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Neurodegenerative dementias are clinically heterogeneous, progressive diseases with fre-
quently overlapping symptoms, such as cognitive impairments and behavior and movement
deficits. Although a majority of cases appear to be sporadic, there is a large genetic compo-
nent that has yet to be fully explained. Here, we review the recent genetic and genomic
findings pertaining to Alzheimer’s disease, frontotemporal dementia, Lewy body dementia,
and prion dementia. In this review, we describe causal and susceptibility genes identified for
these dementias and discuss recent research pertaining to the molecular function of these
genes. Of particular interest, there is a large overlap in clinical phenotypes, genes, and/or
aggregating protein products involved in these diseases, as well as frequent comorbid pre-
sentation, indicating that these dementias may represent a continuum of syndromes rather
than individual diseases.

Neurodegenerative dementias are clinically
heterogeneous, progressive diseases with

frequently overlapping symptoms, such as cog-
nitive impairments and behavior and move-
ment deficits. This spectrum of disease includes
vascular dementia (VaD), Lewy body dementia
(LBD), Alzheimer’s disease (AD), frontotem-
poral dementia (FTD), and prion dementias
(Fig. 1). Recent estimates indicate that 5.9%–
9.4% of people .65 years of age suffer from
dementia, with approximately 44 million affect-
ed worldwide (Prince et al. 2014). Moreover, as
a result of our aging population, the number of
people affected with dementia is expected to

double roughly every 20 years. Of these demen-
tias, AD is by far the most frequent, comprising
50%–75% of all cases (Fig. 1) (Prince et al.
2014).

Over the last few decades, substantial pro-
gress has been made in understanding the
molecular genetics of neurodegenerative de-
mentias and identifying the pathologically
aggregating proteins involved. In large part,
this can be attributed to advances in sequenc-
ing techniques and bioinformatic analysis ap-
proaches. Beginning in the early 1990s with the
identification of microsatellites (also known as
short tandem repeats) and single nucleotide

Editor: Stanley B. Prusiner

Additional Perspectives on Prion Biology available at www.cshperspectives.org

Copyright # 2017 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a023705

Cite this article as Cold Spring Harb Perspect Biol 2017;9:a023705

1

mailto:dhg@mednet.ucla.edu
mailto:dhg@mednet.ucla.edu
mailto:dhg@mednet.ucla.edu
http://www.cshperspectives.org
http://www.cshperspectives.org
http://www.cshperspectives.org


polymorphisms (SNPs), researchers began to
apply an approach termed linkage analysis.
This technique makes use of these genomic
markers to identify chromosomal regions
shared by affected family members in large
families with apparent dominant transmission.
The assumption is that the pathogenic muta-
tion lies within this shared chromosomal re-
gion, which carries disease risk, as it segregates
with the disease in the family. Linkage analysis
led to the rapid identification of a number of
highly penetrant disease-causing mutations
(Kerem et al. 1989; MacDonald et al. 1993;
Hästbacka et al. 1994; Feder et al. 1996; Poorkaj
et al. 1998; Amir et al. 1999).

However, only a small subset (�5%) of
neurodegenerative dementia cases show a pat-
tern of autosomal dominant inheritance,
whereas most cases appear to be sporadic. Early
on, using genetic approaches such as linkage

analysis, the majority of disease genes involved
in these familial, often early-onset cases were
discovered. More recently, genome-wide associ-
ation studies (GWAS) have been applied to
identify a multitude of risk variants (mutations
with low penetrance) in idiopathic dementia.
This new approach was enabled by the develop-
ment of comprehensive genome-wide arrays,
allowing for the simultaneous evaluation of
millions of SNPs in thousands of samples in a
cost-effective manner. GWAS, by comparing
the SNPs of millions of patients to SNPs from
millions of unaffected controls, are used to
identify genetic variants that are common in
the population but modulate the risk of disease.
Recently, GWAS and, subsequently, meta-anal-
yses of GWAS, which pool samples from multi-
ple studies to increase statistical power, have led
to the identification of hundreds of mutations
in so-called susceptibility genes, most with very
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Figure 1. Frequency of specific neurodegenerative dementias. The inner circle shows the frequency of specific
neurodegenerative dementias (indicated by different colors) as an approximate percentage of all cases of disease.
The middle circle shows the percentage of patients that show familial or sporadic patterns of inheritance for each
disease. The outer circle depicts the approximate percent of patients with familial inheritance patterns that
harbor mutations in specific known causal genes.
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small effect sizes (odds ratios usually ,2; for
review, see Visscher et al. 2012). Although the
effect size of these variants is not large enough
to inform disease prediction, these loci may
shed light on novel genes and molecular path-
ways dysregulated in disease. However, it is im-
portant to keep in mind that GWAS use SNPs as
proxies for tagging chromosomal regions. Thus,
this type of analysis can determine that a spe-
cific SNP or genomic locus is associated with
disease risk, but does not necessarily mean
that a particular SNP functionally contributes
to disease risk or which gene in a genomic locus
may be associated with the pathology.

In the past few years, with the cost of se-
quencing dropping and bioinformatics tech-
nology advancing, next-generation sequencing
(NGS) approaches are becoming more com-
monly used. Rather than limiting sequencing
to a gene or a small region of the chromosome,
it is now possible to sequence the entire genome
(whole-genome sequencing, WGS) or only the
gene-coding regions, the exons (whole-exome
sequencing, WES) (Ng et al. 2009). WES, as a
result of focusing on only �2% of the genome,
is still considerably cheaper, and the analytical
processing power, as well as the storage space
required to handle the data produced, is more
feasible to acquire for individual laboratories
(Singleton 2011; Wang et al. 2013). Important-
ly, these NGS approaches allow for the direct
identification of rare variants in disease, with-
out prior linkage or GWAS. As compared to
WES, WGS has the advantage of better coverage
of the exome, owing in part to longer reads and
more consistent read depth. Furthermore, WGS
can be used to investigate regulatory variants,
which are increasingly thought to play a signifi-
cant role in the cause of and risk for neurode-
generative disease (Wang et al. 2013).

Despite these advances, much of the genetic
contribution to the heritable liability of most
sporadic forms of dementia has yet to be ex-
plained. Here, we review the recent genetic
and genomic findings in studies of neurodegen-
erative dementias that involve abnormal protein
aggregation and discuss the idea that these dis-
eases may represent a continuum of disorders
rather than individual diseases.

ALZHEIMER’S DISEASE

By far the most common form of age-related
dementia, AD is clinically heterogeneous and
slowly progressive, characterized by a gradual
decline in memory and other cognitive func-
tions (such as anomia, agnosia, and apraxia),
depression, and apathy (www.alz.org/research/
diagnostic_criteria). The brain regions most
affected by neurodegeneration are the cortex,
hippocampus, amygdala, basal forebrain, and
brainstem (Rademakers and Rovelet-Lecrux
2009). Progressive atrophy in these regions is
preceded by the accumulation of extracellular
b-amyloid plaques formed by cleavage products
of amyloid precursor protein (APP) and intra-
cellular neurofibrillary tangles (NFTs) com-
posed of hyperphosphorylated microtubule
binding protein tau (MAPT). Plaques and tan-
gles have been shown to interfere with calcium
signaling and synaptic transmission, to induce a
persistent inflammatory response, and to lead
to synapse loss and ultimately neuronal degen-
eration. The presence of NFTs is strongly corre-
lated with neuronal dysfunction and disease
progression (for reviews of AD pathology, see
Braak and Braak 1997, 1998; Serrano-Pozo et al.
2011).

AD is classified as early onset (before 65
years of age) versus late onset (after 65). Less
than 10% of cases are early onset, and these
usually follow an autosomal dominant inheri-
tance pattern in which mutations in a single
gene can cause the disease. Late-onset AD is
much more common and far more genetically
complex, possibly involving concurrent muta-
tions in multiple genes and interactions among
these susceptibility genes with each other, as
well as unknown environmental factors. Al-
though late-onset AD is largely idiopathic, there
is still a significant genetic contribution to sus-
ceptibility, with twin studies predicting herita-
bility of 60%–80% (Gatz et al. 2006).

Genes in Which Disease-Causing Mutations
Have Been Identified

In early-onset AD, three different causal genes
have been identified via linkage analysis (Table
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1). The amyloid precursor protein gene (APP),
located at chromosome 21q21, encodes the
ubiquitously expressed transmembrane protein
APP. APP is cleaved via the subsequent action of
two proteases, b-secretase and g-secretase, to
release Ab-peptides (Thinakaran and Koo
2008). Depending on the specific site of cleav-
age, peptides of either 40 (Ab40) or 42 (Ab42)
amino acids are produced. Ab42 has been
shown to be more prone to aggregate into path-
ogenic amyloid plaques than Ab40. More than
30 different mutations have been described in
APP (www.molgen.vib-ua.be/ADMutations).
Most of these mutations are heterozygous mis-
sense mutations in or near exons 16 and 17 (the
site of proteolytic processing by the secretases),
whole-gene duplications, rare recessive small
deletions, and recessive missense mutations (re-
viewed in Guerreiro et al. 2012; Karch et al.
2014). These mutations most frequently result
in either altered Ab production, changes in the
ratios of Ab42 to Ab40, and/or increased NFT
formation. Interestingly, a protective variant
(A676T) in APP has recently been identified
for AD in the Icelandic population (Jonsson
et al. 2012). This variant is located adjacent to
theb-secretase cleavage site and has been shown
to reduce b-secretase-1-mediated formation of
Ab peptides. This reduction in Ab production
is thought to modulate neurodegeneration in

A676T carriers and is proposed to mediate the
protective effect.

The majority of mutations causing early-
onset AD are found in the presenilin 1 (PSEN1)
gene, located at chromosome 14q24.3, and in its
homolog presenilin 2 (PSEN2), located at chro-
mosome 1q31. More than 180 dominant, path-
ogenic mutations have been identified in
PSEN1, whereas approximately 13 dominant,
pathogenic mutations have been identified in
PSEN2 (www.molgen.vib-ua.be/ADMutations).
These mutations are distributed throughout
the two proteins, but the mutations have a ten-
dency to cluster in the transmembrane portions
of both proteins. Interestingly, PSEN1 and
PSEN2 encode structurally similar, integral
membrane proteins that are essential compo-
nents of the g-secretase complex, which cleaves
APP into Abpeptides (Wilquet and De Strooper
2004). The finding that all three causative genes
are involved in the production of Ab peptides
led to the “amyloid cascase hypothesis” (Hardy
and Higgins 1992; reviewed in Karran et al.
2011). This theory states that changes in APP
homeostasis or cleavage lead to aggregation of
Ab and its deposition in plaques, which is suf-
ficient to initiate the cascade of neuropatholog-
ical changes, including the aggregation of tau,
and results in neuronal atrophy. Although fami-
lial, early-onset AD only accounts for a small

Table 1. Alzheimer’s disease—known causal genes

Gene Protein Chromosome

Mutation

frequency in

early onset

Types of

mutations

reported Known function Pathway

APP Amyloid
precursor
protein

21 15% Missense,
duplication,
deletions

Neurite outgrowth,
adhesion, and
axonogenesis

APP processing

PSEN1 Presenilin-1 14 80% Missense,
duplication,
deletions

Component of g-
secretase complex;
proteolytic cleavage of
membrane proteins,
including APP

APP processing

PSEN2 Presenilin-2 1 5% Missense Component of g-
secretase complex;
proteolytic cleavage of
membrane proteins,
including APP

APP processing
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number of total AD cases, identification of these
genes highlights molecular pathways involved in
disease and may therefore enable identification
of potential therapeutic targets in both familial
and idiopathic AD.

Risk Variants

The apolipoprotein E gene (APOE) was the first
late-onset AD risk factor identified and, thus far,
remains the risk factor carrying the greatest pro-
portion of the population variance in liability to
the disease (for review, see Ashford 2004). Lo-
cated at chromosome 19q13.2, APOE encodes a
multifunctional glycoprotein, involved in mo-
bilization and redistribution of cholesterol
(Mahley 1988). APOE has been shown to bind
to Ab and influence its metabolism, both in
terms of clearance of soluble Ab and Ab aggre-
gation (Kim et al. 2009; Castellano et al. 2011;
Liu et al. 2013). There are three major alleles of
APOE (12, 13, and 14) that result from a single
amino-acid substitution between each pair of
isoforms on the protein level. The presence of
a single 14 allele increases the risk for AD about
threefold, whereas individuals homozygous for
this allele have �15-fold increased risk com-
pared to the most common genotype (13 ho-
mozygous) (Corder et al. 1993; Strittmatter et al.
1993). APOE14 is usually thought of as a genetic
risk factor, which is defined as making only a
small contribution to disease and is neither nec-
essary nor sufficient to cause disease. However,
the very high-risk estimates for APOE14 carriers
have led some to assign APOE14 the status of a
“moderately penetrant gene with semidominant
inheritance.” This status acknowledges that not
all 14 carriers develop the disease and that het-
erozygous 14 carriers have intermediate risk
compared with homozygous carriers (Genin
et al. 2011). Interestingly, the APOE12 allele ap-
pears to be protective and has been shown to
decrease the risk of AD as well as to increase
longevity (Corder et al. 1994).

Numerous SNP-based GWAS, sequence-
based studies, and meta-analysis have recently
uncovered hundreds of additional risk factors
for AD with varying levels of support (Lambert
et al. 2009, 2013; Harold et al. 2009; Seshadri

et al. 2010; Naj et al. 2011; Hollingworth et al.
2011; Jonsson et al. 2013; Reitz et al. 2013; Cru-
chaga et al. 2013; Miyashita et al. 2013; Beecham
et al. 2014; Chen et al. 2015). More than 20 of
these novel common risk factors are now well
established (Table 2) at the stringent level of
genome-wide significance ( p-value � 5 �
108) in GWAS meta-analysis and have been rep-
licated in independent studies. Most confer
much smaller risk (odds ratio of �0.8–1.25)
than APOE14, and many of the specific patho-
genic variants in or near these susceptibility
genes remain to be characterized. More recently,
as NGS technologies become available, a hand-
ful of low-frequency (rare) risk variants have
been uncovered (Table 3), many of which have
an odds ratio .2 (for review, see Lord et al.
2014). Together, these variants may be essential
in suggesting additional, novel regulatory path-
ways contributing to disease pathogenesis, apart
from Ab metabolism and clearance. Areas of
molecular dysfunction implicated by gene on-
tology analyses of these novel risk factors in-
clude the neural-immune system (CLU, CR1,
ABCA7, EPHA1, CD33, INPP5D, TREM2, HLA
complex), synaptic function (PICALM, BIN1,
EPHA1, CD2AP, MEF2C, PTK2B, AKAP9),
endocytosis (PICALM, BIN1, EPHA1, CD33,
CD2AP, SORL1, RIN3), and lipid metabolism
(APOE, CLU, ABCA7, PLD3) (for review, see
Rosenthal and Kamboh 2014; Karch and Goate
2015). Many studies are actively underway to
identify additional risk variants in AD, and
with the rise of NGS techniques, these may
soon include regulatory variants in noncoding
regions, such as promoters, enhancers, and
noncoding RNA.

FRONTOTEMPORAL DEMENTIA

FTD can be divided into the following three
major clinical subtypes: behavioral variant
(bvFTD), semantic variant primary progressive
aphasia, and nonfluent variant primary pro-
gressive aphasia (Sieben et al. 2012; Bang et al.
2015). bvFTD is the most common and is asso-
ciated with frontal and anterior cortex atrophy,
which leads to progressive personality changes,
including disinhibition, apathy, loss of sympa-
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Table 2. Alzheimer’s disease—known common susceptibility variants

Gene Protein Chromosome

Pathogenic/

protective Known function Pathway

APOE Apolipoprotein E 19 APOE12,
protective;
APOE14,
pathogenic

Lipoprotein metabolism
and homeostasis

Lipid
metabolism

CR1 Complement
component (3b/4b)
receptor 1

1 Pathogenic Regulates complement
activation

Immune
response

BIN1 Bridging integrator 1 2 Pathogenic Regulates endocytosis;
interacts with clathrin
and AP2; binds to lipid
membranes and induces
membrane curvature

Endocytosis;
synaptic
function

INPP5D Inositol
polyphosphate-5-
phosphatase D

2 Pathogenic Inflammatory response;
regulation of cytokine
signaling

Immune
response

MEF2C Myocyte enhancer
factor 2C

5 Pathogenic Transcription enhancer
involved in synaptic
plasticity

Synaptic
function

CD2AP CD2-associated protein 6 Pathogenic Scaffolding molecule
that regulates the actin
cytoskeleton; required
for synapse formation

Endocytosis;
synaptic
function

HLA-
DRB1/
HLA-
DRB5

Major
histocompatibility
complex class II
subunits

6 Pathogenic Member of the major
histocompatibility
complex

Immune
response

NME8 NME/NM23 family
member 8

7 Pathogenic Ciliary functions —

ZCWPW1 Zinc finger, CW
domain with PWWP
domain 1

7 Pathogenic Contains domains
identified in a number of
other proteins
responsible for
epigenetic regulation

—

EPHA1 EPH receptor A1 7 Pathogenic Member of tyrosine
kinase receptor family
involved in intercellular
signaling, synapse
formation and plasticity,
axonal guidance

Immune
response;
endocytosis;
synaptic
function

PTK2B Protein tyrosine kinase
2b

8 Pathogenic Calcium-induced
regulation of ion
channels and activation
of the map kinase
signaling pathway;
synaptic LTP

Synaptic
signaling

Continued
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thy, and stereotyped behaviors. As the disease
progresses cognitive deficits appear, but mem-
ory and visuospatial functions remain relatively
spared (Riedl et al. 2014). FTD is a genetically
and pathologically heterogenous disorder, typ-
ically with an earlier age of onset (between
50 and 65 years of age) and a higher incidence
of familial cases than AD (Rademakers et al.

2012). Almost 50% of individuals with FTD
have a positive family history, and an auto-
somal-dominant mode of transmission can
be identified in �10%–20% of patients
(Chow et al. 1999; Seelaar et al. 2008; Rohrer
et al. 2009). However, many of the causative
genes identified have variable penetrance, and
most result in a spectrum of phenotypes,

Table 2. Continued

Gene Protein Chromosome

Pathogenic/

protective Known function Pathway

CLU Clusterin 8 Pathogenic Secreted, stress-
activated chaperone
involved in apoptosis,
lipid transport, and Ab
clearance

Lipid
metabolism;
immune
response

CELF1 CUGBP, Elav-like
family member 1

11 Pathogenic Regulates splicing,
mRNA editing, and
translation

—

MS4A4A,
MS4A6E

Membrane spanning
four domains A4A /
A6E

11 Pathogenic Little known; potentially
involved in
inflammatory response

Immune
response

PICALM Phosphatidylinositol-
binding clathrin
assembly protein

11 Pathogenic Clathrin-mediated
endocytosis; synaptic
vesicle fusion to the
presynaptic membrane
via VAMP2 trafficking

Endocytosis;
synaptic
function

SORL1 Sortilin-related
receptor

11 Pathogenic Vesicle trafficking from
the cell surface to the
Golgi–endoplasmic
reticulum

Endocytosis

FERMT2 Fermitin family
member 2

14 Pathogenic Actin assembly and cell
shape

—

SLC24A/
RIN3

Ras and Rab
interactor 3

14 Pathogenic Membrane budding and
trafficking

Endocytosis

ABCA7 ATP-binding cassette
A7

19 Pathogenic Intra- and extracellular
transmembrane
transport

Lipid
metabolism;
immune
response

CD33 CD33 molecule 19 Pathogenic Triggers immune cell–
cell interactions via
clathrin-independent
endocytosis

Endocytosis;
immune
response

CASS4 Cas scaffolding protein
family member 4

20 Pathogenic Possibly involved in cell
adhesion and
cytoskeletal regulation

—
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extending from amyotrophic lateral sclerosis
(ALS) through classic FTD variants to cortico-
basal syndrome and progressive supranuclear
palsy (PSP) (Ng et al. 2015).

Genes in Which Disease-Causing Mutations
Have Been Identified

Mutations in six genes have been implicated in
FTD (Table 4). Using linkage analysis, the first
causal gene for FTD to be identified was MAPT
(coding for microtubule associated protein
tau). MAPT is located on chromosome
17q21.1, and since its initial identification as a
causal gene for FTD (Hutton et al. 1998; Poor-
kaj et al. 1998; Spillantini et al. 1998), .40 dif-
ferent pathogenic mutations (mainly missense

and splicing mutations) have been described
(www.molgen.vib-ua.be/FTDMutations). These
mutations can account for up to 50% of familial
frontotemporal lobar dementia (FTLD) cases in
certain populations (Morris et al. 2001; Sieben
et al. 2012). MAPT promotes the assembly and
modulates the stability of tubulin microtubules.
Most of the mutations identified in MAPT are
found in exons 9–13, which code for the mi-
crotubule binding domains that mediate pro-
tein function. These mutations can alter the
expression ratio of different isoforms of tau (be-
tween those containing four microtubule bind-
ing domains [4R] and those that contain only
three [3R]), as well as modulate tau phosphor-
ylation (Spillantini and Goedert 2013). This
leads to abnormal accumulation of MAPT,

Table 3. Alzheimer’s disease—known rare susceptibility variants

Gene Protein Chromosome

Pathogenic/

protective Known function Pathway

UNC5C Unc-5 homolog C 4 T835M,
pathogenic

Possible role in
apoptosis in neurons

[Apoptosis]

TREM2 Triggering receptor
expressed on myeloid
cells 2

6 R47H/R62H,
pathogenic

Regulation of
phagocytosis;
suppression of
inflammation

Immune
response

AKAP9 A-kinase anchor protein 9 7 Pathogenic Scaffold protein
attaching kinases to
NMDA receptor

Synaptic
function

ADAM10 A disintegrin and
metalloproteinase
domain-containing
protein 10

15 Q170H/
R181G,
pathogenic

Membrane protein
cleavage

APP processing

MAPT Microtubule-binding
protein tau

17 A152T,
pathogenic

Assembly and
stabilization of
tubulin microtubules

Axonal
transport;
synaptic
function

APOE Apolipoprotein E 19 V236E,
protective

Lipoprotein
metabolism and
homeostasis

Lipid
metabolism

PLD3 Phospholipase D family,
member 3

19 V232M,
pathogenic

Hydrolysis of
membrane
phospholipids

Lipid
metabolism

APP Amyloid precursor
protein

21 A637T,
protective

Neurite outgrowth,
adhesion, and
axonogenesis

APP processing
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which results in the formation of pathological
NFTs within neurons and glia and impairs neu-
ronal axon transport, among other cellular
functions (for review, see Rademakers et al.
2004; Brandt et al. 2005; Ghetti et al. 2015).
The discovery that MAPT mutations cause de-
mentia runs counter to the “amyloid cascade
hypothesis,” which states that abnormalities in
APP homeostasis are the most significant mo-
lecular event necessary to initiate the cascade of
neuropathological changes that cause neurode-
generation (Hardy and Higgins 1992). The am-
yloid cascade hypothesis usually asserts that ag-
gregation of tau is only a secondary event.
Instead, these MAPT mutations show that ab-
normalities in tau are sufficient to induce atro-
phy and indicate that tau pathology may also
play an important role in AD pathogenesis. In-
terestingly, a variant in MAPT, previously iden-
tified in PSP, was recently discovered in AD pa-
tients (Coppola et al. 2012), further eroding
support for a dogmatic view of the “amyloid
cascade hypothesis.”

GRN, a disease-causing gene first identified
in 2006 (Baker et al. 2006; Cruts et al. 2006), is
located only 1.7 Mb away from MAPT on
chromosome 17q21. Its proximity to MAPT
originally made it difficult to identify through
linkage mapping studies. GRN codes for pro-
granulin, a cysteine-rich secreted glycoprotein,
which is cleaved by enzymes such as elastase into
small peptides (granulins) (Toh et al. 2011). The
exact function of progranulin and granulins is
still unknown in the central nervous system,
but some hypothesize that these proteins have
opposing cellular functions. Progranulin has
been implicated in neurotrophic and anti-in-
flammatory pathways, as well as in modulation
of Wnt signaling (Van Damme et al. 2008;
Ryan et al. 2009; Laird et al. 2010; Rosen et al.
2011; for review, see Petkau and Leavitt 2014). A
range of mutations, .65 of which are thought
to be pathogenic, have been identified in
GRN (Yu et al. 2010; www.molgen.vib-ua.be/
FTDMutations). Mutations are found in almost
all GRN exons (the exception being exon 13 lo-
cated at the very 30 end of the coding sequence)
and include nonsense and splice-site mutations,
as well as insertions and deletions leading to a

frameshift in the transcript. The majority of
these mutations result in the loss of function
of the mutated allele, and it is now generally
accepted that GRN mutations cause disease
through haploinsufficiency (Kleinberger et al.
2013), which is supported by downregulation
of progranulin in the blood of mutation carriers
(Coppola et al. 2008). Aggregation of ubiquitin
and TDP-43 are characteristic of all GRN muta-
tion carriers (Eriksen and Mackenzie 2007).

GRN mutations account for up to 26% of
familial FTD cases in some populations and
1%–5% of sporadic cases. However, much var-
iability is observed in the clinical phenotype
associated with GRN mutations, and pene-
trance is incomplete (reviewed in Cruts and
Van Broeckhoven 2008; Ng et al. 2015). There-
fore, genetic variability—both on the wild-type
GRN allele and in other genes—is thought to
contribute to disease pathogenesis in individu-
als with GRN mutations. One such factor is
variance in the transmembrane protein 106B
gene (TMEM106B), which has been shown to
associate with progranulin in endolysosomes
(Lang et al. 2012). Some genetic variants in or
near TMEM106B appear to protect GRN muta-
tion carriers from FTD or delay its onset, where-
as others seem to increase the risk for FTD
(Finch et al. 2011; van der Zee et al. 2011; Lat-
tante et al. 2014). Both types of variants may
possibly assert their effect by modulating the
levels of progranulin. Furthermore, a number
of miRNAs (specifically, miR29b and miR107)
may regulate GRN expression and thereby con-
tribute to disease penetrance and age of onset
(Jiao et al. 2010; Wang et al. 2010).

In 2011, the abnormal expansion of a
GGGGCC hexanucleotide repeat in the noncod-
ing portion (first intron) of C9ORF72 was found
to account for up to �25% of familial FTD cases
and 40% of familial ALS cases (Renton et al.
2011; DeJesus-Hernandez et al. 2011; Majounie
et al. 2012a). Although C9ORF72 codes for a
protein of unknown function, structural com-
parison studies indicate that it is a potential
DENN-type guanine nucleotide exchange fac-
tor, regulating Rab GTPases (Levine et al.
2013). Unaffected individuals carry less than
30 repeats, whereas affected mutation carriers
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have been identified with an excess of 4000 re-
peats. Recently, Gijselinck and colleagues (2015)
showed that repeat size correlates with the dis-
ease age of onset as well as methylation of CpGs
in the C9orf72 promoter in a cohort of 72 Bel-
gian patients with FTD, FTD-ALS, or ALS. Fur-
thermore, the researchers were able to provide
some evidence for genetic anticipation, as sev-
eral parent–child pairs showed decreased age of
onset, increased expansion size, and/or in-
creased promoter methylation with transmis-
sion to the next generation.

A variety of pathological mechanisms by
which C9ORF72 repeat expansions result in
neurodegeneration have been proposed. Hap-
loinsufficiency, triggered by epigenetic changes
to the expanded repeat region, has been suggest-
ed, and recent studies have shown reduced
C9ORF72 protein levels in the frontal cortex
of expanded repeat carriers (Waite et al. 2014).
Furthermore, RNA foci have been identified
in neurons of C9ORF72 expansion cases (Lee
et al. 2013; Haeusler et al. 2014). As in other
repeat-expansion disorders (such as fragile-X
syndrome), C9ORF72 repeat-expansion tran-
scripts may aggregate into foci, which in turn
are thought to sequester RNA-binding proteins
and result in major RNA-processing alterations
(Wojciechowska and Krzyzosiak 2011; Cooper-
Knock et al. 2015; Prudencio et al. 2015). How-
ever, no correlation between RNA focus burden
and neurodegeneration has been reported for
C9ORF72 expansion carriers thus far, and, in
fact, some propose that RNA foci may be neu-
tral intermediates or possibly even neuroprotec-
tive (Tran et al. 2015), calling this proposed
mode of pathogenicity into question. Further-
more, unconventional, repeat-associated, non-
ATG dependent translation (RAN translation)
has been shown to cause expression of a variety
of dipeptide mutant proteins from the ex-
pansion (Ash et al. 2013; Mori et al. 2013). Pro-
tein-labeling studies with antibodies designed
against each of the six possible dipeptides
show that these dipeptides cluster into insoluble
inclusions in neurons in the cortex. Most re-
cently, in large-scale genetic screens in yeast
and Drosophila, several groups have identified
that this unconventional translation of dipep-

tides may lead to nucleocytoplasmic transport
defects and neurodegeneration (Freibaum et al.
2015; Jovičić et al. 2015; Zhang et al. 2015; re-
viewed in van Blitterswijk and Rademakers
2015). Finally, there is emerging evidence that
like PGRN, C9ORF72 mutation carriers have
elevated prevalence of specific classes of auto-
immune disorders, further implicating inflam-
matory mechanisms in disease pathophysiology
(Miller et al. 2016). Most likely, many if not all
of these mechanisms contribute to neurodegen-
eration in C9ORF72 expansion carriers to some
extent, possibly with synergistic effects.

Together, mutations in MAPT, GRN, and
C9ORF72 repeat expansions are the most com-
mon causes of familial and sporadic FTD and
usually result in bvFTD. However, clinical pre-
sentation is considerably variable; mutations in
GRN alone have been reported among individ-
uals diagnosed with FTD, AD, corticobasal de-
generation, and mild cognitive impairments.
Furthermore, the age of onset varies widely be-
tween carriers of these causative mutations,
even within families (Ng et al. 2015).

Four additional genes have been implicated
in FTD. Very rare, dominant-negative muta-
tions have been identified in charged multive-
sicular body protein 2B (CHMP2B) (Skibinski
et al. 2005), which is involved in the endosomal
sorting complex, required for the formation of
the multivesicular body, an early precursor to
the lysosome (Tanikawa et al. 2012). The dis-
covery of mutations in CHMP2B further under-
scores the importance of membrane dynamics
and autophagy in neurodegenerative disease.

TARDBP, located on chromosome 1q36,
codes for TAR DNA-binding protein (TDP-
43), a ribonucleoprotein functioning as a tran-
scriptional regulator involved in RNA splicing
and stability (Janssens and Van Broeckhoven
2013). TDP-43 aggregates are found in the
majority of tau-negative, ubiquitin-positive in-
clusions in FTD (Rademakers et al. 2012). Al-
though missense and nonsense mutations in
TARDBP have been identified in FTD cases,
these are exceedingly rare (,1%) (Sieben et al.
2012). However, TARDBP is an important
causal factor in the related motor neuron diseas-
es without dementia—recent studies have found
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mutations in TARDBP in up to �3% of ALS
patients (Kabashi et al. 2008; Rutherford et al.
2008; Sreedharan et al. 2008; Mentula et al. 2012;
reviewed in Valdmanis et al. 2009).

FUS is located at chromosome 16q11 and
codes for fused in sarcoma (FUS), which has
been shown to co-localize with ubiquitin-im-
munoreactive inclusions in FTD patients (Rade-
makers et al. 2012). However, whereas muta-
tions in FUS have been identified in both
familial and sporadic ALS, none have been asso-
ciated with FTD. When located in the nucleus,
FUS is thought to be involved in regulating tran-
scription and pre-mRNA splicing, whereas cy-
toplasmic FUS is implicated in mRNA transport
and local protein synthesis at the synapse (Co-
lombrita et al. 2012). The discoveryof mutations
in FUS and TARDBP, as well as the suggestion
that C9ORF72 repeat expansions may lead
to RNA-processing alterations, highlights the
importance of RNA metabolism in both FTD
and ALS.

VCP, located at chromosome 9q13, codes for
valosin-containing protein, a highly abundant,
multifunctional ATPase involved in a variety of
cellular pathways (Yamanaka et al. 2012). Defi-
ciency in VCP in neurons leads to mitochondri-
al uncoupling and significant reduction of cel-
lular ATP production (Bartolome et al. 2013).
Mutations in VCP cause a pleiotropic degener-
ative disorder called multisystem proteinopathy,
which can manifest clinically as a variety of neu-
rodegenerative diseases including classical ALS,
FTD, inclusion body myopathy, Paget’s disease
of bone, or as a combination of these disorders
(Watts et al. 2004).

Common, non-Mendelian risk variants for
FTLD remain to be explored for the most part.
As described previously, variants in TMEM106B
are thought to modulate levels of granulin se-
cretion and may therefore influence GRN-mu-
tation-carrier pathological phenotype (Lattante
et al. 2014). Furthermore, Ferrari and colleagues
(2014) recently identified two new FTD-associ-
ated risk variants in a GWAS with more than
3500 cases and more than 9400 controls (Ferrari
et al. 2014). First, the HLA locus at 6p21.3,
coding for key molecular components of the
immune system, showed significant genome-

wide association. Second, in a separate as-
sociation analysis for each of the different sub-
types of FTD, the RAB38/CTSC locus, involved
in lysosomal processing (Bultema et al. 2012),
was significantly associated with bvFTD cases
specifically.

With the discovery of the hexanucleotide
repeat expansion in C9ORF72, and mutations
in TARDBP and VCP, which result in FTD, ALS,
and concomitant FTD-ALS, it has become clear
that cases of FTD-ALS are not the result of sim-
ple coincidence, but most likely represent a con-
tinuum of disease between classical FTD and
motor neuron disease (Ng et al. 2015). This is
further supported by the clustering of neurode-
generative diseases in relatives of patients with
ALS (Al-Chalabi et al. 2012). As has been re-
cently described, up to 50% of ALS cases show
some functional loss in frontal lobe tests, where-
as in �15% of cases, frontal lobe functional loss
was enough to justify diagnosis of FTD. Simi-
larly, �40% of FTD cases show measurable mo-
tor dysfunction, whereas up to 15% of FTD
cases are eventually diagnosed with concomi-
tant ALS (for review, see Callister and Picker-
ing-Brown 2014; Ng et al. 2015). From the pro-
gress that has been made in our understanding
of the molecular genetics of FTD and ALS over
the last decade, it is evident that these diseases
form part of a spectrum, with the same genes
often implicated in both.

How mutations in the same genes and/or
aggregation of their protein products cause
these divergent phenotypes is a key question
that we now have the genetic tools to answer.
Using next-generation sequencing approaches,
we can identify rare variants that contribute to a
slew of what were previously thought of as sep-
arate dementias and motor neuron diseases.
One example is the MAPTA152T variant, which
was originally found in a patient with PSP but
has been recently shown to be associated with
FTD, AD, and LBD, as well as other atypical
tauopathies (Coppola et al. 2012; Kara et al.
2012; Labbé et al. 2015). In the future, careful
application of such techniques will be useful
in mapping the genetic and molecular com-
monalities and differences of diseases on this
spectrum.
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LEWY BODY DEMENTIA

LBD is a complex neurodegenerative disease
characterized by progressive cognitive decline,
motor symptoms, visual hallucination, and
fluctuating levels of attention and alertness
(Molano 2013). It is considered to be a common
cause of neurodegenerative dementia, with a
prevalence of up to 7.5% (Vann Jones and
O’Brien 2014). Being a member of the family
of synucleinopathies, which also includes Par-
kinson’s disease (PD), a key feature of LBD
pathology is interneuronal a-synuclein aggre-
gation into Lewy bodies. However, most LBD-
affected brains also show comorbid AD pathol-
ogy in the form of b-amyloid plaques and NFTs
(Colom-Cadena et al. 2013).

Although a number of families have been
identified in which a mixed phenotype of de-
mentia and parkinsonism is inherited in a Men-
delian manner (Meeus et al. 2012), most LBD is
late onset and sporadic, with twin studies not
lending much support for a major genetic eti-
ology (Wang et al. 2009). Linkage analysis in a
large Belgian family with prominent dementia
and parkinsonism showed significant genetic
linkage to a novel locus on the long arm of
chromosome 2. However, extensive sequence
analysis of five candidate genes within this
2q35-q36 region did not reveal a single nucleo-
tide or structural chromosomal variant (gene
dosage) mutation that cosegregated with LBD
(Bogaerts et al. 2007).

In cohorts of unrelated and largely sporadic
LBD patients, molecular genetic investigations
have revealed mutations in genes that have pre-
viously been implicated both with Parkinson’s
disease (SNCA) (Yamaguchi et al. 2005) and
with AD (APP and PSEN1) (Ishikawa et al.
2005; Guyant-Marechal et al. 2008), indicating
that these disorders may be members of the
same disease continuum. The most strongly im-
plicated LBD-causative gene is SNCA, in which a
number of rare mutations have been identified
associated with LBD. SNCA, located at chromo-
some 4q21, codes for a-synuclein, a protein
thought to be involved in neurotransmitter re-
lease and vesicle turnover at presynaptic termi-
nals (Bendor et al. 2013). Of note, different mu-

tations in SNCA appear to be loosely correlated
with different clinical presentations (Bonifati
2008). Although duplications are more often
associated with classic PD (Ibáñez et al. 2004;
Chartier-Harlin et al. 2004), triplications result
in PD with dementia and LBD (Singleton et al.
2003; Fuchs et al. 2007). Furthermore, the mis-
sense mutation A30P is rarely associated with
dementia. Instead, patients with this mutation
present with typical PD (Krüger et al. 2001). In
contrast, the missense mutations E46K and
A53T, which have been shown to promote a-
synuclein polymerization into amyloid in vitro,
are associated with a mixed presentation of PD,
PD with dementia, and LBD (Zarranz et al.
2004; Yamaguchi et al. 2005). Although muta-
tions in b-synuclein have not been associated
with PD, two missense mutations (V70M and
P123H) were identified in one LBD patient each
(Ohtake et al. 2004). Further genetic studies are
needed to verify pathogenicity.

Carriers of mutations in genes usually asso-
ciated with AD, including APP, PSEN1, and
PSEN2, often show Lewy body pathology as well.
Increased expression of APP and point muta-
tions near the b-secretase cleavage sites (V717I)
can result in Lewy body formation (Meeus et al.
2012). However, the process by which these mu-
tations cause Lewy body pathology in some pa-
tients but not others is still unresolved.

Recently, mutations in glucocerebrosidase
(GBA) have been identified as potential risk
variants for both PD and LBD. Goker-Alpan
and colleagues found a higher incidence of het-
erozygous GBA variant carriers among patients
with LBD than healthy controls (Goker-Alpan
et al. 2006). This study was expanded on by
Tsuang and colleagues, who screened the entire
coding sequence of GBA in 79 pure LBD cases
and almost 400 controls to show that LBD pa-
tients had an increased odds ratio of 7.6 (Tsuang
et al. 2012). Interestingly, GBA is an important
enzyme involved in lysosomal storage, which
has been recently implicated in a-synuclein
processing and homeostasis (Cullen et al.
2011). A second main risk factor for LBD is
APOE14. Investigations of clinically confirmed
LBD cohorts show that APOE14 is overrepre-
sented in LBD cases compared with controls,
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and individuals with 14 alleles have a threefold
increased risk for LBD, which is similar to the
increased risk associated with APOE14 for AD
(Tsuang et al. 2013). As most LBD-affected
brains show comorbid AD pathology in the
form of b-amyloid plaques, and APOE14 is
thought to modulate Ab homeostasis and
clearance, it is not altogether surprising that
APOE14 is also a prominent risk factor for
LBD. However, these genes explain only a mi-
nority of cases, and identification of novel risk
loci, including possible pathogenic regulatory
variants, remains an important goal.

PRION DISEASES

Human prion diseases, a rare group of neurode-
generative disorders, are characterized by pro-
gressive cognitive decline (most commonly pre-
senting as memory impairment and executive
and/or language dysfunction), parkinsonism,
and behavioral symptoms (Takada and Gesch-
wind 2013). Prion diseases can be classified into
three groups: sporadic (most common), genetic,
and acquired (Brown and Mastrianni 2010). In
all three forms, neurodegeneration is caused by
the propagation of conformational remodeling
of properly folded, cellular prion-related protein
(PrPC; predominantly a-helical) into the aber-
rant, aggregating PrPSc (b-sheet enriched, in
which the superscript “Sc” refers to “scrapie”).
Importantly, it is the exposure of PrPC to PrPSc

that induces its pathogenic conformational
change. PrPSc can aggregate to form oligomers
and subsequent intra- and extracellular deposi-
tions of amyloid fibrils. PrPC is a membrane-
bound protein that is most likely involved in
synapse formation during neuronal develop-
ment. Whether loss of function of PrPC, either
via conformational change or oligomerization,
leads to neuronal impairment and cell death
or whether PrPSc oligomers are neurotoxic is
unclear.

PrP is encoded by the prion-related protein
gene (PRNP) located at chromosome 20q13.
Genetic prion disease is caused by dominantly
inherited mutations in PRNP, which are found
in �10% of all cases (Takada and Geschwind
2013). Interestingly, not all of these genetic pri-

on disease cases have a positive family history of
prion disease. This may be caused by a number
of factors, including misdiagnosis of family
members, late onset of disease symptoms, rare
occurrence of de novo mutations in PRNP, and
incomplete penetrance of some of the disease-
causing mutations in PRNP (Kovács et al. 2005).
More than 30 pathogenic mutations in PRNP
have been identified, including missense muta-
tions, insertions (specifically an octapeptide-re-
peat insertion), and deletions, though some of
these mutations are very rare, and occurrence is
restricted to specific geographic regions (Mas-
trianni 2010). Penetrance is high for most PRNP
mutations but is strongly age-dependent, with
disease onset usually between 40 and 60 years of
age. Although specific clinical features are often
associated with specific PRNP mutations, a sin-
gle PRNP mutation can be associated with var-
iable phenotypes even within a family (Kovács
et al. 2005).

Polymorphisms in PRNP are also the most
common risk factors identified in sporadic pri-
on disease to date. Specifically, individuals who
are heterozygous for PRNP codon 129 (which
can code for either methionine or valine) have
reduced risk for developing both sporadic and
acquired prion disease, whereas homozygous
individuals (either MM or VV) are overrepre-
sented in prion disease affected populations
(Parchi et al. 1999). Homozygosity at this codon
can decrease the age of onset in genetic prion
disease cases, and whether methionine or va-
line is present in the mutant PrP protein can
influence clinical presentation (Mead et al.
2009a). Furthermore, two protective variants
in PRNP have been described. The E219K var-
iant has been reported in roughly 6% of the
Japanese population but is absent in prion
disease cases (Shibuya et al. 1998), whereas
the G127V polymorphism has been identified
to reduce the risk of developing kuru, a prion
disease transmitted by cannibalism (Mead et al.
2009b). Although variants in genes other than
PRNP are likely to contribute to disease risk, the
low incidence of prion disease makes statistically
significant identification of these risk factors of
modest effect via SNP-based GWAS exceedingly
difficult.
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DISCUSSION

Independent Diseases or Spectrum Disorder?

A number of the same genes and their patho-
logically aggregating protein products are in-
volved in several clinically and pathologically
distinct neurodegenerative disorders (Fig. 2).
Mutations in SNCA and aggregation of its pro-
tein product a-synuclein are characteristic of
both PD and LBD, whereas APP mutations
and pathological aggregations of the resulting
amyloid protein cleavage product Ab are found
in both LBD and AD. Although mutations in
MAPTare commonly associated only with FTD,
aggregation of hyperphosphorylated tau into
NFTs is common to LBD, AD, and FTD. More
recently, it has become clear that the hexanu-

cleotide repeat expansion in C9ORF72 and mu-
tations in TARDBP and VCP are common to
FTD, ALS, and concomitant FTD-ALS (Callis-
ter and Pickering-Brown 2014).

Furthermore, a number of rare cases have
been described in which a gene previously
thought to be associated with only one specific
form of dementia was found to be mutated in
patients whose clinical phenotype and neuro-
pathology matched a different neurodegenera-
tive disorder. Examples of such cases include,
but are not limited to, the discovery of MAPT
mutations (R406T, A406W, and A152T) in AD
(Rademakers et al. 2003; Coppola et al. 2012;
Wojtas et al, 2012); PSEN1 G183V and M146V
missense mutations in Pick’s disease (Dermaut
et al. 2004) and FTD with amyloid plaques,
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Figure 2. Neurodegenerative dementias as a spectrum disorder. Genes (left) and their pathologically aggregating
protein products (right) and the neurodegenerative disorders (center) in which they have been implicated are
shown.
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NFTs, and Pick’s bodies (Riudavets et al. 2013),
respectively; and a number of patients with
C9ORF72 repeat expansions that presented
with AD, PD, and LBD (Majounie et al.
2012b; Wojtas et al. 2012; Kohli et al. 2013; Rob-
inson et al. 2014; for review, see Liu et al. 2014).
Moreover, mutations in GRN have been identi-
fied in both AD and PD cases (Brouwers et al.
2007, 2008; Wojtas et al. 2012), and there is
mounting evidence that GRN may act as a sus-
ceptibility gene for AD (Sheng et al. 2014).

As the clinical phenotype of these disorders
is often highly variable, it is possible that some
of these cases are examples of an initial misdi-
agnosis of the inherent condition. However, the
overlap in clinical phenotype of these diseases
and frequent comorbid presentation, along
with the phenotypic variability associated with
genetic variants described above, speaks to the
fact that these neurodegenerative dementias
may be better considered as part of a disease
spectrum, ranging from PD to LBD, AD, FTD,
and, on the far end, to ALS, than distinct disor-
ders. Although neurodegeneration is typically
targeted to distinct brain regions, which in
turn affects clinical phenotypes, the underlying
genetic variants, molecular pathology, and
general cellular pathways involved in disease
progression may show remarkable overlap
throughout this disease continuum.

Prion-Like Behavior of Aggregation-Prone
Pathogenic Proteins Underlying
Neurodegenerative Dementias

It has been proposed recently that a common
pathogenic mechanism, the prion-like behavior
of aggregation-prone protein species, may un-
derlie most neurodegenerative diseases (Prusi-
ner 2012, 2013; Peggion et al. 2014). “Prion-
like” refers to the capacity of an abnormally
folded peptide or protein to induce the same
abnormal conformation in a regularly folded
protein of the same kind, thereby initiating a
self-amplifying cascade. It is postulated that ag-
ing—and with it impairment of misfolded pro-
tein clearance mechanisms—is necessary as a
pathogenic event. Only when misfolded pri-
on-like proteins reach a certain threshold does

self-propagation, which leads to neuronal dys-
function, occur. Some evidence that such
abnormal conformational changes occur in
proteins associated with neurodegenerative dis-
eases and result in atrophy of affected tissue has
been provided for Ab (Stöhr et al. 2014; Watts
et al. 2014; reviewed in Prusiner 2013), tau
(Frost et al. 2009; Guo and Lee 2011; Holmes
et al. 2014; Sanders et al. 2014), a-synuclein
(Prusiner et al. 2015; reviewed in Oueslati
et al. 2014), SOD-1 (Grad et al. 2015), and
TDP-43 (Smethurst et al. 2015), but these find-
ings are mainly restricted to mouse models thus
far (for review, see Peggion et al. 2014).

However, this hypothesis is attractive, as it
would explain the sporadic nature and late on-
set of most neurodegenerative diseases as well as
the progressive spread of atrophy to different
areas of the brain. Furthermore, different con-
formations of aggregating protein could act as
different “strains” of the same disease, explain-
ing different cellular pathology and clinical
symptoms seen in diseases with the same un-
derlying mutation or aggregating protein. Last-
ly, some disease-causing mutations and risk
variants may exert their pathogenic effect by
modulating specifically the “prion-like” prop-
erties of aggregation-prone proteins.

These findings suggest that it may be helpful
to consider neurodegenerative dementias as
a spectrum disorder with shared pathogenic
mechanisms.

CONCLUSION

Over the last decade, a multitude of disease
variants implicated in neurodegenerative de-
mentias has been identified using linkage-based
analysis, SNP-mediated GWAS techniques, and,
more recently, next-generation sequencing ap-
proaches. Genetic screening for a number of
these disease-causing mutations and risk vari-
ants is now commonly available. This not only
will improve patient care but also may enable
the identification of case and control cohorts
for drug trials that aim to test the efficacy of
new treatments before onset of widespread neu-
ronal atrophy and associated clinical pheno-
types. Furthermore, the function of proteins

F.I. Hinz and D.H. Geschwind

16 Cite this article as Cold Spring Harb Perspect Biol 2017;9:a023705



encoded by disease-causing and susceptibility
genes and the molecular pathways these act as
part of will inform and direct future investiga-
tions of the underlying cellular pathology. For-
ty-four million people currently suffer from
neurodegenerative dementias, and the associat-
ed health-care costs for AD in the United States
in 2013 alone exceeded $200 billion (alz.org),
underscoring the severe need to develop cur-
rently lacking treatment options. Hopefully, in
the future, a multidisciplinary approach that
combines genetic, transcriptomic, proteomic,
and epigenetic information will provide a
more complete picture of underlying disease
mechanisms and point the way toward im-
proved therapeutic options.
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Stöhr J, Condello C, Watts JC, Bloch L, Oehler A, Nick M,
DeArmond SJ, Giles K, DeGrado WF, Prusiner SB. 2014.
Distinct synthetic Ab prion strains producing different
amyloid deposits in bigenic mice. Proc Natl Acad Sci 111:
10329–10334.

Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Sal-
vesen GS, Pericak-Vance M, Schmechel D, Saunders AM,
Goldgaber D, Roses AD. 1993. Binding of human apoli-
poprotein E to synthetic amyloid b peptide: Isoform-
specific effects and implications for late-onset Alzheimer
disease. Proc Natl Acad Sci 90: 8098–8102.

Takada LT, Geschwind MD. 2013. Prion diseases. Semin
Neurol 33: 348–356.

Tanikawa S, Mori F, Tanji K, Kakita A, Takahashi H, Waka-
bayashi K. 2012. Endosomal sorting related protein
CHMP2B is localized in Lewy bodies and glial cytoplas-
mic inclusions in a-synucleinopathy. Neurosci Lett 527:
16–21.

Thinakaran G, Koo EH. 2008. Amyloid precursor protein
trafficking, processing, and function. J Biol Chem 283:
29615–29619.

Toh H, Chitramuthu BP, Bennett HPJ, Bateman A. 2011.
Structure, function, and mechanism of progranulin; the
brain and beyond. J Mol Neurosci 45: 538–548.

Tran H, Almeida S, Moore J, Gendron TF, Chalasani U, Lu Y,
Du X, Nickerson JA, Petrucelli L, Weng Z, et al. 2015.
Differential toxicity of nuclear RNA foci versus dipeptide
repeat proteins in a Drosophila model of C9ORF72 FTD/
ALS. Neuron 87: 1207–1214.

Tsuang D, Leverenz JB, Lopez OL, Hamilton RL, Bennett
DA, Schneider JA, Buchman AS, Larson EB, Crane PK,
Kaye JA, et al. 2012. GBA mutations increase risk for Lewy
body disease with and without Alzheimer disease pathol-
ogy. Neurology 79: 1944–1950.

Tsuang D, Leverenz JB, Lopez OL, Hamilton RL, Bennett
DA, Schneider JA, Buchman AS, Larson EB, Crane PK,
Kaye JA, et al. 2013. APOE 14 increases risk for dementia
in pure synucleinopathies. JAMA Neurol 70: 223–228.

Valdmanis PN, Daoud H, Dion PA, Rouleau GA. 2009. Re-
cent advances in the genetics of amyotrophic lateral scle-
rosis. Curr Neurol Neurosci Rep 9: 198–205.

van Blitterswijk M, Rademakers R. 2015. Neurodegenerative
disease: C9orf72 repeats compromise nucleocytoplasmic
transport. Nat Rev Neurol 11: 670–672.

Van Damme P, Van Hoecke A, Lambrechts D, Vanacker P,
Bogaert E, van Swieten J, Carmeliet P, Van Den Bosch L,
Robberecht W. 2008. Progranulin functions as a neuro-
trophic factor to regulate neurite outgrowth and enhance
neuronal survival. J Cell Biol 181: 37–41.

van der Zee J, Van Langenhove T, Kleinberger G, Sleegers
K, Engelborghs S, Vandenberghe R, Santens P, Van den
Broeck M, Joris G, Brys J, et al. 2011. TMEM106B is
associated with frontotemporal lobar degeneration in a
clinically diagnosed patient cohort. Brain 134: 808–815.

Vann Jones SA, O’Brien JT. 2014. The prevalence and inci-
dence of dementia with Lewy bodies: A systematic review
of population and clinical studies. Psychol Med 44: 673–
683.

Visscher PM, Brown MA, McCarthy MI, Yang J. 2012. Five
years of GWAS discovery. Am J Hum Genet 90: 7–24.
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