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The causes and consequences of among-individual variation and covariation

in behaviours are of substantial interest to behavioural ecology, but the prox-

imate mechanisms underpinning this (co)variation are still unclear. Previous

research suggests metabolic rate as a potential proximate mechanism to

explain behavioural covariation. We measured the resting metabolic rate

(RMR), boldness and exploration in western stutter-trilling crickets, Gryllus
integer, selected differentially for short and fast development over two gen-

erations. After applying mixed-effects models to reveal the sign of the

covariation, we applied structural equation models to an individual-level

covariance matrix to examine whether the RMR generates covariation

between the measured behaviours. All traits showed among-individual vari-

ation and covariation: RMR and boldness were positively correlated, RMR

and exploration were negatively correlated, and boldness and exploration

were negatively correlated. However, the RMR was not a causal factor gen-

erating covariation between boldness and exploration. Instead, the

covariation between all three traits was explained by another, unmeasured

mechanism. The selection lines differed from each other in all measured

traits and significantly affected the covariance matrix structure between

the traits, suggesting that there is a genetic component in the trait inte-

gration. Our results emphasize that interpretations made solely from the

correlation matrix might be misleading.
1. Introduction
Among-individual (co)variation in behaviours has been hypothetically

explained by a corresponding variation in underlying proximate mechanisms,

such as metabolic rate and endocrine profiles [1,2]. According to these hypoth-

eses, a labile behavioural trait covaries with a labile physiological trait, which in
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turn varies among individuals and thereby leads to among-

individual variation in, or covariation between, behaviours.

Although prior research has revealed the above-

mentioned covariation patterns in animals [1,2], the proximate

mechanisms underpinning behavioural (co)variation still

remain unclear [3]. This is because interpreting single pairwise

correlations in a multivariate environment is uninforma-

tive about what is the most supported structure of the trait

associations [4–6]. Structural equation models (SEMs), which

estimate the correlation coefficients between two variables

when controlling for effects of all other correlations in a multi-

variate environment, are a powerful tool for comparing which

of the hypothesized causal structures underpins the multi-

variate correlation matrix [4–6]. They thus enable analysis of

the potential causal links among traits.

Basal metabolic rate in vertebrates and resting metabolic

rate (RMR) in invertebrates are potentially important proxi-

mate variables explaining, or covarying with, adaptive

individual differences in a range of behaviours, including

risky reactions such as boldness or exploration [2,7]. Meta-

bolic rate in its several different forms could explain

behavioural variation due to individual-level energetic

trade-offs within and between individuals [7–9]. Generally,

individuals that are bold or explorative are often predicted

to have higher metabolic rates and faster developmental

times compared with less bold and less exploratory conspeci-

fics [10–12], leading to a positive correlation between the

above-mentioned traits at the individual level due to past

correlated selection. At the proximate level, a larger metabolic

machinery requires a larger energy input [13], leading to a

higher expression of risky behaviours like boldness and

exploration which facilitate higher energy input [2,14] but

lower survival [15,16]. This results in further divergence in

life history traits, like developmental time, to balance the

trade-off between survival and the expression of risky beha-

viours [10]. Nevertheless, empirical evidence for the

correlation between metabolic rate and behaviours at the

individual level is still mixed [2,7,10,14–18], and the potential

proximate mechanisms behind the correlation structure need

more research.

The association between RMR and behavioural traits is

considered to be underpinned by the same proximate mech-

anism [7,14], while the metabolic rate itself has also been

suggested to be a potential proximate mechanism for behav-

ioural variation or covariation [2,14]. According to the former

hypothesis, plastic behavioural traits and RMR might not be

directly causally linked; instead, they covary due to the same

underlying mechanism [19]. The potential causal patterns

behind trait associations cannot, however, be unequivocally

drawn from trait correlations [3], even though such corre-

lations have often been applied as ‘empirical support’ for

potential causality [2]. This is because traits can also covary

with one another through other, unmeasured physiological

variables which cause the correlation between traits [4,20].

To test whether RMR potentially causes covariation between

behaviours, it is possible to apply SEMs and test which of the

alternative trait association structures is best supported by

the data [4–6].

Repeatability measures have been suggested as a rough

upper proxy for the heritability of traits [21]. Moreover, a

recent meta-analysis showed that the among-individual

part of the total phenotypic variation in behaviours might

have a genetic basis [22], suggesting a potential for the
‘phenotypic gambit’ or ‘Cheverud’s conjecture’ on beha-

viours. This is based on the assumption that individual-

level (co)variation in behaviours reflects the patterns of addi-

tive genetic variation or covariation [23–25]. Interactions

between genetic and environmental effects are likely to be

important in the development of individual behavioural

differences [26]. However, whether there is a genetic com-

ponent causing the association between energy metabolism

and behavioural variation has not been extensively studied

[27]. Importantly, if such covariance structures are under-

pinned by additive genetic variation, it most probably

limits the evolutionary potential for any single trait involved

in this trait syndrome [22].

To quantify individual-level relationships between bold-

ness, exploration and RMR, we analysed the hiding

behaviour of the western stutter-trilling cricket, Gryllus
integer, in familiar and unfamiliar environments and

measured their RMR repeatedly. The Gryllus genus has

been used earlier as a model to examine the interconnections

between behaviours, metabolism and life history traits

[17,18,28]. We first ran univariate models for each trait separ-

ately in order to study the effects of selection lines for each

trait. We then performed the multivariate mixed-effects

models in order to study the existence and the direction of

among-individual level correlation between behaviours and

RMR. Lastly, we applied SEMs for the individual-level corre-

lation matrix in order to test the two competing hypotheses

about the potential patterns underpinning the trait covaria-

tion: whether RMR acts as a factor explaining behavioural

covariation or whether covariation between all three traits

is underpinned by another unmeasured mechanism [2,7,14].

To establish whether a genetic component underpins the

average expression of measured traits or the covariation

structure between measured traits, we used individuals orig-

inating from lines selected for fast or slow development.

Developmental time is associated with body mass and,

indirectly, with boldness, so that faster development to

maturity predicts lower body mass and increased boldness

[29]. Based on the behavioural syndrome literature [10], we

predicted a positive among-individual correlation between

boldness and exploration, so that individuals that have

short latency times to initiate activity in a familiar environ-

ment also have short latency times to resume activity in a

novel environment. Empirical evidence from studies on

behavioural variation and metabolism shows a remarkable

covariation between the traits at the phenotypic level

[12,30–34], while there is general agreement that metabolism

might be an important predictor of behaviour [10]. As

shy behavioural types often have a low RMR compared

with bold types [7,14–16,35], we expected a lower RMR in

shy, slowly developing and less exploratory individuals

compared with bold, rapidly developing and more

exploratory ones.
2. Material and methods
(a) Insects and selection lines
We used crickets from a laboratory stock originating from a wild

population (Davis, CA, USA). To start the selection lines, a total

of 903 juvenile crickets were placed individually in plastic

containers (128 � 98 � 73 mm) with a ventilation hole (30 mm

diameter) covered with a plastic net. The crickets were provided
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a shelter made of cardboard. The crickets were maintained

in these containers until they reached sexual maturity and

were then mated (12 L : 12 D cycle, 27+ 18C, food and water

ad libitum).

(b) Creation and maintenance of selection lines
The experimental design consisted of three replicate lines within

each main selection line (selection for rapid development, slow

development and control). In each generation, offspring were

produced using paired fertilizations of at least 45 males and 45

females in each nine replicate lines. This produced, on average,

26 families within each main selection line. For rapid and slow

development lines, mated males and females were selected

according to their maturation age, with only 16.67% of the

most rapidly or slowly maturing individuals used. In the control

line, matings were randomized over the whole maturation age

range [17,18].

All matings were performed in isolated plastic boxes and

were always conducted within each replicate line. Crickets

from the same family were never mated with each other. To

maximize mating success, males were allowed to stay in these

boxes for 1 day, after which they were returned to their housing

containers. Females remained in the boxes for 7 days to facilitate

successful egg-laying. The eggs were left in the mating boxes

until hatching. One and a half months after hatching, random

samples of surviving offspring were placed into individual con-

tainers in a random order. The same procedure was performed in

each of the three generations [17,18]. After two generations of

selection, the development time (the average maturation

time+ s.d.) for rapidly developing individuals was 101.65+
13.36 days (n ¼ 350 crickets), 123.49+ 27.37 days (n ¼ 346) for

the control individuals and 131.79+27.24 days (n ¼ 356) for

slowly developing crickets. The development time of all lines

generally differed significantly (one-way ANOVA, F2,1050 ¼

154.753, p , 0.001) and all the lines differed significantly

between each other (Tukey post hoc tests, all p , 0.001), while

replicates did not differ significantly within each line (all p .

0.05).

(c) Behavioural trials
The study was carried out at the Estonian University of Life

Sciences. Measurements of boldness, exploration and RMR

were carried out twice for each of the F2 generation crickets as

soon as the imago reached 4 weeks of age (n ¼ 146 individuals:

75 slowly developing, 45 rapidly developing and 26 control indi-

viduals). All insects were weighed using a Kern analytical

balance (Kern & Sohn GmbH, Balingen, Germany) (body mass:

0.528+0.082 g, mean+ s.d., n ¼ 146). Mass-specific values of

metabolic rate are used in this study. The observers of the insects’

behaviour and metabolic responses were blind to all predictions

and treatments [36].

(d) Resuming activity in a familiar environment:
boldness tests

Behavioural trials were conducted under constant temperature in

a computer-controlled room (25+18C) and sound-proof con-

ditions. We used a dim red light (a 25 W red incandescent

bulb) because Gryllus spp. cannot see long (red) wavelengths

properly, which allowed us to observe these nocturnal insects

without disturbing them. The crickets were provided with drink-

ing water before the onset of the trials, while food was removed

5 h before the beginning of experimental trials. All trials were

performed between 06.00 and 24.00 h.

At the beginning of each trial, the focal cricket was captured

in its housing box by hand. After handling the insect for 1 min, it
was placed back into its cardboard shelter. Both sides of the shel-

ter were closed with a plexiglass cover and the shelter was

transferred to the centre of the insect’s housing box. After a 30-s

acclimation period the Plexiglass cover was removed, and we

started observations of the activity of the focal individual [18].

We recorded the latency to resume activity by observing the

time when the cricket started to move its body inside its card-

board shelter after disturbance. We termed this behaviour

‘boldness’ [10,15,18]. We defined boldness as the inverse of the

latency to resume activity after being handled, so that bold indi-

viduals had the shortest latency periods. We repeated this

measurement for each individual 4 days later. The latency to

resume activity indicates the duration of freezing, i.e. assuming

an immobile state, a widespread anti-predator response used

by many taxa [35,37].
(e) Resuming activity under unfamiliar environments:
exploration tests

Two days after the boldness test, we handled crickets for 1 min

and then gave them the opportunity to escape into a conical plas-

tic Eppendorf test tube (volume 5 ml) kept in dark conditions,

which was used as an insect chamber during the measurement

of the RMR. This Eppendorf tube acted as a novel environment

to the crickets and thus resuming activity resembled the

initiation of exploration activity [7]. The insect chamber was

connected to the respirometer by means of rubber tubing [38].

Upon the escape to the insect chamber, each of the crickets

immediately became completely immobile, as if hiding in a

burrow. We waited until all crickets resumed active movements,

and recorded the time between entering the tube and resuming

activity as a measure of exploration.
( f ) Measuring resting metabolic rate
The insects remained in their Eppendorf chambers for 4 h (see

above), and we recorded their rates of metabolism at 60 min,

120 min, 180 min and 240 min. This was done in order to find

out the point when CO2 emissions reach the lowest rates, and

whether all cricket lines reach their RMR simultaneously. As

soon as the measurements were over, we returned the crickets

back to their plastic housing boxes. We repeated the RMR

measurements 5 days later.

We followed several important guidelines while measuring

cricket respiration [38–40]. The LI-7000 differential CO2/H2O

analyser (LiCor, Lincoln, NE, USA) was calibrated by means of

calibration gases with gas injection (Linde AG, Höllriegelskreuth,

Germany) [15,16]. While measuring CO2 emissions, the insect

chamber was perfused with dry CO2-free air, produced by pas-

sing air over Drierite (W. A. Hammond Drierite Co. Ltd, Xenia,

OH, USA) and soda-lime granules at a flow rate of

60 ml min21 controlled by an electronic flowmeter (Agilent Tech-

nologies, USA). The humidity and temperature of air entering the

insect chamber was continuously measured using a Temperature

and Humidity Display Instrument for digital HygroClips probes

(Rotronic AG, Germany). The respirometric device was com-

bined with an infrared optical system using IR-emitting and

IR-sensor diodes [15,16]. IR diodes made it possible to record

CO2 production and to follow the movements of each cricket

simultaneously. The baseline drift of the analyser was corrected

during analysis from the measurements at the beginning and

end of each trial with the respirometer chamber empty [15]

and every 30 min by carefully closing the insect chamber and

opening the bypass tubing for 2 min. The LI-7000 analyser did

not show any important baseline drift when switched on for

more than 3 days.
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(g) Statistical analyses
(i) Univariate models
We used a mixed-effects modelling framework to decompose

variation in behaviours and RMR at the within- and among-

individual levels [20]. Decomposing variation at these levels

enables the analysis of whether individual mean values in a

labile trait differ consistently from each other and estimating

repeatabilities (i.e. among-individual variance divided by the

total phenotypic variance [20]) of the traits of interest to quantify

the proportion of the total phenotypic variance explained by the

‘individual’ (used to quantify the presence of animal personality

in behavioural ecology). We created a separate univariate model

for each of the measured traits with ‘individual identity’ as a

random factor. ‘Sex’ (factor: male versus female) and ‘body

mass’ (mean centered; covariate) were fitted as fixed effects. To

control for effects of the experimental set-up, we included ‘test

sequence’ (factor: first versus second trial) and ‘measurement

chamber’ (for RMR and activity in a novel environment only:

factor; chamber 1 versus chamber 2) as fixed factors. To control

for differences between selection lines, we added ‘selection

line’ (factor: control as reference category) as a fixed effect. The

statistical significance of fixed effects was based on the F-statistics

and numerator and denumerator degrees of freedom. The stat-

istical significance of the individual random effect was assessed

by comparing the fit of the full model to the model where the

individual random effect was removed and using a likelihood

ratio test (x2-test over one degree of freedom). We did not

use replicate lines within each selection line in the final

models because the preliminary analysis showed no significant

differences among replicate lines in any trait.

(ii) Multivariate model
We ran a multivariate model to see if repeatable behaviours and

repeatable RMR were associated with each other at the individ-

ual level. We used the same fixed-effect structure in the

multivariate model as in univariate models, the only difference

being the exclusion of ‘test chamber’ from the model, because

it was not used when testing activity in a familiar environment.

Importantly, ‘selection line’ as a fixed effect in the model

provides information on the potential genetics that a trait

covariance structure has, i.e. whether selection line significantly
explains the trait covariation structure. As we were interested

in among-individual covariation of the traits to see if individuals

that are consistently more active also have a consistently higher

metabolic rate (a priori working hypothesis), we included ‘indi-

vidual’ as a random factor in the model [20,27]. This enabled

us to decompose covariation between the measured traits at

the within- and among-individual levels. As the RMR and

exploration were recorded in a different sampling event com-

pared to boldness, i.e. the measurements were temporally

disparate, we could not estimate within-individual covariation

between boldness and any other trait [20]. Therefore the

within-individual correlations between boldness and other

traits were not estimated. The statistical significance of a trait’s

covariances (hence, correlations) at each level of variation was

calculated by comparing the fit of the full model with the one

where the covariance of interest was constrained to zero (using

a likelihood ratio test as detailed above).

(iii) Structural equation models
To study which trait association structure was statistically sup-

ported, we fitted SEMs to the data at the among-individual
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level [5,6]. We took the among-individual level covariance matrix

forward from the multivariate mixed-effects models (see above)

and used that as data for SEMs. We formed seven a priori
models and compared the fit of these models using Akaike’s

information criteria, i.e. AIC. The DAIC � 2 between two

models is considered to be a statistically significant difference.

Model A is a NULL model with traits being independent from

each other. In model B, only behaviours are correlated; in

model C, RMR correlates only with boldness; in model D,

RMR correlates only with exploration; and in model E, RMR cor-

relates with both behaviours. In model F, behaviours are

correlated with RMR via a common proximate mechanism

(named here as ‘latent variable’). In model G, behavioural corre-

lation is potentially caused by the effects of the RMR on both

behaviours.

All traits were analysed using Gaussian error distributions.

All traits were log-transformed in order to achieve normality

and decrease heteroscedasticity [41], which were both verified

by visual inspection. All traits were standardized prior to analy-

sis. The mixed-effects analyses were conducted using the

statistical software ASReml 3.0.5. [42], while the SEM analyses

were run by using the software R (v. 2.15.3.) [43].
3. Results
(a) Univariate models
Exploration (activity in a novel environment) (figure 1), bold-

ness (activity in a familiar environment) (figure 1) and RMR

(figure 2) expressed significant among-individual variation

(repeatabilities; R (s.e.) ¼ 0.858 (0.022), 0.801 (0.030), 0.841

(0.025), respectively) (table 1 and figure 3). The selection

line affected the mean expression of the RMR, activity in a

novel environment and activity in a familiar environment

so that individuals from the slowly maturing selection line

had a higher RMR. Slowly developing crickets also resumed

activity faster in a novel but more slowly in a familiar

environment on average compared with the rapidly maturing

selection line (table 1). As the selection line explained the

expression of the traits significantly in all univariate

models, there might be a genetic component underlying all
of the measured traits. Moreover, when individuals were

measured for the second time, they resumed activity in a fam-

iliar environment more slowly and had higher metabolic rates

(table 1). We did not find sex differences in any of the

measured traits. Bold, rapidly developing crickets reached

the RMR significantly sooner than slowly developing, shy

ones (Mann–Whitney test, U ¼ 0, p , 0.0001) (figure 4).
(b) Multivariate model
RMR, activity in a novel environment and activity in a familiar

environment were all correlated at the among-individual

level, which means that there is a behaviour–metabolic rate

syndrome between these traits (table 2). The results show

that bold individuals (i.e. those with low time values under

familiar conditions) are less explorative: they have high

time values under unfamiliar conditions. They also have

low metabolic rates compared with shy individuals (i.e.

those with high time values under familiar conditions) who

are more explorative (low time values under unfamiliar



Table 2. Covariation between the measured traits at within- and among-individual levels: correlations (r) are shown with their standard errors, and x2-values
for the random parameters with their respective p-values.

correlation r (s.e.) x2
1 p-value

exploration – boldness

between-individual 20.664 (0.057) 63.31 ,0.001

exploration – RMR

between-individual 20.345 (0.082) 14.89 ,0.001

within-individual 20.079 (0.083) 0.90 0.343

boldness – RMR

between-individual 0.318 (0.085) 12.12 ,0.001
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conditions) and have high metabolic rates. The best fitting

SEM suggests that all measured traits are associated with

each other via a common, unmeasured (latent) proximate

mechanism (model F, figure 5). The model in which the

RMR underpins behavioural covariation was not statistically

supported (model G, figure 5). This means that RMR, bold-

ness and exploration are all structurally associated, forming

a behaviour–physiology syndrome at the among-individual

level. Within-individual correlation between RMR and

exploration was non-significant, suggesting an absence of

correlated plasticity.

In the multivariate mixed-effects model, the selection

line significantly explained variation, suggesting that a gen-

etic component might partly underpin the trait covariance

structure (F6, 184.2 ¼ 43.84, p , 0.001).
4. Discussion
Our analysis of the RMR, boldness and exploration in wes-

tern stutter-trilling crickets showed that there are among-

individual correlations between the measured behaviours

and RMR. The correlations, however, were not always in

the hypothesized direction. Importantly, our analysis shows

that among-individual correlations between RMR and beha-

viours are caused by an unmeasured proximate mechanism

rather than the RMR driving the correlation between the

measured behaviours. Our results add to the growing evi-

dence suggesting that the correlation structure among traits

associated with a behavioural syndrome may substantially

vary depending on the population under investigation

[6,44–46], often differing from standard assumptions [10].

Our results are also generally in line with the hypothesis

that variation in metabolic rate is associated with variation

in behaviours [2,7,14], adding some detail to these theories

by taking into account the intrinsic nature of this association.

Two competing energy allocation models have been pro-

posed to predict the direction of the relationships between

metabolic rate and behaviour, i.e. whether these traits are

positively or negatively associated with each other

[2,7,9,14,47]. According to the performance model, a high

metabolic rate requires the increased expression of costly

behaviours such as activity, boldness or exploration in

order to match high energy demands with high energy

supply, leading to positive association between RMR and

activity. In the compensation model, an animal allocates a

fixed amount of energy across competing processes such as
RMR or activity: activity and RMR are thus negatively

linked because animals with a higher RMR have less

energy to expend in activity [14,47]. Our results do not clearly

support either model. As measured here, bold crickets were

less exploratory and had a lower RMR than shy, more

explorative crickets. Therefore, the conservative hypothesis

about the sign (i.e. positive or negative) of the relationship

between RMR and the most studied and ecologically relevant

behaviours such as exploration, boldness and general activity

may not be universally valid. Instead, our results suggest that

this relationship depends on the behaviour under

examination, such as those demonstrated here.

Phenotypic correlations generally follow the direction and

magnitude of genetic correlations [24,27,48]. High among-

individual variation in behavioural traits might therefore

indicate high underpinning additive genetic variation,

which explains a part of the among-individual variation in

behaviours [22]. According to our results, an artificial selec-

tion regime substantially explained trait covariations and

the behavioural expression at the average level, which

suggests, at least to some extent, that there is a genetic com-

ponent behind the expression of measured traits and their

associations. Even though trait correlations, as discussed

above, are informative about the direction of trait association,

they cannot fully predict the causal patterns underpinning

the trait associations.

There are two main general hypotheses about the causal-

ity behind the correlation between metabolic rate and

behaviours. Firstly, RMR could correlate with behaviours

because they share a common proximate mechanism [7,14].

Another view suggests that variation in the metabolic rate

might be a proximate mechanism for the expression of behav-

ioural (co)variation [14,19]. These causal hypotheses relate to

the two energy allocation models (discussed above) so that,

in the compensation model, causality is not necessarily

present, while, in the performance model, the RMR can act

as a causal factor underlying behavioural expression. Our

results support the former hypothesis, because the RMR

does not generate correlation between boldness and explora-

tion. Instead, the association between all three traits is

underpinned by a shared proximate mechanism.

A shared hormonal mechanism is one of the potential

proximate explanations for the integration between metabolic

rates and behaviours [7,14], as hormones have been found

to explain variation in behaviours and metabolic rates inde-

pendently in correlational studies. For example, circulating

hormone levels have been shown to explain among-
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individual variation in exploration in rats [49] and variation

in metabolic rates in birds [50] so that high hormone levels

explain high exploration and high metabolic rates within

these studies (see [14] for opposite patterns).

Our results are partly contradictory with the results of a

recent study conducted with another cricket species showing

that metabolic rate and behaviours are not causally related

nor integrated due to a shared proximate mechanism, but

rather show modularity so that behavioural traits covary sep-

arately from metabolic rate and body mass [8]. Contrary to

our findings in a cricket, a recently published meta-analysis

suggested that metabolic rate acts as a proximate mechanism

for expressed individual variation in behavioural traits in

birds [51]. This meta-analysis promotes research on proxi-

mate mechanisms explaining trait variation and covariation,

despite being based on indirect evidence and a bold assump-

tion that variance in any trait must predict variation in all

traits that have lower or equal variance compared with a

focal trait [51]. All in all, SEMs combined with multivariate

mixed-effects models provide a powerful tool to study the

potential alternative association patterns between traits

[4,20] and to reveal ‘hidden’ biological patterns behind the

correlation matrixes. Revealing the potential proximate mech-

anisms behind trait covariation patterns will help those

studying covariation at different levels to take a step forward

and make the biological interpretations of the data in a less

biased and speculative manner.
5. Conclusion
This study revealed (i) substantial among-individual vari-

ation in exploration, boldness and energy metabolism, as

well as (ii) covariations among these traits, underpinned by
a common, unmeasured proximate mechanism other than

the RMR. The results suggest that relationships between the

RMR and the behaviour of an organism might be explained

by the performance and the allocation model, depending on

the type of behaviour being studied. Furthermore, these

relationships may be underpinned by additive genetic vari-

ation. Our results encourage more research in quantitative

genetics of metabolic rate–behavioural syndromes in

order to examine the adaptive role(s) of similar trait

correlations. Finally, we suggest that caution should be exer-

cised when making interpretations about the potential causal

patterns between traits if they are based solely on simple

(among-individual) correlation matrixes.
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