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Abstract

Background—Several cluster randomized trials are underway to investigate the implementation 

and effectiveness of a universal test-and-treat strategy on the HIV epidemic in sub-Saharan Africa. 

We consider nesting studies of pre-exposure prophylaxis (PrEP) within these trials. PrEP is a 

general strategy where high risk HIV- persons take antiretrovirals daily to reduce their risk of 

infection from exposure to HIV. We address how to target PrEP to high risk groups and how to 

maximize power to detect the individual and combined effects of universal test-and-treat and PrEP 

strategies.

Methods—We simulated 1000 trials, each consisting of 32 villages with 200 individuals per 

village. At baseline we randomized the universal test-and-treat strategy. Then after three years of 

follow-up, we considered four strategies for targeting PrEP: (i) all HIV- individuals who self-

identify as high risk, (ii) all HIV- individuals who are identified by their HIV+ partner 

(serodiscordant couples), (iii) highly connected HIV- individuals, and (iv) the HIV- contacts of a 

newly diagnosed HIV+ individual (a ring-based strategy). We explored two possible trial designs, 

and all villages were followed for a total of seven years. For each village in a trial, we used a 

stochastic block model to generate bipartite (male-female) networks and simulated an agent-based 

epidemic process on these networks. We estimated the individual and combined intervention 

effects with a novel targeted maximum likelihood estimator, which used cross-validation to data-

adaptively select from a pre-specified library the candidate estimator that maximized the efficiency 

of the analysis.

Results—The universal test-and-treat strategy reduced the three-year cumulative HIV incidence 

by 4.0% on average. The impact of each PrEP strategy on the four-year cumulative HIV incidence 

varied by the coverage of the universal test-and-treat strategy with lower coverage resulting in a 

larger impact of PrEP. Offering PrEP to serodiscordant couples resulted in the largest reductions in 

HIV incidence (2% reduction), and the ring-based strategy had little impact (0% reduction). The 

joint effect was larger than either individual effect with reductions in the seven-year incidence 
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ranging from 4.5% to 8.8%. Targeted maximum likelihood estimation, data-adaptively adjusting 

for baseline covariates, substantially improved power over the unadjusted analysis, while 

maintaining nominal confidence interval coverage.

Conclusions—Our simulation study suggests that nesting a PrEP study within an ongoing trial 

can lead to combined intervention effects greater than those of universal test-and-treat alone and 

can provide information about the efficacy of PrEP in the presence of high coverage of treatment 

for HIV+ persons.
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(PrEP); targeted maximum likelihood estimation (TMLE)

Introduction

Despite the ongoing scale-up of antiretroviral therapy, an estimated 2 million people became 

infected with HIV and 1.2 million died of AIDS-related illnesses in 2014.1 Mounting 

evidence suggests that early HIV diagnosis combined with immediate antiretroviral therapy 

could slow the spread of HIV.2;3 In particular, the TEMPRANO and START trials reported 

that early treatment initiation (regardless of disease stage) resulted in improved health 

outcomes for HIV+ people.4;5 Furthermore, the HPTN052 study confirmed that sustained 

antiretroviral therapy sharply reduces the risk of HIV transmission between serodiscordant 

couples.6

Synthesizing these data with prior studies, the WHO recently recommended antiretroviral 

therapy for all persons living with HIV regardless of clinical stage and at all CD4 levels.3 

These recommendations are in line with the UNAIDS 90-90-90 cascade target: 90% of all 

HIV+ people know their status, 90% of those with known HIV+ status are on sustained 

antiretroviral therapy, and 90% of those on antiretroviral therapy are virally suppressed.7 

Both organizations are calling for implementation of a universal test-and-treat strategy: early 

HIV diagnosis and immediate antiretroviral therapy initiation for all HIV+ people. Such a 

strategy is expected to not only preserve the health of HIV+ people but also protect their 

partners and children.4–6;8;9

At the time of the WHO and UNAIDS guidelines, four cluster randomized trials were 

underway to investigate the population-level impact of universal test-and-treat. Specifically, 

the ANRS12249 TasP trial is ongoing in South Africa (NCT01509508);10 the BCPP trial in 

Botswana (NCT01965470);11 the HPTN071 PopART trial in South Africa and Zambia 

(NCT01900977);12 and the SEARCH trial in Uganda and Kenya (NCT01864603).13 These 

studies are cluster randomized trials, wherein the unit of randomization are communities or 

villages. The primary outcome of HIV incidence captures not only the direct effect of the 

intervention at the individual-level, but also indirect and spillover effects among individuals 

within a cluster.

In light of the recent recommendations, several questions arise regarding the relevance and 

power of these studies. These trials will provide estimates of the population-level effect of 
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universal test-and-treat on HIV incidence as well as other health, economic and educational 

outcomes. Furthermore, these trials will provide information on how best to implement 

universal test-and-treat in resource-limited settings as well as guidance on the feasibility and 

sustainability of the strategy in diverse contexts. However, as countries embrace the new 

WHO guidelines, the control arm for each of these trials will more closely resemble the 

intervention arm. This change in standard of care will attenuate the randomized effects and 

threaten statistical power. Finally, it is unknown whether universal test-and-treat alone is 

sufficient; once the UNAIDS 90-90-90 target has been reached, what other strategies will be 

needed to achieve 0 new infections?

In this paper, we consider adding targeted pre-exposure prophylaxis (PrEP) to an ongoing 

test-and-treat trial. PrEP refers to the provision of antiretroviral therapy to high risk HIV- 

people to reduce risk of infection from exposure to HIV. Recent studies have indicated that 

PrEP can sharply reduce HIV transmission when taken regularly.14–17 Formal evaluation of 

PrEP in the context of universal test-and-treat is especially pressing given the WHO 

guidelines, recommending PrEP as an “additional prevention choice for people at 

‘substantial risk’”.3 Using a network-based approach to simulation, we consider (i) targeting 

PrEP to people at substantial risk; (ii) the impact of adding a targeted PrEP strategy to an 

ongoing cluster randomized trial; and (iii) the best design and analysis to maximize power to 

detect the individual and joint effects of test-and-treat and PrEP.

Methods

Targeted PrEP strategies

Ideal candidates for PrEP are HIV- individuals who are at high risk of acquiring HIV. We 

consider four strategies for targeting PrEP:

• On-demand: HIV- individuals who self-identify as being high risk

• Couples: HIV- individuals who are identified by their HIV+ partner

• Degree: HIV- individuals who report having 2+ partners

• Ring: HIV- partners of a newly diagnosed HIV+ individual.

The feasibility, cost and acceptability of each strategy will vary by epidemiological context. 

On-demand PrEP relies on measuring demographic characteristics and providing PrEP 

education to these key populations or vulnerable groups (e.g. young women18). As a result, 

implementation of On-demand PrEP may not require any additional data collection, but may 

also be poorly targeted. There is strong evidence that Couples PrEP reduces the HIV 

transmission when adherence is high.14–17 This strategy could be implemented, for example, 

in the SEARCH trial where serodiscordant couples are identified through annual 

community-based testing programs.19;20 Degree PrEP is in line with the 2014 Clinical 

Practice Guidelines21 and also relies on self-report. Misreporting the number of sexual 

partners could result in poor targeting. Ring PrEP is inspired by the recent success of the 

vaccine effectiveness trial against Ebola Virus Disease in Guinea.22 This approach requires 

contact tracing or identification (at least in part) of the underlying sexual networks.23 Both 

Couples and Ring PrEP are expected to have the greatest impact if the index case is detected 
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during the acute and early phases of infection when transmission rates are the highest.24 As 

a result, these targeting strategies fit well within ongoing test-and-treat trials, where 

population-wide testing is regularly occurring.19;20

Trial design

To investigate the impact of each PrEP strategy, we simulate 1000 cluster randomized trials. 

In each trial, there are 32 villages (experimental units) with 200 individuals each. At 

baseline the test-and-treat assignment is randomized among villages with balanced 

allocation: 16 intervention and 16 control. We parameterize coverage as the proportion of 

village members who would successfully complete the care cascade (testing, treatment, 

retention and adherence) for antiretroviral therapy or PrEP, as appropriate. The test-and-treat 

intervention provides universal eligibility for antiretroviral therapy at a high coverage: 85% 

of HIV+ patients on treatment and suppressed. To capture the evolving landscape of HIV 

prevention and to reflect baseline trial data,3;25–27 the test-and-treat control arm also 

provides universal eligibility for antiretroviral therapy, but with lower coverage: 55% of HIV

+ patients on treatment and suppressed.

After three years of follow-up, we modify the trial to account for uptake of the WHO 

guidelines.3 Specifically, we consider a second randomization to investigate the effect of a 

targeted PrEP strategy versus the standard of care. We explore two trial designs: Design 1 

randomizes a given PrEP strategy within the test-and-treat intervention arm (8 targeted PrEP 

and 8 standard of care, total); Design 2 ramps up coverage of antiretroviral therapy in the 

test-and-treat control arm from 55% to 85% and randomizes the PrEP strategy within each 

test-and-treat trial arm separately (16 targeted PrEP and 16 standard of care, total). In both 

designs, we assume high coverage in the PrEP intervention arm: 85% of all individuals who 

are eligible under a given strategy are on PrEP and adherent. To reflect the ongoing trials, 

the standard of care for PrEP is 0% coverage. If in the future PrEP were regularly offered, 

the control arm as the standard of care would reflect this change in eligibility and therefore 

coverage. This complexity, however, is ignored here. All villages are followed for four 

additional years after the second randomization.

Designs 1 and 2 are shown in Figures 1 and 2, respectively. The first design might be 

favored when resources prohibit simultaneous scale-up of both antiretroviral therapy and 

PrEP. The latter design reflects the recent modifications to the SEARCH trial*.28 Both 

designs constitute a sequentially randomized trial, wherein the units (villages) are 

randomized first at baseline and subsequently at follow-up year three. Unlike a sequential 

multiple assignment randomized trial,29 however, the second randomization is not adaptive – 

it does not depend on the outcomes in the first phase. Design 2 is similar to a 2x2 factorial 

design;30;31 all the relevant combinations of the treatment are present and the effect of 

individual components and their interactions can be examined. However, unlike a standard 

factorial design, the second experimental condition (PrEP) is introduced part way through 

the trial.

*We note SEARCH is a pair-matched, two-phase trial with six years of total follow-up.28
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Network generation

For each village in a trial, we generate an underlying sexual network with a degree-

corrected, bipartite (female/male) stochastic block model.32 Each individual (node) has an 

expected number of partners (degree) and belongs to a block. An individual’s degree is 

distributed according to a powerlaw with exponent 2.5. Block structure represents the sexual 

mixing patterns among discrete demographic groups. The probability of a connection (edge) 

between two individuals depends on their expected number of partners and their 

probabilities of connecting within or across blocks. Our structure is specified to create three 

blocks where relationships mainly occur within block pairs, and two blocks that mix heavily 

with others. A schematic of the block matrix and the mixing diagram are in Figure 3, and 

further details are in the Supplementary Material.

Epidemic dynamics

For each village in a trial, we simulate an infectious spread on the network with a 

susceptible-infected-recovered compartmental model.33 We select time steps of one year to 

aid in interpretation. At each time step, an HIV+ individual could infect each of his/her 

susceptible partners (degree infectivity). The probability of transmission depends on the 

infectiousness of the HIV+ individual and the susceptibility of his/her HIV- partner. We 

model the probability that an HIV+ individual is in the acute phase and thereby highly 

infectious24 with an independent Bernoulli process. We assume antiretroviral therapy 

reduces the risk of an HIV+ individual’s infecting others at each time step by 90%.6 We also 

assume that 10% of the HIV+ population have a low viral load without treatment and their 

risk of infecting others is reduced by 90%.34–36 Finally, we assume high adherence to PrEP, 

reducing susceptibility by 90% in both men and women in heterosexual relationships.14–17

To initiate the epidemic, we randomly select 10% of village members to be infected. The 

infectious process then spreads until reaching an average pre-trial prevalence of 25%. We 

then begin the trial and generate the counterfactual outcomes under the treatment arms 

(described above). We also include a time-lag between treatment eligibility and uptake with 

an independent Bernoulli process. To reflect ongoing HIV prevention and treatment efforts, 

55% of HIV+ individuals are assumed to be on antiretroviral therapy and suppressed prior to 

the study start.25–27 Full Python code to generate networks and simulate the epidemic are 

given in Staples.37

Causal effects

Let A1 be an indicator of the first randomized assignment with A1 = 1 for universal test-

and-treat with high coverage and A1 = 0 for universal test-and-treat with lower coverage. 

Similarly, let A2 indicate the second randomization with A2 = 1 for PrEP with high 

coverage and A2 = 0 for standard of care PrEP. We denote the joint treatment assignment as 

A = (A1, A2). As outlined in Table 1, the proposed trials allow for effect estimation of 

various treatment combinations.

First, we can estimate the effect of test-and-treat with high coverage (A1 = 1) compared to 

lower coverage (A1 = 0) on the three-year cumulative HIV incidence from study start to year 

three. This “universal test-and-treat before PrEP” effect estimate is based all 32 villages. We 
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can also estimate the effect of a given PrEP strategy with high and sustained coverage of 

test-and-treat on the four-year cumulative incidence from study year three to study 

termination. This comparison utilizes 16 villages: 8 intervention A = (1,1) and 8 control A = 

(1,0). Within Design 2, we can estimate the PrEP effect with initially lower and then scaled-

up coverage of test-and-treat on the four-year cumulative incidence; this comparison utilizes 

16 villages: 8 intervention A = (0,1) and 8 control A = (0, 0). Also within Design 2, we can 

estimate the “main”30;31 PrEP effect on the four-year incidence. This is the effect of targeted 

PrEP versus the standard of care averaging over the test-and-treat arms and utilizes all 32 

villages: 16 intervention A2 = 1 and 16 control A2 = 0. We can estimate the analogous test-

and-treat effects (within and collapsing over PrEP arms) on the seven-year cumulative 

incidence. Finally, with both designs, we can estimate the joint effect of high coverage of 

both test-and-treat and PrEP A = (1,1) versus (initially) low coverage of test-and-treat A = 

(0, 0) on the seven-year incidence.

We define these effects as contrasts between counterfactual outcomes.38;39 Let A* be the 

treatment indicator, equaling 1 for the relevant intervention combination and 0 for the 

relevant control combination. For example, for the PrEP effect within the test-and-treat 

intervention arm, A* would equal 1 for high coverage of both test-and-treat and PrEP and 0 

for high coverage of only test-and-treat. Further let Yk(a*) represent the counterfactual 

cumulative incidence that would have been observed for village k if possibly contrary-to-fact 

the village received treatment combination A* = a*. The average difference in these 

counterfactual outcomes captures the effects of interest. We focus on the sample average 

treatment effect: 40–45

where k = {1,…, K} indexes the villages with the relevant treatment combinations. For 

example, the PrEP effect within the test-and-treat intervention arm is the average difference 

in the counterfactual four-year cumulative incidence with high coverage of test-and-treat and 

PrEP versus high coverage of test-and-treat only for the K = 16 villages with the relevant 

treatment combinations. Using the sample effect obviates the need to assume the existence 

of and generalization to some hypothetical target population of villages. Of course, we only 

observe the counterfactual outcome corresponding to the observed treatment history. The 

observed outcome Yk equals the counterfactual outcome Yk(a*) when village k receives the 

treatment combination Ak = (a1, a2) corresponding to A* = a*. Finally, let Wk denote the set 

of baseline covariates.

Estimation and inference

Since our design is a two-phase randomized trial, the unadjusted estimator – the difference 

in the average outcomes among intervention units and the average outcomes among control 

units – provides an unbiased estimate of the treatment effect:
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where k = {1,…, K} indexes the villages with the relevant treatment combinations. When 

baseline characteristics predict the outcome, this simple difference-in-means estimator can 

be inefficient as it fails to adjust for measured covariates. In general, adjusting for baseline 

covariates during the analysis can reduce variance without creating bias, even in small 

trials.46–51

We compare the unadjusted estimator with targeted maximum likelihood estimation, a 

general method for the construction of double robust, semi-parametric, efficient substitution 

estimators.39;45 Briefly, the algorithm updates an initial estimator of the expected outcome, 

given the treatment assignment and covariates (Y|A*, W), with information in the known 

or estimated treatment mechanism ℙ(A*|W). This targeting step is used to achieve the 

optimal bias-variance trade-off for the parameter of interest and to solve the efficient score 

equation. A point estimate is given by the average difference in the targeted predictions:

where again k = {1,…, K} indexes the villages with the relevant treatment combinations and 

where 𝔼̂*(Y|A*,W) denotes a targeted estimate of the conditional mean outcome.

With few independent units (villages), we are limited to the size of the adjustment set (i.e. 

variables included in the outcome regression model or in estimation of the known treatment 

mechanism). Therefore, we apply the targeted maximum likelihood estimator described in 

Balzer et al.,52 to select from a pre-specified library the candidate estimator that maximizes 

precision. We consider the following individual-level candidate adjustment variables:

• Nothing

• Demographic risk group: indicator of belonging to the high risk block

• Degree: number of partners

• Number of partners (network neighbors) infected at baseline.

We also include the following village-level candidate adjustment variables:

• Village HIV prevalence at baseline

• Assortativity: degree-degree correlation taken over all network connections 

(edges)

• Number of components: number of distinct groups with no connections (edges) 

between members of different groups.

Here, “baseline” refers to study year zero for the test-and-treat and joint effects and to study 

year three for the PrEP effects. Our candidates include a mix of variables that are fairly easy 
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to collect (demography, degree, village prevalence), are more difficult (number of partners 

infected, assortativity), and possibly unknowable (number of components). We note that 

measurement of a full sexual23 or social13 contact network would allow for adjustment for 

potentially very predictive covariates.53;54

Both the unadjusted estimator and the targeted estimator are asymptotically linear; their 

limiting distributions are normal with mean zero and variance given by the variance of their 

influence curves (Section 4.2 of Balzer et al.45). To account for limited numbers of 

independent units in these simulations, the Student’s t-distribution is used in place of the 

standard normal28;55;56 when constructing Wald-type 95% confidence intervals and testing 

the null hypothesis of no average effect for the study units. To the best of our knowledge, 

this is the first application of the hierarchical targeted maximum likelihood estimator, 

proposed in Balzer et al.,57 to make full use of individual-level data when estimating the 

cluster-level effect. Further details are given in the Supplementary Material, and full R code 

is available in Balzer.58

Results

Our main simulation results are summarized in Table 2. We focus on the test-and-treat effect 

before PrEP, the PrEP effects and the joint effect. Additional results are given in the 

Supplementary Material. For each effect, we show the average cumulative HIV incidence for 

each intervention and control scenario and the average value of the sample effect across 

1000 simulated trials. For estimator performance, we give the mean squared error, the 95% 

confidence interval coverage, and the attained power. For simplicity, we only present the 

results from Design 1 if they differ meaningfully from Design 2.

The test-and-treat intervention reduces the cumulative incidence in the first three years of the 

trial by 4.0% on average. We have 76% power to detect this effect with the unadjusted 

estimator and 95% power with the targeted estimator using adaptive pre-specification to 

select the adjustment set for the outcome regression (Y|A*, W) and treatment mechanism 

ℙ(A*|W). In this case, the number of partners infected at baseline is selected as the 

adjustment variable for the outcome regression in 82% of the trials (Supplementary Table 1). 

Through adjustment, targeted estimation improves performance by reducing the estimator’s 

variability (smaller mean squared error) and by providing a less conservative variance 

estimator45 and hence higher power.

For Design 2, the impact of a given PrEP strategy on the four-year incidence varies by the 

test-and-treat arm. Initially lower antiretroviral therapy coverage results in a larger impact of 

each PrEP strategy. For example, Couples PrEP results, on average, in a 1.7% reduction in 

incidence in the test-and-treat intervention arm where antiretroviral therapy coverage is 

always at 85%, and in a 2% reduction in the test-and-treat control arm where antiretroviral 

therapy coverage is initially at 55% and then ramps up to 85%. Consistently, the largest 

impact is with Couples PrEP, and there is no impact of Ring PrEP in these simulations. 

These results are robust to the assumed coverage of antiretroviral therapy and PrEP 

(Supplementary Figure 1). We further note that in these simulations, the Couples strategy 
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requires the largest person-years on PrEP, and the Ring strategy fails to put high risk 

individuals on PrEP (Supplementary Figure 1).

For these effects, the targeted estimator is slightly more variable than the unadjusted (larger 

mean squared error) possibly due to a large library for data-adaptive estimation and only 16 

independent units. Nonetheless, the targeted estimator still results in slightly more power. 

The number of partners infected and the village HIV prevalence at baseline (here, year 3) are 

selected for adjustment in ≈48% and ≈13% of the trials, respectively. This suggests that 

including time-updated covariates in the candidate adjustment set is important to maximize 

power to detect the PrEP effects.

For the main effect of PrEP on the four-year incidence, the largest impact is associated with 

the Couples strategy (−1.9% on average), followed by the Degree strategy (−1.4% on 

average), the On-demand strategy (−0.6% on average), and finally the Ring strategy (0% on 

average). As noted above, the main PrEP effect is the impact of a given strategy averaged 

over the test-and-treat arms. For these effects, improved performance with targeted 

estimation is demonstrated by smaller mean squared errors and higher power. For example, 

to detect the main effect of Couples PrEP, the unadjusted approach provides 83% power and 

targeted estimation 90%. For these effects, the number of partners infected and the village 

HIV prevalence at baseline (here, year three) are selected as the adjustment variable for the 

outcome regression in 58% and 18% of the trials, respectively.

For the joint effect of high coverage of both test-and-treat and PrEP on the seven-year 

incidence from study start to termination, there is a notable impact of the trial design. Recall 

the test-and-treat control arm in Design 1 provides lower coverage of antiretroviral therapy 

for the trial duration, whereas the test-and-treat control arm for Design 2 provides lower 

coverage for years zero to three and then scales up to high coverage. As a result, there is a 

larger joint effect of each test-and-treat and PrEP strategy combination in Design 1 than in 

Design 2. Indeed, the joint effect ranges from −7.3% to −8.8% in Design 1 and from −4.5% 

to −6.1% in Design 2. The basis for estimation of these effects involves 24 villages in 

Design 1 and only 16 in Design 2 (Table 1). As a consequence, we are well-powered to 

detect these joint effects with both estimators under Design 1, but only achieved 80% power 

to detect the joint effect of test-and-treat and Couples PrEP with targeted estimation in 

Design 2. In all cases, the joint effect of test-and-treat and PrEP is larger than either 

individual effect on the seven-year incidence (Supplementary Table 2). Again, targeted 

estimation tends to provide a lower mean squared error and always yields more power than 

does the unadjusted. Throughout confidence interval coverage is near or above nominal rate 

of 95%.

Discussion

We propose four strategies to target PrEP and study their impact within an ongoing test-and-

treat trial. Our strategies range from simple (On-demand) to harnessing information in the 

underlying sexual network (Ring). We propose two modifications to the ongoing trials in 

response to the WHO’s recommendations and the evolving landscape of HIV prevention and 
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treatment. Investigators may favor one design over the other depending on resource 

constraints and their primary scientific questions.

To study the PrEP strategies and these designs, we simulate underlying sexual networks 

using a degree-corrected stochastic block model. While this network generation is highly 

idealized, it allows us to investigate the spread of epidemics across networks and the use of 

network information to target interventions and to improve the analysis. We simulate the 

infectious process within each village (network) using an agent-based compartmental model. 

Our epidemic model could be more closely calibrated to specific settings (e.g. accounting 

for variability in viral load evolution over time and its impact on transmission).59–62 

Nonetheless, our idealized models capture the stochastic variation inherent in epidemics 

occurring on networks63 and provide a framework for investigating pressing questions in 

HIV prevention and treatment. For estimation and inference, we compare the unadjusted 

estimator to a new targeted maximum likelihood estimator, data-adaptively adjusting for 

baseline covariates measured at both the individual and cluster-level. The latter consistently 

leads to notable gains in attained power, while maintaining nominal confidence interval 

coverage.

There are several areas of future work. First, we focus on trials where universal test-and-treat 

was randomized to the study villages in a parallel design. This work can be adopted to other 

common designs, such as stepped wedge and pair-matched trials. We also study a high 

prevalence setting wherein an average of 25% of village members were infected at baseline. 

Future studies will examine a lower prevalence setting; we suspect that impact of test-and-

treat and PrEP will vary by context. Finally, we focused on estimation and inference of the 

sample average treatment effects on the village-level outcome (cumulative HIV incidence). 

There are many other interesting causal parameters, such as the effect on the individual-level 

outcome. Nonetheless, the implemented targeted maximum likelihood estimator is able to 

make full use of the individual-level data and could also easily accommodate additional 

complications due to right-censoring and informative drop-out.39;57;58

Overall, our work suggests that nesting a PrEP study within an ongoing universal test-and-

treat trial will answer timely questions in HIV prevention and treatment as well as lead to 

combined effects greater than those of test-and-treat alone. While the impact of PrEP varied 

by test-and-treat intervention arm, offering PrEP to HIV- partners in serodiscordant couples 

consistently led to the greatest reductions in incidence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Proposed Design 1: The universal test-and-treat (UTT) assignment (high vs. lower coverage) 

is randomized with balanced allocation to the 32 villages. After three years of follow-up, the 

PrEP assignment (high vs. no coverage) is randomized within the UTT intervention arm 

(high coverage). All villages are followed for four additional years after the second 

randomization.

Balzer et al. Page 14

Clin Trials. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Proposed Design 2: The universal test-and-treat (UTT) assignment (high vs. lower coverage) 

is randomized with balanced allocation to the 32 villages. After three years of follow-up, the 

coverage of antiretroviral therapy is scaled-up in the UTT control arm (from low to high 

coverage), and the PrEP assignment (high vs. no coverage) is randomized within both UTT 

arms separately. All villages are followed for four additional years after the second 

randomization.
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Figure 3. 
Mixing diagram (left) and the block matrix (right) for our bipartite, degree-corrected, 

stochastic block model. On the mixing diagram, line thickness represents the proportion of 

edges (connections) between each block. For the block matrix, F1 – F4 represent the four 

female blocks, and M1 – M4 represent the four male blocks, and the shading represents the 

propensity to mix (form connections) within or across blocks.
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