme levels. Treatment
of HepG2-EV cells with 1 mM palmitic acid led to a 2-fold
increase in the latent but not overt DGAT activity. This proba-
bly reflects palmitate-related increases in the endogenous DGs
that are being acylated with the exogenously added radioactive

Acyl-CoA. However, the effect is not seen in HepG2-SMS1 cells
(Fig. 5F). This is consistent with the differences in the rates of
TG synthesis seen between HepG2-EV and HepG2-SMS1 cells
when BODIPY- or [3H]palmitate was used (Figs. 4B and 5A).

The levels of TG in the cell culture medium of HepG2-EV
and HepG2-SMS1 were also similar (Fig. 5B). Finally, analyses
of the oxygen consumption rates in intact cells also did not
reveal any differences between the two cell lines (Fig. 5C).
Together, these results ruled out the possibility that SMS1
overexpression interferes with the basal activity of DGAT, TG
secretion, or with the overall mitochondrial functions.

Evidence for Increased Fatty Acid Remodeling of TG in the
HepG2-SMS1 Cells—The fatty acid composition of TG in the
two lines was compared using a lipidomic approach (Table 1).
An S-plot obtained from orthogonal partial least squares-dis-
criminant analysis (OPLS-DA) of the data derived from cells
under basal conditions (Fig. 6A) and after palmitate stimulation
(Fig. 6B), showed that the abundance of TG containing polyun-
saturated fatty acids (i.e. 18:1/20:3/22:6, 18:3/18:3/22:4, 18:3/
20:3/22:5, 16:0/18:2/18:3, 16:0/18:1/20:4, and 16:0/18:1/22:5)
was between 2 and 4 times higher in the HepG2-SMS1 cells
compared with the HepG2-EV cells. Typically, polyunsaturated
fatty acids are not added to the glycerol backbone during the de
novo glycerophosphate synthesis but rather as a result of deacy-
lation/reacylation of either glycerophospholipids or TG. One
possible reason for elevated deacylation/reacylation of TG
could be a limited supply with DG precursor for the DGAT
pathway. Alternatively, studies in yeast and mammals have
indicated a possible connection between the TG deacylation/
reacylation and the de novo synthesis of glycerophospholipids,
suggesting that increased esterification of polyunsaturated fatty
acids into TG may be the purpose of enhanced de novo glycer-
olipid synthesis (14, 15).

Increased de Novo Synthesis of Phosphatidylcholine in
HepG2-SMS1 Cells—To directly assess the effects SMS1 has on
glycerophospholipid synthesis, we followed the incorporation
of radioactive palmitic acid in all major lipid classes. The advan-
tage of using this label (instead of glycerol or acetate) was 2-fold.
First, it allowed for simultaneously labeling TG, glycerophos-
pholipids, and sphingolipids. Second, it was more practical as a
tracer for the studies involving high and low palmitate concen-
trations. Cells were cultured in the presence of 0.1 or 1
mM non-labeled palmitic acid, mixed with the radioactive
[3H]palmitate (final specific labeling of 50 �Ci/mmol). Incor-
poration of the label into each lipid class was quantified after
TLC separation and elution of the lipids from the silica. As
shown earlier, the SMS1-overexpressing cells incorporate
[3H]palmitate into SM more readily than their control counter-
parts. The influx of label into SM is further increased upon
treatment with 1 mM palmitic acid (Fig. 7A). Labeling of TG was
also readily seen and increased almost 15-fold in the presence of
1 mM palmitate (Fig. 7B). Notably, as seen with the mass mea-
surements and Oil Red-O staining, this effect is significantly
reduced (by almost 50%) in the SMS1-overexpressing cells,
confirming that SMS1 overexpression suppresses the flux
through the TG pathway.

The treatment with 1 mM palmitic acid also led to increased
flux through the synthetic pathways of all glycerolipids that we

FIGURE 4. SMS1 overexpression attenuates the ability of cells to accumu-
late TG. A–C, HepG2-SMS1 and HepG2-EV cells were incubated with 1 mM

palmitic acid delivered as a BSA complex (2:1, mol/mol) or with vehicle control
(0.5 mM BSA) for 18 h. A, formation of lipid droplets visualized by Oil Red-O
staining. B and C, levels of TG (B) and total cholesterol (C) measured in total
lipid extracts as described under “Experimental Procedures.” Mean values �
S.D. (error bars) are shown (n � 3 dishes/point). D–F, HepG2 cells transiently
transfected with SMS1 or EV were incubated with 0.1 or 1 mM

3H-labeled
palmitic acid for 18 h. The specific labeling in each case was kept at 50 mCi/
mmol. Lipids were extracted and separated by TLC as described under “Exper-
imental Procedures.” D, radioactivity from the bands corresponding to SM
quantified by scintillation counting. E, representative scan for 3H-labeled TG
at 1 mM palmitic acid. F, radioactivity associated with TG determined by scin-
tillation counting. According to two-way analysis of variance, the main effects
of palmitate treatment and SMS1 overexpression on TG were statistically sig-
nificant. The interaction effect was not statistically significant. The results of
Bonferroni post-test analyses are indicated (***, p � 0.001; **, p � 0.01; *, p �
0.05). Results were confirmed in at least four independent experiments.
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measured (PC, PE, phosphatidylserine (PS), phosphatidic acid,
and DG) with a magnitude ranging from 2- to 3-fold (Fig. 7,
C–G). However, with the notable exception of PC, none of the

glycerophospholipids were affected by SMS1 overexpression
(Fig. 7, C–F). For PC, the rate of [3H]palmitate incorporation
was substantially higher in the HepG2-SMS1 cells, both at low

FIGURE 5. Effects of SMS1 overexpression on DGAT activity, TG secretion, and mitochondrial bioenergetics. HepG2 cells stably overexpressing the
human SMS1 or EV controls. A, de novo TG biosynthesis assessed using BODIPY�-labeled palmitic acid as a tracer (8 �M for 18 h). Levels of BODIPY�-TG were
quantified after TLC separation by scanning the plates using a Typhoon imager and normalizing the intensity of the TG bands to the intensity of the total lipid
extract. B, TG levels in conditioned medium (18 h) were measured following extraction with Dole’s reagent and separation on a TLC plate. C, OCRs of
HepG2-SMS1 and HepG2-EV cells. A mitochondrial respiration assay was done using an XF96 extracellular flux analyzer (Seahorse Biosciences). The culture
medium was serum-free and contained 10 mM glucose, 3 mM glutamine, and 1 mM pyruvate. Inhibitors (1.25 �M oligomycin, 1.0 �M FCCP, and 2.0 �M antimycin
A or 2.0 �M rotenone) were injected at the indicated time points to block different components of the electron transport chain. D and E, DGAT activity (total (D)
and overt and latent (E)) measured in permeabilized cells as described under “Experimental Procedures.” Latent activity was calculated as the difference
between total and overt activities. Mean values � S.D. (error bars) are shown (n � 3 dishes/point). F, effect of palmitic acid on DGAT activity. HepG2-EV or
HepG2-SMS1 cells were cultured for 18 h in the presence of either 0.5 mM BSA as a vehicle control or 1 mM palmitic acid delivered as a BSA complex (2:1,
mol/mol). Overt and latent DGAT activity was measured as described under “Experimental Procedures.” Results were confirmed in at least two independent
experiments, and representative data are shown. ***, p � 0.001 (A) or as indicated (F) according to Student’s t test. n � 3 dishes/point. Results were confirmed
in at least two independent experiments.
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and high palmitate concentrations (Fig. 7C). Mass measure-
ments confirmed that SMS1 cells have higher PC content (40%
more), whereas the levels of PE and PS are similar to those in
HepG2-EV controls (data not shown).

Together, these results show that whereas the elevated sup-
ply of exogenous palmitic acid leads to its increased incorpora-
tion into all lipids, the activity of SMS1 seemingly affects the
way that palmitate is partitioned among the different lipid
classes, favoring PC and SM at the expense of TG.

HepG2-SMS1 Cells Have an Enhanced Rate of PC Synthesis—
The observation that the PC mass and labeling were higher in
HepG2-SMS1 cells was unexpected because PC is a substrate in
the reaction catalyzed by SMS1. To independently study the
rate of PC synthesis and its conversion to SM, [14C]choline was
used. Incorporation of [14C]choline into PC and SM increased
gradually over time but was substantially lower for SM in both
SMS1-overexpressing and control cells (Fig. 8). This is consis-
tent with the role of PC as a donor of [14C]choline for SM. As
expected, the HepG2-SMS1 cells had higher label incorpora-
tion into SM as compared with the control HepG2-EV cells
(Fig. 8B). However, the SMS1-overexpressing cells also exhib-
ited elevated PC labeling (by 24 pCi/mg protein at 30 min and
by 30 pCi/mg protein at 1 h) than the control cells (Fig. 8A).
These results suggest that increased synthesis of SM in HepG2-
SMS1 cells probably leads to a compensatory activation of de
novo synthesis of PC, probably in the ER.

Discussion

The family of sphingomyelin synthases possesses the unique
ability to control the levels of two bioactive lipid metabolites,
DG and ceramide (16 –19). This fact has instigated several stud-

TABLE 1
Effect of SMS1 overexpression on TAG fatty acid composition in control conditions and in the presence of 1 mM palmitic acid
The identification of each TG lipid species is based on exact monoisotopic precursor mass, fragment ion information, and theoretical isotopic distribution.

m/za
Accepted

identificationb
Total carbon:
double bond

1 mM palmitic acid, HepG2-SMS1
versus HepG2-EV

Vehicle, HepG2-SMS1
versus HepG2-EV

-Fold
change p(corr)

-Fold
change p(corr)

970.7855 TG (18:3/20:3/22:5) TG (60:11) 11.1 0.997344 3.8 0.968865
972.8017 TG (18:1/20:3/22:6) TG (60:10) 7.2 0.995491 2.5 0.973176
944.7698 TG (18:3/18:3/22:4) TG (58:10) 6.2 0.996561 2.4 0.963495
948.8008 TG (18:1/18:4/22:3) TG (58:8) 4.5 0.994698 1.6 0.941047
924.8014 TG (16:0/18:1/22:5) TG (56:6) 4.2 0.997911 2.1 0.957018
898.7848 TG (16:0/18:1/20:4) TG (54:5) 3.8 0.997447 2.1 0.955878
894.7545 TG (16:0/18:3:20:4) TG (54:7) NDc ND 1.7 0.957635
926.8156 TG (16:0/18:1/18:2) TG (52:3) 2.9 0.989006 1.5 0.919795
950.8175 TG (18:3/20:1/20:3) TG (58:7) 2.7 0.986254 1.7 0.944278
948.8008 TG (18:1/18:4/22:3) TG (58:8) ND ND 1.7 0.941047
922.7857 TG (16:0/18:1/22:6) TG (56:7) 2.6 0.985647 1.4 0.917071
952.8328 TG (18:0/18:2/22:4) TG (58:6) 2.6 0.992549 1.6 0.931402
874.7859 TG (16:1/18:0/22:4) TG (56:5) 2.3 0.995110 ND ND
902.8155 TG (16:0/18:0/20:3) TG (54:3) 2.2 0.973230 1.1 0.801826
926.8173 TG (16:0/20:1/20:4) TG (56:5) 2.1 0.983169 2.0 0.919795
870.7542 TG (16:0/18:2/18:3) TG (52:5) 2.0 0.989413 1.8 0.949937
896.7698 TG (16:0/16:1/22:5) TG (54:6) 2.0 0.954632 1.4 0.878744
896.7707 TG (16:0/18:1/20:5) TG (54:6) 2.0 0.982693 1.7 0.96172
876.7998 TG (16:0/18:0/18:2) TG (54:2) 1.8 0.940230 1.2 0.804526
872.7705 TG (16:0/16:0/20:4) TG (52:4) 1.7 0.973257 1.2 0.871994
824.7703 TG (16:0/16:0/16:0) TG (48:0) 1.2 0.831157 ND ND
850.7859 TG (16:0/16:0/18:1) TG (50:1) 0.90 �0.648602 1.4 0.883765
822.7545 TG (16:0/16:0/16:1) TG (48:1) 0.53 �0.970125 1.2 0.824069
794.7232 TG (14:0/16:0/16:1) TG (46:1) 0.48 �0.984013 ND ND
848.7702 TG (16:0/16:0/18:2) TG (50:2) 0.42 �0.920163 ND ND
820.7388 TG (16:0/16:1/16:1) TG (48:2) 0.27 �0.954241 ND ND

a All TG were identified as ammonium adducts.
b sn-1, sn-2, and sn-3 fatty acid assignments are arbitrary.
c ND, not detected.

FIGURE 6. TG species distribution in SMS1 and control cells. HepG2 cells
were cultured for 18 h in the presence of either 0.5 mM BSA as a vehicle control
(upper panel) or 1 mM palmitic acid delivered as a BSA complex (2:1, mol/mol)
(lower panel) for 18 h. TG fatty acid composition measured by mass spectrom-
etry as described under “Experimental Procedures.” The graphs represent
S-plots of OPLS-DA of TG fatty acid composition and indicate the major fea-
tures that contributed to the group difference between HepG2-EV and
HepG2-SMS1 in each case. Data are the average of three replicates.
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ies utilizing transient overexpression to investigate the fate of
SMS-derived DG and the resulting functional implications.
SMS1, which is localized in the Golgi and is responsible for the
synthesis of the bulk of cellular SM, has been a particular focus.
These studies found that cellular homeostasis of DG is indeed
affected by the rate of SM synthesis, but the exact effects vary

depending on cell type. In some cases, SMS1-derived DG trig-
gered localized cellular responses, like PKD translocation to the
Golgi (20), whereas in other cells, DG was found to rapidly
reincorporate back into PC (21). The data presented here show
that in hepatocytes, the increased flux through the SMS1 path-
way has a profound effect on the overall lipid homeostasis,

FIGURE 7. Effects of SMS1 overexpression and palmitic acid on the synthesis of major lipid classes. HepG2-SMS1 and EV control cells were supplemented
with [3H]palmitic acid at low (0.1 mM) or high (1.0 mM) concentration for 18 h. The specific labeling in each case was kept at 50 mCi/mmol. Lipids were extracted
and separated by TLC as described under “Experimental Procedures.” Radioactivity from the individual bands was quantified by scintillation counting. A, SM;
B, TG; C, phosphatidylcholine; D, phosphatidylethanolamine; E, phosphatidylserine; F, phosphatidic acid; G, DG. According to two-way analysis of variance, a
strong statistically significant main effect of palmitate treatment was detected for all lipids. The main effects of SMS1 overexpression on TG, PC, and DG were
also statistically significant. A statistically significant interaction effect was seen for SM and TG. Results of Bonferroni post-test analyses are shown (*, p � 0.05;
**, p � 0.01; ***, p � 0.001). Results were confirmed in two independent experiments. Error bars, S.D.

FIGURE 8. Effect of SMS1 overexpression on the de novo synthesis of PC. HepG2-SMS1 and EV control cells were cultured in complete growth medium
supplemented with 0.3 �Ci/well radiolabeled [14C]choline chloride for the indicated periods of time. Lipids were extracted and separated by TLC as described
under “Experimental Procedures.” Radioactivity from the corresponding bands was quantified by scintillation counting. A, phosphatidylcholine; B, sphingo-
myelin. Data shown are the average � S.D. (error bars), n � 3 (*, p � 0.05). Results were confirmed in two independent experiments.
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including that of glycosphingolipids, glycerophospholipids, and
TG. The major observation reported here is that SMS1 activity
seemingly affects the partitioning of DG molecules into the TG
and glycerophospholipid synthetic pathways (Fig. 9). Because
SMS1 is localized in the trans-Golgi apparatus, whereas the
synthesis of DG for TG and PC/PE synthesis happens in the ER,
the SMS1 activity most likely affects DG partitioning indirectly.
The exact molecular mechanisms behind the SMS1 effects
are currently unknown. Several components have, however,
emerged. For one, PC is essential for membrane biogenesis and
cell survival; therefore, all mammalian cells have mechanisms
in place to detect even the smallest declines in PC levels (22).
Once engaged, these mechanisms lead to rapid activation of the
de novo PC synthesis. The known stimuli for initiating these
mechanisms involve products of PC degradation via phospho-
lipase D (i.e. phosphatidic acid), phospholipase A2 (i.e. arachi-
donic acid), or the putative PC-specific phospholipase C (i.e.
DG). Our studies suggest that chronic up-regulation of SMS1
activity can also cause activation of PC de novo synthesis as a
consequence of the increased consumption of PC in the Golgi.
Indicatively, one earlier study on SMS suggested that SMS
activity could account for many of the functions that have been
proposed for the PC-specific phospholipase C, given the similar
properties of the two enzymes (18). Second, the fatty acid com-
position of the DG substrate is known to influence the pathway
for the metabolic conversion of DG. Dipalmitoylglycerol, for
example, is a poor substrate for DGAT1, one of the two DGATs
known to synthesize TG (23), but is readily utilized by CEPT1
(24). Also in this study, although we did not analyze the fatty
acid composition of PC or PE, a shift was seen in the fatty acid
composition of TG (toward more unsaturated fatty acids and
less palmitate). In addition, one cannot completely exclude the
possibility that SMS1 may affect DGAT activity. In hepatocytes,
total DGAT is the sum of two distinct, biochemically defined
pools of activity: the overt or cytosolic activity and the latent
activity localized in the ER lumen (25, 26). Palmitate treatment
seems to increase the latent component in control cells but not

in HepG2-SMS1 cells. This difference between the two cell
lines may simply reflect the shift in the substrate utilization
pathway described above, resulting in fewer endogenous sub-
strates available for the reaction in HepG2-SMS1 cells; how-
ever, it is also possible that SMS1 induces changes in the inter-
acting partners of the DGAT enzymes and/or engenders
selective posttranslational modifications affecting active site
exposure to the ER lumen. At present, the enzyme accountable
for the latent DGAT activity is not clearly defined (27). Two
non-homologous proteins, DGAT1 and DGAT2, both of which
are integral ER proteins, contribute to total hepatic DGAT.
Some studies seem to suggest that DGAT1 may contribute to
both the latent and the overt activity, whereas the topology of
DGAT2 suggests that it contributes only to the overt activity
(28). Because DGAT1 is also the enzyme with a preference for
unsaturated fatty acids, it seems reasonable to investigate the
potential link between DGAT1 and SMS1 in follow-up studies.

We should point out that the concept of coordinated and
inverse regulation of glycerophospholipid and TG synthesis, via
competition for the available DG pool, is based on previous
studies done by others. A cornerstone of this concept is the
notion that the rate of phospholipid/TG synthesis is deter-
mined by the amount of DG substrate available from the enzy-
matic activities upstream of the DGAT and the CEPT1 and/or
selective substrate specificity of the enzymes (29). It has been
shown, for example, that enforced expression of CTP:phospho-
choline cytidylyltransferase 1 (CCT1), which is the first rate-
limiting step in de novo PC synthesis and provides the CDP-
choline substrate for CEPT1, stimulates PC biosynthesis while
reducing that of TG (8). In contrast, inhibition of CCT activity
diverts newly synthesized DG toward the TG synthetic pathway
and leads to TG accumulation (8). Similar correlations are seen
in vivo, because liver-specific deletion of CCT1 is associated
with the development of mild steatosis (31). Deletion of the
phosphoethanolamine cytidylyltransferase, which catalyzes the
rate-limiting step for PE synthesis and provides the CDP-etha-
nolamine substrate for CEPT1, has similarly been shown to
result in hepatic steatosis (8). Modulating the flux through the
TG pathways also can affect the rate of phospholipid synthesis,
and overexpression of DGAT1 was found to inhibit the synthe-
sis of glycerophospholipids (10), confirming that the DG pool
in the ER is shared between TG and glycerophospholipid
synthesis.

Another interesting metabolic interaction seen in our studies
is between SMS1 and Hex-Cer synthesis. The synthesis of Hex-
Cer occurs either in the Golgi (where the GCS is localized) or in
the ER (where the non-essential galactosylceramide synthase
resides). Our experiments seem to indicate that the overex-
pressed SMS1 acts on a pool of ceramide designated for GCS.
This is evidenced by the decline seen in the levels of Hex-Cer in
SMS1-overexpressing cells (based on mass spectrometry anal-
ysis and in situ labeling with NBD-ceramide, which is a Golgi-
targeted ceramide analog (32)). These observations are consis-
tent with earlier studies with PDMP (a GCS inhibitor) that
reported significant increases in SM levels in PDMP-treated
cells (33, 34). Also, recent studies with SMS1 knock-out mice
have shown them to have elevated glucosylceramide synthesis
(35).

FIGURE 9. Proposed mechanism for the SMS1 regulation of TG synthesis.
The figure illustrates the main pathways for glycerolipid and sphingolipid
synthesis and their respective localization in the ER and Golgi apparatus.
Chronic increases in SMS1 in the trans-Golgi generate a signal of enhanced
utilization of PC, resulting in the stimulation of PC synthesis in the ER via
CEPT1. As a result, the pool of DG substrate available for TG synthesis is dimin-
ished, causing a decline in TG synthesis. A change in the fatty acid composi-
tion of available DG substrate might also influence its metabolic conversion
toward PC rather than TG synthesis due to different substrate preferences of
CEPT1 and DGAT1 (see “Discussion”). Also shown are the two routes for utili-
zation of palmitic acid in sphingolipid and glycerolipid synthesis. CERS, cer-
amide synthase; DGK1, diacylglycerol kinase 1; GlcCer, glucosylceramide;
GPAT, glycero-3-phosphate acyltransferase; LPAT, lysophosphatidic acid acyl-
transferase; PA, phosphatidic acid; PAP, phosphatidic acid phosphatase.
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It is likely, however, that there are pools of ceramide available
only to GCS and not to SMS1. Unlike SM synthesis (which
occurs at the luminal surface of the trans-Golgi apparatus),
GCS appears to be more widely distributed, with substantial
amounts of synthesis detected also in the cytosolic face of the
heavy (cis/medial) Golgi apparatus subfraction (36). Also, the
pathways of ER-to-Golgi transport of ceramide utilized for
SMS1 and GCS are apparently different, with ceramide transfer
protein, CerT1, providing ceramide exclusively for SMS1 (37).
Finally, PDMP treatment also results in accumulation of cer-
amide, indicating that not all of the GCS-utilized ceramides
were immediately available to SMS1 (33) (data not shown).

Several seminal studies have shown that diets rich in satu-
rated fats stimulate the de novo ceramide synthesis in liver,
muscle, fat, and some other tissues (38). The consequent
increases in ceramide and glucosylceramide have been impli-
cated in the onset of insulin resistance, via either direct inhibi-
tory effects on the PI3K pathways engaged by the insulin recep-
tor (via ceramide) (39) or by interference with the lipid rafts (via
glucosylceramide) (40). The direct effects of palmitate on sph-
ingolipid metabolism, however, are far less clear. Our results
are consistent with observations made by others that palmitate
alone does indeed stimulate de novo ceramide synthesis. How-
ever, we also find that the increases seen in C16-ceramide sur-
pass in magnitude those for other ceramide species. This obser-
vation is in agreement with similar findings in endothelial cells
(41). It should be noted that we saw little palmitate-associated
toxicity in our system. This is in contrast to other studies, done
in the same cell line, which report that as much as 30% of the
cells undergo apoptosis in response to palmitic acid added at
concentrations as low as 0.75 mM (42, 43). One possible reason
for this discrepancy is differences in the method by which the
palmitate was delivered. In our studies, the fatty acid was deliv-
ered as a complex with delipidated BSA at a molar ratio of 2:1,
which guaranteed that all palmitate was bound to BSA. In com-
parison, Martínez et al. (42) used a palmitate/BSA ratio ranging
from 3:1 to 6:1, whereas Rojas et al. (43) used a molar ratio of 7:1
to reflect the correlations seen in vivo between adverse effects
and elevated free, non-albumin-bound fatty acid content (42).
Other studies that have also reported palmitate-associated tox-
icity have used DMSO as a delivery vehicle. DMSO is non-
physiological; hence, this delivery method is not comparable
with the BSA-mediated delivery. In conclusion, the findings
presented here contribute to better understanding of the bio-
chemical properties of SMS1 and reveal a novel metabolic
interaction between the sphingolipid and the glycerolipid syn-
thetic pathways.

Experimental Procedures

Materials

N-Hexanoyl-((N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ami-
no)-sphingosine, N-hexanoyl-sphingosine-1 phosphocholine,
and BODIPY� FL C16 (4,4-difluoro-5,7-dimethyl-4-bora-
3a,4a-diaza-s-indacene-3-hexadecanoic acid) were purchased
from Life Technologies, Inc. Bovine brain sphingomyelin, egg
phosphatidylcholine, phosphatidylethanolamine, phosphati-
dylserine, and 1,2-dioleoyl-sn-glycerol were purchased from

Avanti Polar Lipids (Alabaster, AL). Geneticin (G418) sulfate
and alamethicin were from Santa Cruz Biotechnology, Inc.
(Dallas, TX). Essentially fatty acid-free BSA, triolein, oleoyl-
coenzyme A lithium salt, Oil Red-O, and digitonin were pur-
chased from Sigma-Aldrich. TLC plates were from Waters
Corp. (Milford, MA). The total protein determination kit (DC
Protein Assay) was from Bio-Rad. All other reagents were from
Fisher.

Cloning of Full-length Human V5-tagged Sgms1

PCR-amplified sequence encoding the full-length human
SMS1 was cloned into pcDNA3.1/V5-His-TOPO vector con-
taining neomycin selection marker (Invitrogen). The resulting
SMS1-pcDNA3.1/V5-His-TOPO plasmid was used to transfect
HepG2 cells.

Cell Culture, Transfections, and Treatments

HepG2 cells obtained from ATTC (Manassas, VA) were
maintained in MEM (Invitrogen) supplemented with 10% FBS
and 1% penicillin/streptomycin in a humidified atmosphere of
95% air and 5% CO2 at 37 °C. For transient transfection exper-
iments, cells were grown to subconfluence in 6-well plates and
transfected with 2 �g/well of SMS1-pcDNA3.1/V5-His-TOPO
or empty vector (EV) control, using Trans IT 2020 (Mirus Bio
LLC, Madison, WI) following the manufacturer’s instructions.
For stable transfection, HepG2 cells were initially transfected
using FuGENE� HD transfection reagent (Promega, Madison,
WI), and stable clones were selected in growth medium con-
taining 2 mg/ml Geneticin (G418) under continuous pressure
for 3 weeks. Single cell colonies were established and expanded
in the presence of G418. The single cell colony with appropriate
subcellular localization and highest expression of SMS1 pro-
tein, as judged by indirect immunofluorescence, was chosen for
future experiments and referred to as HepG2-SMS1 cells. Cells
stably transfected with the empty vector (HepG2-EV) were
used as control.

To stimulate de novo synthesis of ceramide, HepG2-SMS1
and HepG2-EV control cells maintained in growth-selective
MEM (2 mg/ml G418) were grown to subconfluence in 6-well
plates and treated for 18 h with BSA vehicle or with 1 mM pal-
mitic acid delivered as a complex with BSA (2:1, mol/mol). For
these treatments, the L-serine concentration of MEM was
increased from 0.1 to 0.5 mM to ensure that serine levels are not
limiting in the SPT reaction.

Indirect Immunofluorescence

Cells were grown on coverslips to subconfluence and fixed
with 3.7% paraformaldehyde in PBS. After quenching the auto-
fluorescence with 50 mM NH4Cl in PBS, the cells were permea-
bilized with 0.2% Triton X-100 and then incubated with block-
ing buffer (0.5% BSA in PBS) for 1 h at room temperature.
Incubation of the cells with mouse monoclonal anti-V5 anti-
body (Invitrogen) was performed overnight at 4 °C, followed by
incubation with anti mouse FITC-conjugated secondary anti-
body (1 h at room temperature). Cells were counterstained
with 1 �g/ml rhodamine-labeled wheat germ agglutinin
(VectorLabs, Burlingame, CA) to visualize Golgi. Mounting

Role of Sphingomyelin Synthase in Diacylglycerol Partitioning

MARCH 24, 2017 • VOLUME 292 • NUMBER 12 JOURNAL OF BIOLOGICAL CHEMISTRY 5119



on slides was performed in DAPI-Vectashield mounting
medium (VectorLabs).

Labeling Experiments

HepG2-SMS1 and HepG2-EV cells maintained in growth-
selective MEM (2 mg/ml G418) were grown to subconfluence
in 6-well plates and labeled with various lipid precursors. In situ
labeling with NBD-Cer at a final concentration of 4 �M was
done as described previously (17). PDMP (25 �M), the inhibitor
of GCS, was added to the cell culture medium 1 h before the
fluorescent ceramide. The levels of NBD-ceramide and its met-
abolic products were measured using a high performance liquid
chromatograph equipped with a fluorescence detector. In situ
labeling with BODIPY� FL C16 was done in serum-deficient
medium containing 0.5 mM fatty acid-free BSA at a final con-
centration of 8 �M for 18 h. The BODIPY-labeled lipids were
separated as described below and analyzed using a Typhoon
imaging system. Labeling with [3H]palmitic acid ([9,10-
3H]palmitic acid; 30 – 60 Ci/mmol, American Radiochemical
Corp., St. Louis, MO) was done for 18 h. The [3H]palmitic acid
was mixed with cold palmitate and delivered to the cells as a
complex with BSA (2:1, mol/mol) at low (0.1 mM) or high (1
mM) concentrations, while maintaining the same specific label-
ing (50 �Ci/mmol). Cells were also labeled with [14C]choline
chloride ([methyl-14C]choline chloride, 50 – 60 mCi/mmol;
American Radiochemical Corp.) (0.3 �Ci/well) in complete
growth medium for different periods of time. Following treat-
ment, cells were harvested, and lipids were extracted in the
presence of cold carriers and analyzed as described below.
Radioactivity from individual bands was quantified by scintilla-
tion counting after scraping the silica off of the plate.

Lipid Extraction and Analyses

Phospholipids—Lipids were extracted from cells by the
method of Bligh and Dyer, modified as described previously
(44), and analyzed by thin layer chromatography on silica gel 60
plates (10 � 20 cm) using chloroform, methanol, triethylamine,
2-propanol, 0.25% potassium chloride (30:9:18:25:6, v/v/v/v/v)
as the developing solvent. The regions corresponding to SM,
PC, PS, and PE were sprayed with 50% sulfuric acid and incu-
bated at 190 –200 °C for 3.5 h. Inorganic phosphorus was quan-
tified according to the method of Kahovcová and Odavić (45).

Tri- and Diacylglycerols—Lipid extracts from cells were pre-
pared using chloroform/methanol (2:1, v/v). Extracts from the
cell culture medium were prepared using Dole’s reagent (iso-
propyl alcohol, n-heptane, 1 N sulfuric acid (40:10:1, v/v/v)). To
isolate DG and TG, the total lipid extracts were subjected to
thin layer chromatography on silica gel 60 plates (10 � 20 cm),
using chloroform/acetone/acetic acid (95.5:4:0.5, v/v/v) as the
developing solvent (46). The regions migrating with the tri-
oleoyl and dioleoyl standards (Avanti Polar Lipids, Inc., Alabas-
ter, AL) were scraped off of the plates, and lipids were eluted
from the silica using 2 ml of chloroform/methanol/water/acetic
acid (100:100:5:0.5, v/v/v/v). Elutes were dried under vacuum,
the lipids were dissolved in isopropyl alcohol, and the masses of
TG and DG were quantified using the Triglyceride-M kit
(Wako, Japan) following the manufacturer’s instructions.

Cholesterol—Total cholesterol (free and esterified) in whole
cell lipid extracts prepared as described for TG was determined
according to the method of Sperry and Webb (47).

Mass Spectrometry Analysis of Sphingomyelin, Ceramide, and
Hexosylceramide

The sphingolipid analysis was conducted by electrospray
ionization tandem mass spectrometry using an ABI 4000 qua-
drupole-linear ion trap mass spectrometer (48) with internal
standards from Avanti Polar Lipids (Alabaster, AL).

Ultrahigh Performance Supercritical Fluid Chromatography
and Mass Spectrometry Analysis of TG

Supercritical fluid chromatography experiments were per-
formed using a Waters Acquity UPC2 system (Milford, MA).
Experiments were carried out using an ACQUITY UPC2 HSS
C18 SB column (150 � 3.0 mm, 1.8 �m) at a temperature of
25 °C. Mobile phase A consisted of compressed CO2, and
mobile phase B consisted of 100% acetonitrile. The flow rate
was maintained at 1.2 ml/min with an injection volume of 0.5
�l. Backpressure was maintained at 1500 p.s.i. The elution gra-
dient was 10 – 40% mobile phase B in 10 min and hold at the
initial condition of 10% B for 1 min.

Mass spectrometry was performed using Xevo G2-S QTof
(Waters Corp., Milford, MA). The solvent flow was split using a
pre-back pressure regulator flow Upchurch cross 1/16 PEEK
splitter. CO2-miscible make-up solvent (0.5% NH4OH in meth-
anol), delivered by an HPLC 515 make-up pump (Waters
Corp.), was added at a flow rate of 0.2 ml/min and mixed with
the chromatographic effluent to aid ionization. A fraction of the
total flow was directed to the electrospray ionization source
through a transfer line, whereas the remaining mobile phase
was directed to the back pressure regulator PEEK connection.
The electrospray ionization source was operated in positive
ionization mode with capillary and cone voltages of �3 kV and
30 V, respectively. The source temperature, cone gas flow, des-
olvation temperature, and desolvation gas flow were set at
150 °C, 10 liters/h, 500 °C, and 600 liters/h, respectively. Data
were acquired in the range of 100 –1200 m/z. Data handling and
instrument control were performed with Masslynx version 4.1
(Waters Corp.). Multivariate data analysis and TG identifica-
tion were performed using Progenesis QI version 2.0 (Nonlin-
ear Dynamics, Newcastle, UK). Results were shown using the
S-plot for OPLS-DA.

DGAT Activity Assay

Measurement of overt and latent DGAT activity was per-
formed in permeabilized cells as described previously (49).
Briefly, for overt activity, cells were trypsinized, washed, and
permeabilized by incubating on ice for 30 min in artificial “cyto-
skeleton” medium containing 30 �g/ml digitonin. Aliquots
were taken and subsequently incubated with alamethicin (20
�g/ml) for 30 min on ice to expose the remaining DGAT activ-
ity found on the luminal side of the ER (known as latent). After
removing all detergents, cells were placed in Tris-HCl reaction
buffer (pH 7.4) containing 10 mM MgCl2 and 250 mM sucrose,
500 �M 1,2-dioleoylglycerol or 1,2-dipalmitoylglycerol, BSA
(2.5 mg/ml), and 0.6% DMSO. The mixtures were incubated at
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37 °C for 5 min in a heating block. The reaction was then initi-
ated by the addition of oleoyl-[1-14C]CoA or palmitoyl-[1-
14C]CoA (American Radiochemical Corp.) (50 �M, specific
activity of 1 mCi/mmol). Following a 5-min incubation, the
reaction was stopped by the addition of 1.5 ml of isopropyl
alcohol/n-heptane/water (80:20:2, v/v/v). After a 5-min incuba-
tion at room temperature, 1 ml of heptane and 0.5 ml of water
were added, and the tubes were vortexed. Phases were allowed
to separate, and the organic layer was removed and washed
twice with 2 ml of 0.5 N sodium hydroxide/ethanol/water (10:
50:50, v/v/v) (30). Aliquots from the final organic layer were
taken and mixed with scintillation fluid, and radioactivity was
quantified using a scintillation counter.

Oil Red-O Staining of Cultured Cells

Cells grown on coverslips were washed three times with PBS
and fixed for 30 min at room temperature in freshly prepared
3.7% formaldehyde solution in PBS. After several washes, cells
were incubated for 20 min with 0.2% Oil Red-O in 60% isopro-
pyl alcohol, followed by brief contrastaining with hematoxylin.
Coverslips were then mounted using Aqua-Mount� mounting
medium (Lerner Laboratories, Pittsburgh, PA).

Mitochondrial Respiration Assay

Mitochondrial function was analyzed using the Seahorse XF
Cell Mito Stress Test Kit and XF96 extracellular flux analyzer
(Seahorse Bioscience), following the manufacturer’s instruc-
tions. Briefly, cells were seeded in 96-well plates, and assays
were performed 2 days latter in serum-free culture medium
containing 10 mM glucose, 3 mM glutamine, and 1 mM pyruvate.
Inhibitors of the electron transport chain proteins (1.25 �M

oligomycin, 1.0 �M FCCP, and 2.0 �M antimycin A or 2.0 �M

rotenone) were injected at the indicated time points. Meas-
urements of oxygen consumption rate (OCR) were taken at
the indicated times (n � 6 – 8). Analyses were performed
with Wave software and XF Report Generators (Seahorse
Bioscience).
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