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ABSTRACT We consider the plant genetic improvement challenge of introgressing multiple alleles from a homozygous donor to a
recipient. First, we frame the project as an algorithmic process that can be mathematically formulated. We then introduce a novel
metric for selecting breeding parents that we refer to as the predicted cross value (PCV). Unlike estimated breeding values, which
represent predictions of general combining ability, the PCV predicts specific combining ability. The PCV takes estimates of
recombination frequencies as an input vector and calculates the probability that a pair of parents will produce a gamete with desirable
alleles at all specified loci. We compared the PCV approach with existing estimated-breeding-value approaches in two simulation
experiments, in which 7 and 20 desirable alleles were to be introgressed from a donor line into a recipient line. Results suggest that the
PCV is more efficient and effective for multi-allelic trait introgression. We also discuss how operations research can be used for other
crop genetic improvement projects and suggest several future research directions.
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DISCOVERIES of genetic variants associated with crop
phenotypic variants have been accelerating through

use of forward and reverse genetics approaches.Wenowhave
databases cataloging thousands of genetic variants (alleles)
associated with desirable phenotypes in large germplasm
repositories (McCouch et al. 2012; Cavanagh et al. 2013).
This information tells us that desirable alleles are distributed
unevenly throughout germplasm collections and unevenly
across crop genomes. Nonetheless, these resources will pro-
vide desirable alleles for genetic improvement of crops in
rapidly changing environments (Kumar et al. 2010; Leung
et al. 2015).

Introgression of a single desirable allele from an inferior
agronomic cultivar to an elite cultivar is routinely accom-
plished using marker-assisted backcrossing strategies (Visscher
et al. 1996; Frisch et al. 1999; Frisch and Melchinger 2005;
Peng et al. 2014a). Furthermore, as long as there are very few
cultivars that are capable of maintenance and regeneration in
tissue culture, creation of novel alleles through genome-editing

technologies will likewise depend on trait introgression
for cultivar development. Introgression of multiple alleles
is not as well studied, but genomic selection (Bernardo
2009; Longin and Reif 2014; Gorjanc et al. 2016) and
marker-assisted gene pyramiding (Servin et al. 2004;
Canzar and El-Kebir 2011; Xu et al. 2011; De Beukelaer
et al. 2015) have been proposed as approaches for intro-
gressing multiple alleles from unadapted landraces into
elite cultivars.

Thegenomic estimatedbreedingvalue (GEBV) (Meuwissen
et al. 2001), based on large sets of genomic markers, is com-
monly used for parental selection and has been proposed for
trait introgression projects in crop species (Bernardo 2009).
The optimal haploid value (OHV) (Daetwyler et al. 2015) was
proposed as an alternative breeding value metric to evaluate
potential rather than a realized breeding value among prog-
eny. Both of these metrics may be thought of as predictors of
general combining ability for an inference space consisting of a
breeding population. Prior to development of the GEBV, van
Berloo and Stam (1998) proposed a combination index (CI) to
identify pairs of recombinant inbred lines (RILs) derived from
a single mating of two homozygous lines for purposes of accu-
mulating desirable QTL in subsequent generations of breed-
ing. Their CI metric may be thought of as a predictor of specific
combining ability among sets of RILs within the family derived
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from the initial cross. While the CI was evaluated in simulated
genomes with various degrees of linkage disequilibrium
(LD) among QTL, none of these metrics explicitly use re-
combination or linkage phase information. Recently, Bonk
et al. (2016) developed breeding value models for dairy
herds that use linkage map information to identify matings
that will produce progeny with large variances of breeding
values. The premise of this approach was that a higher Men-
delian sampling variance for a given pair of parents would
lead to a higher chance to generating outstanding progeny
with many desirable alleles.

Herein, we build on the concepts introduced by van Berloo
and Stam (1998) as well as those of Bonk et al. (2016) and
propose a metric, the predicted cross value (PCV) for
selecting specific crosses. We apply the PCV to the process
of introgressing multiple alleles from a single homozygous
donor. However, rather than applying the metric to RILs
derived from a single cross, we apply it to any arbitrary
set of progeny derived from crosses in multiple generations
which is required for introgressing multiple alleles from a
donor. The PCV is a predictor of specific combining ability
for an inference space consisting of future sets of progeny
derived from possible crosses in a breeding population.
Explicitly, the PCV calculates the probability that a cross
will produce an ideal genotype in two future generations of
matings.

We compare selection using PCV with GEBV and OHV in
two multi-allelic introgression projects: (a) Introgression of
seven independently segregating alleles. Such situations
occur when the goal is to adapt a tropical cultivar to high
latitudes for purposes of evaluating other agronomic traits
without confounding influences ofmaturity. (b) Introgression
of 20 alleles from an exotic accession into an elite cultivar for
purposes of improving a polygenic trait.

Methods

Formulation

The general objective of multi-allelic introgression projects is
to transfer multiple desirable alleles, or haplotypes, from a
donor to a recipient. The ultimate goal is to produce at least
one individual with a genome consisting of homozygous
desirable haplotypes and no undesirable alleles from the
donor. The introgression process begins by identifying the
donor and recipient cultivars based on criteria defined by the
breeder. The selected cultivars are then planted, grown to
sexual maturity, and crossed. The resulting seeds are har-
vested and planted along with the recipient parent. The
progeny are evaluated to assure that they represent the F1
generation with half of their genomes inherited from each
parent. In subsequent filial generations, breeding parents
are selected from the current population to be crossed,
and the progeny are evaluated to determine if any meet
the goal. If not, the process of selection and reproduction
will be repeated.

Multi-allelic introgression as an algorithmic process: We
illustrate the major components of the introgression pro-
cess in Figure 1 and explain each of the components as
follows.

The point: The introgression process starts with
identification of at least one recipient and one donor. In the
case of most annual crops, both recipient and donor are
homozygous throughout their genomes. The majority of al-
leles in the recipient are desirable but some are undesirable.
The donor carries the desirable versions of alleles that the
recipient is lacking, but the rest of the alleles of the donor are
undesirable.

The step: In this step,marker genotypes of individuals in the
current generation are evaluated.

The condition: The stopping condition is checked
in this step, which determines whether the current gener-
ation of progeny contains an individual that is homozygous
with only desirable alleles from both the recipient and
donor.

The step: In this step, breeding parents are
selected from the current generation of individuals to produce
the next generation of progeny. The current generation in-
cludes the recipient line and thenewlyproducedgenerationof
progeny but not individuals fromprevious generations. This is
because the recipient is a replicable entity, whereas individual
progeny from previous generations have lived through their
life cycle and were not replicable. If the cross involves the
recipient cultivar, then it is referred to as a backcross. Another
special case of selection is to select only one plant to cross
through self-pollination.

The step: In this step, the breeding parents
selected from the selection step are crossed to produce a
new generation of progeny. The genotypes of this next gen-
eration of progeny are produced through the stochastic
processes of transmission genetics.

The point: The goal of an introgression breed-
ing project is to produce an ideal line that inherits only the
desirable alleles from the recipient and thedonor line. Inother
words, the ideal line is homozygous and does not contain

Figure 1 Flowchart of the multi-allelic introgression process.
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undesirable alleles. The breeding process finishes when an
ideal line has been produced. This line will then proceed to
further stages of cultivar development.

Simplifying assumptions: Several assumptions are made to
simplify the formulationand illustrate the coreelementsof the
process. In the Discussion section, we discuss relaxing these
assumptions in future studies.

1. Consider annual diploid and allopolyploid species such as
corn, sorghum, sunflower, rice, and wheat with subge-
nome-specific loci.

2. Consider a single multi-allelic trait, where all segregating
loci associated with the trait are known. Results also apply
to multiple traits such as gene stacks where all traits are of
equal value.

3. All marker alleles are either desirable or undesirable. Val-
ues of alleles could be modeled as continuous from some
distribution or, in many cases, the value of an allele is
unknown.

4. To illustrate the principles, all desirable alleles missing in
the recipient are carried by one donor line.

5. One pair of parents is selected for crossing in each gener-
ation, with self-pollination as a special but feasible option.
In actual breeding practice, multiple crosses are some-
times made to produce sufficient numbers of progeny for
field trial evaluations.

6. During evaluation, a sufficient number of informative
markers are distributed throughout the genome at suffi-
cient density to allow estimation of recombination be-
tween all adjacent pairs of markers.

7. Recombination events between pairs of adjacent loci are
assumed to be independent (Haldane 1919).

Mathematical formulation of the multi-allelic introgres-
sion process: We use an N-by-two binary matrix, say
L 2 B

N3 2; to represent the genotype of an individual
plant, where N is the total number of QTL in the genome.
Each row represents a locus in the genome, and the two
columns represent the paired chromosomes. The binary
value Li;j indicates whether the allele in locus i of chromo-
some j is desirable ðLi;j ¼ 1Þ or undesirable ðLi;j ¼ 0Þ:

Definition 0.1. We define the gamete function,
g ¼ GameteðL; JÞ; as follows. Its input parameters include
a binary matrix L 2 B

N3 2 and a binary vector J 2 B
N : Its

output is a binary vector g 2 B
N ; which is determined as

gi ¼ Li;Jiþ1;"i 2 f1; . . . ;Ng:
In this definition, L represents the genotype of an indi-

vidual plant, and the binary vector J indicates the sources
of inheritance for the alleles in a gamete. If Ji ¼ 0; then
the gi allele is inherited from Li;1; otherwise it originates
from Li;2: To realistically represent the actual gamete for-
mation process, the input binary vector J must be a ran-
dom one following a special distribution, which is defined
as follows.

Definition 0.2. We say that the random binary vector
J 2 B

N follows an inheritance distributionwith parameter vec-
tor r 2 ½0; 0:5�N21 if

J1 ¼
�
0 w:p: 0:5
1 w:p: 0:5

; (1)

Ji ¼
�

Ji21 w:p: 12 ri21
12 Ji21 w:p: ri21

;"i 2 f2; . . . ;Ng: (2)

Here, “w.p.” stands for “with probability.”
According to Mendel’s second law, L1;1 and L1;2 are equally

likely to transmit g1; hence Equation 1. Given the inheritance
source of the allele ði2 1Þ in the gamete, the probability that
allele i comes from the same chromosome ðJi ¼ Ji21Þ is
12 ri21; which explains Equation 2.

Definition 0.3. We define the reproduce function,
X ¼ ReproduceðL1; L2; r;KÞ; as follows. Its input parame-
ters include two binary matrices L1; L2 2 B

N3 2; a vector
r 2 ½0; 0:5�N21; and a positive integer number K. Its output is
a three-dimensional matrix X 2 B

N3 23K ; representing a pop-
ulation of K progeny,which is determined by first generating 2K
independent and identically distributed random vectors from
the inheritance distribution with parameter vector r, denoted

Figure 2 Illustration of the plumbing system for Example 0.1. Black rect-
angles are the valves, with binary numbers indicating whether they are
open (1) or closed (0). The blue parallelograms are the water pipes, whose
widths represent their relative volumes and not necessarily the actual
amounts of water flowing through.
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as Jp;"p 2 f1; . . . ; 2Kg; and then setting Xi;j;k ¼ Gametei

ðLj; J2k22þjÞ;"i 2 f1; . . . ;Ng; j 2 f1; 2g; k 2 f1; . . . ;Kg:
Definition 0.4. The select function, ½k1; k2� ¼ SelectðX; rÞ;

is defined as follows. Its input parameters include a three-
dimensional binary matrix, X 2 B

N323K ; and a vector
r 2 ½0; 0:5�N21: Its output includes two integers, k1; k2 2 Z:

Here, k1 and k2 are the indices of the selected parents in
the breeding population X. If k1 ¼ k2; then self-pollination is
suggested as the breeding strategy.

Definition 0.5. We define the breed function as
G ¼ BreedðP0; r;KÞ: Its input parameters include a three-di-
mensional binary matrix P0 2 B

N323 2; a vector
r 2 ½0; 0:5�N21; and a positive integer K. Its output, G, is the
number of generations it takes to successfully finish the process,
which is determined through the following steps.

Step 0 (initialization). Set t ¼ 0 and go to step 1.
Step 1 (evaluation). If max

k
fPN

i¼1ðPt
i;1;k þ Pt

i;2;kÞg ¼ 2N
RETURN: G ¼ t:
Else go to step 2.
Step 2 (selection). Obtain

�
kt1; k

t
2

� ¼ SelectðPt; rÞ and go
to step 3.

Step 3 (reproduction). Obtain Ptþ1 ¼ReproduceðPt:;:;kt
1
;

Pt:;:;kt2 ; r;KÞ; update t)t þ 1; and go to step 1.
The function BreedðP0; r;KÞ is amathematical formulation

of the multi-allelic introgression process, in which the selec-
tion step has the most significant influence on the efficiency
of the process. In Existing approaches for parental selection,
we review existing approaches for parental selection,
and then we propose a new approach in PCV for parental
selection.

Existing approaches for parental selection: The GEBV
approach selects breeding parents based on the GEBV.
In the context of multi-allelic introgression, if we assume
uniform weight for all desirable alleles, then the GEBV of
an individual L is equivalent to the number of desirable
alleles:

XN
i¼1

�
Li;1 þ Li;2

�
: (3)

The two individuals with the highest GEBV will be selected
according to the GEBV approach.

The OHV approach (Daetwyler et al. 2015) defined a dif-
ferent metric for parental selection. This approach recognizes
that meiosis can produce gametes with recombined haplo-
type loci. The OHV of an individual can be interpreted as
the best doubled-haploid progeny that could possibly be pro-
duced by selfing such individual. As such, OHV measures the
potential breeding value of the individual’s progeny. In the
context of multi-allelic introgression, the OHV of an individ-
ual L is defined as:

XN
i¼1

  2max
�
Li;1; Li;2

�
: (4)

The two individuals with the highest OHV will be selected
according to the OHV approach.

PCV for parental selection

Wepropose a newparental-selection approach using the PCV,
which is defined as follows.

Definition of PCV: Let L1; L2 2 B
N3 2 denote two breeding

individuals, and let
h
g1; g2

i
denote a random progeny of theirs,

where g1 ¼ Gamete

	
L1; J1



and g2 ¼ Gamete

	
L2; J2



are

gametes produced by L1 and L2; respectively.When the progenyh
g1; g2

i
is crossed with another individual (or itself) in the next

generation, it will produce a gamete, which we denote as

g3 ¼ Gamete

 h
g1; g2

i
; J3
!
: Here J1; J2; and J3 are three in-

dependent and identically distributed random vectors following
the inheritance distribution with parameter vector r.

Definition 0.6. For a given pair of individuals L1 and L2; the
PCV is defined as the probability that a gamete, g3; produced by
a random progeny from crossing these two individuals, will
consist only of desirable alleles:

Figure 3 Illustration of the plumbing system for Example 0.2. Black rect-
angles are the valves, with binary numbers indicating whether they are
open (1) or closed (0). The blue parallelograms are the water pipes, whose
widths represent their relative volumes and not necessarily the actual
amounts of water flowing through.
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PCV

	
L1; L2; r



¼ P

	
g3i ¼ 1;"i 2 f1; . . .Ng



:

Here, r is the recombination frequency vector.
The rationale for the PCV definition is to calculate the

probability that none of the undesirable alleles survives two
generationsofmeiosis.Theessenceof thisapproach is to select
breeding parents based on their likelihood to produce an ideal
gamete by combining their desirable alleles.

The water-pipe algorithm for calculating PCV:Wedesigned
a polynomial time algorithm for calculating PCV,which draws
an analogy between conditional probabilities andwater flows
through a plumbing system. The plumbing system consists of
N rows, four columns of valves, and a number of water pipes
connecting them. The 4N valves correspond to the 4N alleles
in the two breeding parents represented by the matrixh
L1; L2

i
: For notational convenience, we will use L 2 B

N3 4

to denote the matrix
h
L1; L2

i
; so Li;1 ¼ L1i;1; Li;2 ¼ L1i;2;

Li;3 ¼ L2i;1; and Li;4 ¼ L2i;2 for all i 2 f1; . . . ;Ng: The intake
on the top splits into four pipes with equal volumes leading
to the four valves in the first row. Except for the four in the
last row, each valve is connected by four pipes to the four
valves in the next row. For all i 2 f1; . . . ;Ng and
j 2 f1; 2; 3; 4g; if allele ði; jÞ is desirable, then the valve ði; jÞ
is open, and all the water that flows into the valve from
above gets redistributed into the immediate downstream
pipes according to their relative volumes and goes down
to the next row; but if the allele ði; jÞ is undesirable, then
the valve ði; jÞ is closed, and no matter how much water
flows into the valve from above, the water is retained there,
neither passing further down nor going back up. For all
i 2 f1; . . . ;N2 1g; j 2 f1; 2; 3; 4g; and k 2 f1; 2; 3; 4g; the
volume of the pipe that connects valves ði; kÞ and ðiþ 1; jÞ
is denoted as Tk;j;i; where T is a three-dimensional matrix,
which is referred to as the transition matrix and defined as
follows.

Definition 0.7. For a given vector of recombina-
tion frequencies, r 2 ½0; 0:5�N21; the transition matrix
T 2 ½0; 0:5�43 43 ðN21Þ is defined as

T:;:;i ¼

2
6664

ð12riÞ2 rið12 riÞ 0:5ri 0:5ri
rið12 riÞ ð12riÞ2 0:5ri 0:5ri
0:5ri 0:5ri ð12riÞ2 rið12 riÞ
0:5ri 0:5ri rið12 riÞ ð12riÞ2

3
7775;

"i 2 f1; . . . ;N2 1g: (5)

We define the water matrix W 2 ½0; 1�N3 4 to represent the
amount of water flowing inside the plumbing system. For all
i 2 f1; . . . ;Ng and j 2 f1; 2; 3; 4g;Wi;j represents the amount
of water that flows out of the jth valve in the ith row. This
value can be interpreted as the probability that the first i
alleles in the gamete g3 are desirable and that the ith allele
is inherited from the jth chromosome of the breeding parents.

Definition 0.8. We define the water matrix W 2 ½0; 1�N3 4

as

Wi; j ¼ P
�
g1 ¼ . . . ¼ gi ¼ 1; gi ¼ Li;j

�
;"i 2 f1; . . . ;Ng; j

2 f1; 2; 3; 4g: (6)

Proposition 0.1. The water matrix can be calculated as
follows.

W1; j ¼ 1
4
L1;j;"j 2 f1; 2; 3; 4g; (7)

Wi; j ¼ Li;j
X4
k¼1

  Tk;j;i21Wi21;k;"i 2 f2; . . . ;Ng; j 2 f1; 2; 3; 4g:

(8)

Proposition 0.2. The PCV is the summation of the last row in
the water matrix:

PCV
�
L1; L2; r

� ¼X4
j¼1

 WN; j: (9)

The proofs for Propositions 0.1 and 0.2 can be found in
Appendix A.

Illustrative example:We illustrate the plumbing systemwith
the following example.

Figure 4 An illustration of 10 loci in a population consisting of 50 indi-
viduals. A purple square is used to denote a “0” allele and a yellow
square for a “1.”

Figure 5 The GEBVs for Example 0.3.
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Example 0.1. The two breeding parents are both ideal lines

L1 ¼ L2 ¼

2
6666664

1 1
1 1
1 1
1 1
1 1
1 1

3
7777775

and the recombination frequencies vec-

tor is r ¼ ½ 0:2 0:35 0:3 0:4 0:25 �⊤:
The plumbing system corresponding to Example 0.1 is

illustrated in Figure 2. The black rectangles are the valves,
with binary numbers indicating whether they are open
(1) or closed (0). The blue parallelograms are the water
pipes, whose widths represent their relative volumes and
not necessarily the actual amounts of water flowing
through (they are equal only when both breeding parents
are ideal lines, as in Example 0.1). Since both breeding
parents are already ideal lines, their PCV is by definition
equal to 1. Albeit trivial, this fact is verified by the plumb-
ing system in Figure 2, where all the valves are open, and
thus 100% of the water that is poured in will find its way
out.

We now illustrate the water-pipe algorithm for calculating
the PCV of the following example.

Example 0.2. The two breeding parents are

L1 ¼

2
6666664

1 1
1 0
1 1
0 1
1 1
0 0

3
7777775

and L2 ¼

2
6666664

0 1
1 1
1 0
0 1
1 0
1 1

3
7777775
; and the recombination

frequencies vector is the same as in Example 0.1.
The plumbing system corresponding to Example 0.2

is illustrated in Figure 3, in which we removed those water
pipes whose immediate upstream valves are closed. The

transition matrix is T:;:;1 ¼

2
664
0:64 0:16 0:10 0:10
0:16 0:64 0:10 0:10
0:10 0:10 0:64 0:16
0:10 0:10 0:16 0:64

3
775;

T:;:;2 ¼

2
664
0:4225 0:2275 0:1750 0:1750
0:2275 0:4225 0:1750 0:1750
0:1750 0:1750 0:4225 0:2275
0:1750 0:1750 0:2275 0:4225

3
775;

T:;:;3 ¼

2
664
0:49 0:21 0:15 0:15
0:21 0:49 0:15 0:15
0:15 0:15 0:49 0:21
0:15 0:15 0:21 0:49

3
775;

T:;:;4 ¼

2
664
0:36 0:24 0:20 0:20
0:24 0:36 0:20 0:20
0:20 0:20 0:36 0:24
0:20 0:20 0:24 0:36

3
775;

T:;:;5 ¼

2
664
0:5625 0:1875 0:1250 0:1250
0:1875 0:5625 0:1250 0:1250
0:1250 0:1250 0:5625 0:1875
0:1250 0:1250 0:1875 0:5625

3
775; and thewater

matrix isW ¼

2
6666664

0:2500 0:2500 0 0:2500
0:2250 0 0:0900 0:2100
0:1476 0:1037 0:1252 0

0 0:1006 0 0:0640
0:0369 0:0490 0:0355 0

0 0 0:0307 0:0174

3
7777775
There-

fore, the PCV is 0þ 0þ 0:0307þ 0:0174 ¼ 0:0481:

Conceptual distinctions of PCV, GEBV, and OHV

The fundamental difference between these three metrics is
that GEBV and OHV assess the merit of two breeding parents

Figure 6 The OHVs for Example 0.3.

Figure 7 The PCV map for Example 0.3. A purple square is used to
denote a “0” allele and a yellow square for a “1.” The gray-shade matrix
represents the PCVs of all possible pairs. The brighter the color, the larger
the PCV. The two individuals with the largest PCV are highlighted in
green and pink on the margins.
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as the summation of their separate breeding values, whereas
PCV treats two breeding parents as a unique pair and selects
the best pair that has the highest probability to produce an

ideal gamete in two generations. We use the following simple
example to demonstrate the conceptual distinctions of the
three metrics.

Table 1 The recombination frequencies used in the simulation

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Q1 0.2725 0.2075 0.0569 0.0860 0.1414 0.0791 0.0126 0.2179 0.0659 0.0610
Q2 0.2649 0.1957 0.0759 0.1362 0.1693 0.1529 0.2951 0.1647 0.0102 0.0800
Q3 0.2148 0.0692 0.1452 0.1983 0.0285 0.3210 0.3044 0.2597 0.2480 0.2955
Q4 0.1262 0.1004 0.1037 0.0874 0.0875 0.1823 0.2654 0.2383 0.1667 0.0096
Q5 0.2705 0.1570 0.3078 0.2009 0.2670 0.1737 0.0329 0.3012 0.1600 0.1633
Q6 0.1776 0.0768 0.1434 0.2371 0.0097 0.0772 0.0873 0.2970 0.3016 0.0560
Q7 0.1169 0.2814 0.0616 0.0739 0.3096 0.1630 0.1118 0.1114 0.2033 0.3262
Q8 0.3130 0.0649 0.3016 0.0391 0.2434 0.2080 0.2266 0.5000 0.2059 0.5000
Q9 0.2920 0.5000 0.3266 0.0989 0.1629 0.2264 0.0455 — 0.2865 —

Q10 0.5000 — 0.1463 0.5000 0.5000 0.1318 0.2404 — 0.2685 —

Q11 — — 0.5000 — — 0.1225 0.5000 — 0.5000 —

Q12 — — — — — 0.5000 — — — —

Figure 8 Performance of the GEBV, OHV, PCV-I, and
PCV-II approaches in 1000 simulation runs of trait in-
trogression of seven QTL. The vertical axis represents
the proportion of desirable alleles in the genome. His-
tograms of the proportion of desirable alleles among
100 progeny from 1000 simulation runs are plotted for
each generation. The red curve shows the population
mean.
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Example 0.3. Consider 10 loci of interest in a population of
50 individuals. Rather than describing the genotypes of this
population using a three-dimensional binary matrix defined
in Mathematical formulation of the multi-allelic introgression
process, we illustrate the information in Figure 4. A purple
square is used to denote a “0” allele and a yellow square for a
“1.” All the individuals in the sample of progeny are displayed
abreast, so the figure contains a matrix of 10-by-100 purple-
and-yellow squares. We will refer to the ith individual from
the left as individual i. Then individuals 1, 2, 3, 5, and 18 can
be represented, respectively, by2
666666666666664

0 0
1 1
1 1
1 0
1 0
1 1
1 1
1 0
0 1
1 1

3
777777777777775

;

2
666666666666664

0 0
1 1
0 1
1 1
0 1
1 1
1 0
1 1
0 1
1 1

3
777777777777775

;

2
666666666666664

0 1
1 1
0 1
1 1
0 0
1 0
0 1
1 1
1 0
1 1

3
777777777777775

;

2
666666666666664

0 0
0 1
1 1
0 1
1 0
1 0
1 0
1 1
1 0
1 1

3
777777777777775

; and

2
666666666666664

1 1
1 0
1 0
1 1
0 1
0 1
0 1
0 1
0 0
1 0

3
777777777777775

:

The recombination-frequencies vector used in this example is

r ¼ ½ 0:1 0:2 0:1 0:2 0:1 0:2 0:1 0:2 0:1 �⊤:

The 50 individuals are ordered from left to right with a
decreasing number of total desirable alleles, from 14 for in-
dividual 1 to 5 for individual 50.

Solving Example 0.3 using the GEBV approach: The GEBVs
of the 50 individuals are calculated using Equation 3 and
plotted in Figure 5.

The GEBV approach would select two individuals with the
largest GEBVs, i.e., individuals 1 and 2, bothwith 14 desirable
alleles. A limitation of this approach is that it compromises
long-term potential for short-term gains. In this example,
crossing individuals 1 and 2 will fix the first locus with un-
desirable alleles, eliminating the possibility of accumulating
desirable alleles at this locus in subsequent generations.

Solving Example 0.3 using the OHV approach: The OHV of
the 50 individuals are calculated using Equation 4 and plotted
in Figure 6.

TheOHVapproachwouldselecttwoindividualswiththelargest
OHVs. Individual threehas the largestOHV,whereas individuals1,
2,4,5,13,and18tie for thesecondplace.A limitationof theOHVis
the exclusive emphasis on the possibility without consideration of
its probability. As such, the approach is unable to differentiate the
six individuals with the same OHV based on their different likeli-
hoods of combining nine desirable alleles into one gamete.

Solving Example 0.3 using the PCV approach: The PCVs of
the 50 individuals are calculated using Equations 5 and 7–9
and plotted in Figure 7. The two subfigures at the top and left
are the same population from Figure 4 with horizontal and

vertical orientations, respectively. The largest subfigure is a
PCV map. It consists of a 50-by-50 gray-shade matrix repre-
senting all PCV values for all possible pairs of breeding par-
ents involving the 50 individuals in the population. As such,
each square representing a PCV value has an area four times
as large as the one that represents an allele in the horizontal
and vertical subfigures. The brightness indicates the PCV for
the two individuals directly above and to the left. The brighter
the color in the PCV map, the higher the PCV. We point out
four observations: (1) The PCV is not an additive function of
two individuals. (2) The PCV map is symmetric across the di-
agonal, since the order of the two parents does not matter in
the definition of PCV. (3) The diagonal represents PCVs for
self-pollination. (4) The highest PCV is achieved by individuals
5 and 18, which are respectively highlighted in green and pink
on the margins. These two individuals should be selected
according to the PCV approach. Appendix B discusses two
approaches that can be used to select the pair of individuals
with the highest PCV from a population.

Compared with GEBV and OHV, PCV has two salient
features. First, PCV evaluates each specific cross. In contrast,
the GEBV and OHV calculate an estimated breeding value for
each individual. In the context of mating designs, breeding
valuesareanalogous togeneral combiningability,whereas the
PCV is analogous to specific combining ability. Second, the
PCV integrates recombination frequencies to calculate condi-
tional probabilities. In Example 0.3, out of the 1275 possible
crosses, 711haveazeroPCVvaluebecauseat least one locuswill
become homozygous for the undesirable allele. The remaining
564combinationsallhaveauniquePCV.Therefore, thePCVmap
in Figure 7 has 565 different shades of gray. In contrast, there
are a large number of tied GEBVs and OHVs in the example.

Results

In this section, we describe and report results of simulated
multi-allelic introgression experiments using the PCV, GEBV,
and OHV approaches.

Figure 9 Distributions of the terminal generation numbers of PCV-I and
PCV-II approaches.
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Experiment description: We simulated a polygenic trait
consisting of 100 QTL that are responsible for genetic vari-
ability in the trait. The locations of the QTL are distributed as
uniform random variables among 10 simulated linkage
groups. Each linkage group has from 8 to 12 QTL.

We considered two example trait-introgression projects. In
both examples, the recipient and donor are homozygous at all
QTL. In the first example, the recipient has desirable alleles at
93 of the QTL, while the donor has desirable alleles at the
remaining 7. For reference, the recipient has undesirable
alleles at C1Q4, C1Q6, C2Q9, C3Q1, C5Q4, C6Q3, and
C6Q8, where CiQj denotes the jth QTL in chromosome i. In
the second example, the recipient has desirable alleles at
80 of the loci, while the donor has desirable alleles at the
remaining 20. For reference, the recipient has undesirable

alleles at C1Q5, C1Q10, C2Q4, C2Q9, C3Q5, C3Q10,
C4Q3, C4Q8, C5Q3, C5Q8, C6Q2, C6Q7, C6Q12, C7Q5,
C7Q9, C8Q3, C8Q8, C9Q5, C9Q9, and C10Q3.

Recombination frequencies used in the simulation are
given in Table 1. The value shown for column Ci and row
Qj is the recombination frequency between the QTL pairs
CiQj and Cðiþ 1ÞQj: The value for the last QTL in a chromo-
some is 0.5, in accordance with the principle of independent
assortment of chromosomes.

We implemented the breed function to simulate the in-
trogression project, with the simulated genomes as the initial
population for each example. In subsequent generations,
100 progeny were sampled from simulated crosses of two
individuals selected from the previous generation. The re-
cipient line is treated as a member of the sample so that

Figure 10 Performance of the GEBV, OHV, PCV-I, and
PCV-II approaches in 1000 simulation runs of trait in-
trogression of 20 QTL.

The Predicted Cross Value 1417



backcrossing is always an option. Four versions of the select
function were compared:

1. The GEBV approach, which selects two different individ-
uals with the highest GEBVs.

2. The OHV approach, which selects two different individu-
als with the highest OHVs.

3. The PCV-I approach, which selects two different individ-
uals with the highest PCV.

4. The PCV-II approach, which selects one (for self-pollina-
tion) or two (for cross-pollination) individuals with the
highest PCV.

A total of 1000 simulation runs were carried out, and the
comparisonwas basedon the time andprobability of success,
i.e., number of generations to completely introgress all
desirable donor alleles. The simulation was implemented
and results were generated using GNU Octave (Eaton
et al. 2015).

Results for Example 1: Figure 8 plots the population histo-
grams of the proportion of desirable alleles in the genome
over time. For all selection approaches, the sample represent-
ing the first generation consists of the recipient line (with
93% of the desirable alleles), the donor line (with 7% of
the desirable alleles), and 98 F1 lines consisting of half of
the alleles from the recipient and donor (with 50% of the
desirable alleles). The histogram for progeny in generation
two is the same for GEBV, PCV-I, and PCV-II because the
recipient parent was crossed to the F1 for these selection
approaches. On the other hand, the histogram for the OHV
approach is represented by a doubled-haploid sample from
the F1. When GEBV and OHV are used, the average propor-
tions of desirable alleles reach 95 and 93% in the 19th gen-
eration, respectively. When PCV-I and PCV-II are used, an
ideal progeny will be produced in as early as 7 generations
and no later than the 11th.

Figure 9 compares the probability distributions of the ter-
minal generation for PCV-I and PCV-II approaches. On aver-
age, the PCV-I approach takes 9.4 generations to produce an
ideal progeny, whereas PCV-II takes 8.9 generations. Thus,
allowing self-pollination during the breeding process in-
creased the efficiency of the project by half a generation in
this example.

Result for Experiment 2: Figure 10 and Figure 11 reveal
similar results of the four selection approaches as Figure 8
and Figure 9, but, as expected, all approaches take more
generations to plateau. Using the GEBV and OHV ap-
proaches, the proportions of desirable alleles reach 86 and
90% in the 19th generation, respectively. Out of the 1000 sim-
ulation repetitions, both PCV-I and PCV-II approaches suc-
cessfully produced an ideal progeny 996 times, taking an
average of 14.8 and 14.7 generations, respectively. In the
other four times, the trait introgression project failed by hav-
ing at least one locus become homozygous with undesirable
alleles for all individuals in the population. The GEBV and

OHVapproaches failed in the sameway in all 1000 simulation
runs in both experiments.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. The electronic version of the data files in
Octave format can be downloaded from https://sites.google.
com/view/lizhiwang.

Discussion

With a few exceptions (Johnson et al. 1988; Canzar and
El-Kebir 2011; Xu et al. 2011; De Beukelaer et al. 2015;
Akdemir and Sanchez 2016), genetic improvement projects
in crop species have not been approached using the tools of
operations research. On the other hand, the optimization chal-
lenge of maximizing genetic gain while minimizing inbreeding
in animal breeding has been approached extensively using lin-
ear programming, genetic algorithms, integer programming,
and semidefinite programming (Woolliams et al. 2015). We
formulated the multi-allelic introgression challenge as a math-
ematical process and we hope that it will attract other opera-
tions researchers, applied mathematicians, and computational
scientists to contribute to genetic improvement projects.

We framed the challenge of introgressing multiple alleles
from a homozygous donor to a homozygous recipient using
time (number of generations) and proportions of desirable
alleles ineachgenerationofprogenyasquantitativelymeasur-
able criteria for comparing breeding strategies. Missing from
these criteria is a consideration of cost. In general, the number
of progeny evaluated every generation can serve as a surro-
gate for cost, and in future researchwewill look at the relative
impacts of sample size for each generation of evaluation.
While these costs are relatively easy to quantify, considerable
thought will be needed to formulate either social or commer-
cial costs associated with slower introgression of alleles of
economically important traits.

Figure 11 Distributions of the terminal generation numbers of PCV-I and
PCV-II approaches.
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The PCV is a new metric for selection of parents. Rather
than sticking to predetermined breeding strategies such as
backcrossing, as widely used for trait introgression, PCV-
based selection identifies the pair of individuals whose com-
plementary genotypes have the highest probability to yield an
ideal gamete in two generations. The simulation results dem-
onstrated that the PCV outperforms the existing GEBV and
OHV approaches.

Meaningful future work would be to conduct a compre-
hensive comparison with more recently invented selection
approaches that appear to be very promising. For example,
Woolliams et al. (2015) proposed the optimal contribution
selection, which attempts to maximize genetic gain in the
next generation. Akdemir and Sanchez (2016) propose ge-
nomic mating as an alternative to genomic selection, which
“uses concepts of estimated breeding values, risk (usefulness)
and coefficient of ancestry to optimize mating between par-
ents.” They also discussed alternative risk measures that in-
clude LD information.

Applicability of our approach is limited by a number of
simplifying assumptions summarized in Simplifying assump-
tions. Relaxing these will provide potentially fruitful topics
for future research. For example, a similar, but more sophis-
ticated, definition of the PCV could be designed for autopoly-
ploid perennial crops such as alfalfa. Also, if desirable alleles
of interest are carried by multiple donors, then modifications
are required to extend the PCV. Two approaches have been
proposed for introgression of multiple alleles from multiple
donors. One is to sequentially introgress alleles from each
donor, and the other is to stack all their desirable alleles into
a single donor line (Peng et al. 2014a,b). A couple of optimi-
zation approaches have been proposed for the gene-stacking
problem (Canzar and El-Kebir 2011; Xu et al. 2011), which
has been proved to be nondeterministic polynomial-time
hard (Xu et al. 2011). It would be a challenging but useful
extension to design PCV-based breeding strategies for multi-
ple donors. The selection of less than one pair of parent lines
must be coordinated to not only produce enough seeds to
allow for critical recombinations to occur, but also to expedite
the integration of all desirable alleles into the recipient
cultivar(s).

The selection approach demonstrated in Simulation exper-
iments applies to species that can produce a large number of
progeny from a cross (such as corn, sunflower, and sorghum).
Two strategies can be used to apply this approach to less
productive species (such as soybean, wheat, and peanut).
One is to compensate the small progeny size with a large
number of crosses by selecting multiple pairs of parents
using the PCV metric repeatedly. The other is to extend
the PCV definition to select multiple pairs of parents and
explicitly include the numbers of crosses and expected prog-
eny as parameters, which is one of our future research
topics.

Another direction that deserves investigation in future
research is the explorationofmore optimal breeding strategies.
The trait-introgression breeding problem formulated in the

Formulation section, even with the simplifying assumptions,
is too complex to be readily solvable by existing optimization
methodology. Although the PCV-based multi-allelic introgres-
sion outperforms those based on breeding values, it is unclear
to us how much further improvement could be made. A start-
ing point could be to dynamically adjust the number of indi-
viduals evaluated every generation and the selection approach
in each generation in response to the outcome of the previous
cross.
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Appendix A: Lemmas and Proofs

The following lemma is a straightforward derivation from the definitions in the Multi-allelic introgression as an algorithmic
process section.

Lemma 0.1. For all i 2 f1; . . . ;Ng; we have:

gi ¼

8>>><
>>>:

Li;1 if J1i ¼ 0 and J3i ¼ 0;
Li;2 if J1i ¼ 1 and J3i ¼ 0;
Li;3 if J2i ¼ 0 and J3i ¼ 1;
Li;4 if J2i ¼ 1 and J3i ¼ 1:

(A1)

The following lemma reveals the rationale behind the definition for the transition matrix.
Lemma 0.2. For all i 2 f1; . . . ;N2 1g; j 2 f1; 2; 3; 4g; and k 2 f1; 2; 3; 4g; we have

P
�
giþ1 ¼ Liþ1;j

��gi ¼ Li;k
� ¼ Tk;j;i:

Proof. For all i 2 f1; . . . ;N2 1g; we prove the equation for j ¼ 1 and k 2 f1; 2; 3g: The proof for the other cases is similar:

P
�
giþ1 ¼ Liþ1;1

��gi ¼ Li;1
�

¼ P
�
J1iþ1 ¼ 0; J3iþ1 ¼ 0

��J1i ¼ 0; J3i ¼ 0
�

¼ P
�
J1iþ1 ¼ 0

��J1i ¼ 0; J3i ¼ 0
�
P
�
J3iþ1 ¼ 0

��J1i ¼ 0; J3i ¼ 0
�

¼ P
�
J1iþ1 ¼ 0

��J1i ¼ 0
�
P
�
J3iþ1 ¼ 0

��J3i ¼ 0
�

¼ ð12riÞ2
¼ T1;1;i:

P
�
giþ1 ¼ Liþ1;2

��gi ¼ Li;1
�

¼ P
�
J1iþ1 ¼ 1; J3iþ1 ¼ 0

��J1i ¼ 0; J3i ¼ 0
�

¼ P
�
J1iþ1 ¼ 1

��J1i ¼ 0; J3i ¼ 0
�
P
�
J3iþ1 ¼ 0

��J1i ¼ 0; J3i ¼ 0
�

¼ P
�
J1iþ1 ¼ 1

��J1i ¼ 0
�
P
�
J3iþ1 ¼ 0

��J3i ¼ 0
�

¼ rið12 riÞ
¼ T1;2;i:

P
�
giþ1 ¼ Liþ1;3

��gi ¼ Li;1
�

¼ P
�
J2iþ1 ¼ 1; J3iþ1 ¼ 0

��J1i ¼ 0; J3i ¼ 0
�

¼ P
�
J2iþ1 ¼ 1

��J1i ¼ 0; J3i ¼ 0
�
P
�
J3iþ1 ¼ 0

��J1i ¼ 0; J3i ¼ 0
�

¼ P
�
J2iþ1 ¼ 1

�
P
�
J3iþ1 ¼ 1

��J3i ¼ 0
�

¼ 0:5ri
¼ T1;3;i:

Proof for Proposition 0.1:
Proof. We establish the respective equivalence between Equation 6 and Equations 7 and 8 as follows.
Equation 6 for i ¼ 1 and Equation 7 are equivalent because for all j 2 f1; 2g; we have
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W1;j ¼ P
	
g1 ¼ 1; g1 ¼ L11;j



¼ P

	
L11;j ¼ 1; g1 ¼ L11;j



¼ L11;jP

	
g1 ¼ L11;j



¼ L11;jP

�
J11 ¼ j2 1; J31 ¼ 0

�
¼ L11;jP

�
J11 ¼ j2 1

�
P
�
J31 ¼ 0

�
¼ 1

4
L11;j:

The case for j 2 f3; 4g is similar.
Equation 6 for i 2 f2; . . . ;Ng and Equation 8 are equivalent because for all i 2 f2; . . . ;Ng and j 2 f1; 2; 3; 4g; we have

Wi;j ¼ P
�
g1 ¼ . . . ¼ gi ¼ 1; gi ¼ Li;j

�
¼ P

�
g1 ¼ . . . ¼ gi21 ¼ 1; gi ¼ Li;j; Li;j ¼ 1

�
¼ Li;jP

�
g1 ¼ . . . ¼ gi21 ¼ 1; gi ¼ Li;j

�
¼ Li;j

X4
k¼1

P
�
g1 ¼ . . . ¼ gi21 ¼ 1; gi21 ¼ Li21;k; gi ¼ Li;j

�

¼ Li;j
X4
k¼1

P
�
gi ¼ Li;j

��g1 ¼ . . . ¼ gi21 ¼ 1; gi21 ¼ Li21;k
�

3P
�
g1 ¼ . . . ¼ gi21 ¼ 1; gi21 ¼ Li21;k

�
¼ Li;j

X4
k¼1

P
�
gi ¼ Li;j

��gi21 ¼ Li21;k
�
Wi21;k

¼ Li;j
X4
k¼1

Tk;j;i21Wi21;k:

Proof for Proposition 0.2:
Proof.

PCV
�
L1; L2; r

� ¼ Pðg1 ¼ . . . ¼ gN ¼ 1Þ

¼
X4
j¼1

P
�
g1 ¼ . . . ¼ gN ¼ 1; gN ¼ LN;j

�

¼
X4
j¼1

WN;j:

Appendix B: Optimization of PCV

We present an optimization model that can be used to select the optimal pair of individuals with the highest PCV from a given
population.

The model takes two parameters as input: the set of progeny of lines P 2 B
N323K ;with K being the number of lines and the

recombination frequencies vector r 2 ½0; 0:5�N21: There are three sets of decision variables:

1. t 2 B
23K is a binary variable, indicating whether ðtm;k ¼ 1Þ or not ðtm;k ¼ 0Þ line k is selected as the mth parent, for all

m 2 f1; 2g and k 2 f1; . . . ;Kg:
2. x 2 B

N3 4 represents the genotypes of the two selected parents. If t1;k1 ¼ t2;k2 ¼ 1; then x:;1:2 ¼ P:;:;k1 and x:;3:4 ¼ P:;:;k2 :
3. w 2 B

N3 4 is the water matrix of x.

The optimization model is presented in (B2)–(B9), which is a mixed integer linear program (MILP). The objective function
(B2) calculates the PCV of the two selected parent lines, which is to be maximized. Constraint (B3) requires that exactly two
breeding parents are selected from the population, which could possibly be the same line. Constraints (B4) and (B5) assign the
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genotypes of the selected lines from the breeding population to the xmatrix. Constraints (B6)–(B8) calculate the water matrix
for x. Constraint (B6) is equivalent to Equation 7, and the two linear inequalities (B7) and (B8) are equivalent to

wi;j # xi;j
X4
k¼1

  Tk;j;i21wi21;j: (B1)

Due to the objective function, inequality (B1) will hold at equality when the model (B2)–(B9) is solved to optimality, which is
equivalent to Equation 8. Constraint (B9) defines the types and ranges of the decision variables. This MILPmodel can be solved
to optimality by existing algorithms and software.

max
w;x;t

X4
k¼1

wN;k (B2)

subject  to
XK
k¼1

tm;k ¼ 1 "m ¼ 1; 2 (B3)

xi; j ¼
XK
k¼1

t1;kPi; j;k "i 2 f1; . . . ;Ng;"j 2 f1; 2g (B4)

xi; j ¼
XK
k¼1

t2;kPi; j22;k "i 2 f1; . . . ;Ng;"j 2 f3; 4g (B5)

w1; j ¼ 0:25x1; j "j 2 f1; 2; 3; 4g (B6)

wi; j# xi; j "i 2 f2; . . . ;Ng;"j 2 f1; 2; 3; 4g (B7)

wi; j#
X
k¼1

Tk; j;i21wi21; j; "i 2 f2; . . . ;Ng;"j 2 f1; 2; 3; 4g (B8)

0#w# 1; x; t binary: (B9)

Alternatively, the optimal selection of breeding parents can be achieved via a brute-force enumeration of all possible 1
2nðnþ 1Þ

combinations (excluding symmetric duplications).
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