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Populations occasionally experience abrupt changes, such as local extinctions,

strong declines in abundance or transitions from stable dynamics to strongly

irregular fluctuations. Although most of these changes have important eco-

logical and at times economic implications, they remain notoriously difficult

to detect in advance. Here, we study changes in the stability of populations

under stress across a variety of transitions. Using a Ricker-type model, we

simulate shifts from stable point equilibrium dynamics to cyclic and irregular

boom–bust oscillations as well as abrupt shifts between alternative attractors.

Our aim is to infer the loss of population stability before such shifts based on

changes in nonlinearity of population dynamics. We measure nonlinearity by

comparing forecast performance between linear and nonlinear models fitted

on reconstructed attractors directly from observed time series. We compare

nonlinearity to other suggested leading indicators of instability (variance

and autocorrelation). We find that nonlinearity and variance increase in a

similar way prior to the shifts. By contrast, autocorrelation is strongly affected

by oscillations. Finally, we test these theoretical patterns in datasets of fisheries

populations. Our results suggest that elevated nonlinearity could be used as

an additional indicator to infer changes in the dynamics of populations

under stress.
1. Introduction
Traditionally, ecosystem management has been based on mechanistic models that

attempt to predict ecosystem dynamics. Unfortunately, however, these models are

usually based on limited mechanistic knowledge and have been notoriously poor

at prediction [1,2]. This shortcoming is evidenced by the fact that ever more elab-

orate models do not necessarily improve out-of-sample prediction of complex

ecological dynamics [3,4]. For example, in fisheries, increasing the complexity of

a mechanistic model by including variables that are believed to be influential,

such as temperature, can actually reduce predictability [1]. Thus, there is an

urgent need for improved methods when it comes to forecasting ecological

responses [4–7] especially under current levels of anthropogenic stress [8].

No doubt, this is not a trivial task as the uncertainty in ecological responses to

anthropogenic stresses poses a major challenge for ecological forecasting [4,7].

One main reason for that is that stress may induce radical shifts in ecological

dynamics. Such shifts are mathematically related to the crossing of bifurcation

points: thresholds where the stability properties and, thus, the behaviour of a

system, changes fundamentally [9]. Although ecologists have a long history

in studying bifurcations in models [10], it is difficult to empirically predict if

and when such bifurcation points will be crossed. More importantly, crossing
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particular bifurcations can have serious ecological consequen-

ces when they involve catastrophic shifts between alternative

states [11]. Examples of such catastrophic shifts (also termed

critical transitions [12]) are the overgrowth of coral reefs by

macroalgae [13,14], unexpected pest outbreaks like boom-

and-bust cycles of spruce budworm beetles [15] or the abrupt

shifts in the composition of pelagic marine communities

[16,17]. Similar bifurcation points may also lie behind less

dramatic transitions, like the occurrence of algal blooms in

lakes due to eutrophication [18], population extinction in dete-

riorating environments [19] or the elimination of infectious

diseases [20].

Coping with such fundamental sources of unpredictability

requires alternative modelling strategies that go beyond tra-

ditional approaches [6,21]. One set of such strategies focuses

on early warning signs that attempt to detect abrupt transitions

based on the statistical properties of the observed time series

without requiring any mechanistic model [12]. Such changes

are caused by critical slowing down (CSD), a phenomenon

by which stable systems close to local bifurcation points

respond slowly to disturbances [22,23]. Variance and autocor-

relation are the most studied statistical indicators that arise

from CSD. Rising autocorrelation has been shown to be an indi-

cator of the increasing risk of extinction in stable laboratory

experiments with yeast [24] and zooplankton populations

[19], whereas increasing variance can mark the shift of lake

dominance from piscivorous to planktivorous fish [25,26].

While the CSD indicators are model-free, they mostly posit

stable dynamics and transitions between stationary attractors.

Parallel work has focused on forecasting non-equilibrium

and chaotic population dynamics that arise mechanistically

from unstable attractors based on an approach called empirical

dynamical modelling (EDM) [1,27]. Similar to the statistical

approach taken by CSD indicators, this approach is also

equation-free. EDM is based on reconstructing an attractor

manifold directly from time series (https://www.youtube.

com/watch?v=rs3gYeZeJcw). This reconstruction (essentially,

a multi-dimensional scatterplot of the points in the time

series) can be done with multiple time series of interest (each

axis as a time series) or with a single time series (each axis as

a lag of the time series) [28]. In either case, how well the attrac-

tor is reconstructed can be verified by its ability to forecast

future states. In fact, EDM has been shown to outperform

equation-based approaches at forecasting recruitment in sock-

eye salmon populations [1], dynamics of Pacific sardines [29]

and the fate of experimental flour beetle populations [30].

With its capacity to forecast the future state of a system, EDM

could potentially be a useful alternative approach for detecting

the proximity of a system to nearby bifurcations.

Theoretically, when a dynamical system is approaching a

bifurcation (i.e. where attractors and/or dynamics fundamen-

tally change), stochastic events may more easily push a system

across attractor boundaries or into a region of state space

where dynamics may be also affected by a different attractor.

This implies that, close to a bifurcation, the realized dynamics

become increasingly state-dependent. State-dependence means

that the future evolution of a system is determined by the

dynamics around its current state. EDM can evaluate state-

dependence (or what we call nonlinearity) by comparing

forecast performance obtained when using global versus local

information to model the system [31,32]. Local information

refers to the local neighbourhood of points on the attractor clo-

sest to the system’s current state, while global information
refers to all points on the attractor. If local information gives a

better forecast of system state compared with global information,

the behaviour of the system is deemed state-dependent or

nonlinear. In principle, this concept can be generalized to a

number of bifurcations: across stable equilibria, from stable

states to cyclic attractors and to chaos. In that way, while CSD

indicators rely mostly on changes in stability between stable

attractors [33], EDM does not, so that in an unknown system,

it is likely that the union of these two approaches may be more

informative for anticipating critical transitions in ecosystems

under stress.

Here, we study whether nonlinearity, a measure of state-

dependence quantified by EDM, can provide warning of

imminent shifts in the dynamics of populations under stress.

We generate time series using a simple stochastic Ricker-type

population model. We estimate nonlinearity and we compare

it to CSD indicators (variance and autocorrelation) across

different dynamical transitions. As an illustration, we test all

indicators in stressed and non-stressed populations from two

long-term fisheries datasets. Our aim is to explore the capacity

of nonlinearity to be an indicator of loss of stability and to

show how the combination of these model-free approaches

can be helpful for detecting dynamical changes in populations

under stress.
2. Material and methods
2.1. Simulated data
We used a discrete Ricker-type model that describes the logistic

growth of population N with density-dependence and an extra

loss term (e.g. due to exploitation). We chose this model not

only because it has been generically used for describing popu-

lation dynamics for a variety of organisms (fisheries, insects

and birds, e.g. [34–36]), but also because it can exhibit different

types of bifurcations that are frequently found in most ecological

models. The model reads

Ntþ1 ¼ Nte
ðrt�bNtþsE1tÞ � F

Np
t

Np
t þ hp

, ð2:1Þ

where Nt is population biomass, rt is the intrinsic growth rate, b
defines the strength of density-dependence (¼ rt/K, where K is

the carrying capacity set by the environment (¼10)), and exploita-

tion follows a sigmoid functional response ( p ¼ 2), with half-

saturation h (¼0.75), and maximum harvesting rate F. We assumed

process error in the model to represent environmental stochasticity

with a Gaussian term 1t of zero mean and sE (¼0.25) standard

deviation. We also considered demographic stochasticity in the

growth rate rt by using exponential filtering at each time step

(rt ¼ r0eðsr1r,tÞ), where r0 is the mean and sr (¼0.1) the standard

deviation of the Gaussian noise term 1r,t [37].

We considered two scenarios where changes in external

conditions can trigger changes in the dynamics of a population.

In the first scenario, we hypothesized that anthropogenic stress

may lead to changes in population demographic traits. For

example, size-selective harvesting of large individuals in a popu-

lation may cause small size individuals to mature at an earlier

age [38,39]. Such earlier age-at-maturation can be associated with

an overall increase in the intrinsic growth rates of a population

and it has been suggested as an explanation for affecting the

dynamics of overharvested fish populations [40]. Changes in

abiotic conditions (e.g. climate warming), pesticide resistance or

decreasing competition from resident populations can increase

intrinsic growth rates of pests or alien species leading to outbreaks

[41,42]. On the other hand, toxicity, habitat degradation or food
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Figure 1. Population abundance trajectories under changing conditions and stability indicators. (a) Demographic change scenario: a gradual increase in population
growth rate leads to a shift from stable dynamics to boom-and-bust cycles (a combined effect of oscillations, chaos and stochasticity that raises the risk of stochastic
extinction during the bust phases, red horizontal dashed line sets an arbitrary extinction threshold of 0.1 biomass). (b) Exploitation scenario: a gradual increase in
harvesting causes a population to shift to an overexploited state. Blue dots mark the underlying deterministic attractor for each scenario. (c) Rescaled coefficient of
variation CV, autocorrelation at-lag-1 AR1, and nonlinearity index Dr (means of 1000 replicate time series) as a function of r. AR1 is expressed in absolute values, as
for growth rates above 1 AR1 becomes negative. Blue vertical dashed lines indicate the thresholds between stable, spiralling stable, cyclic and chaotic dynamics of
the deterministic model. (d ) Rescaled CV, AR1 and Dr (means of 1000 replicate time series) as a function of harvesting rate F. Blue vertical dashed line indicates the
threshold at which 50% of the 1000 simulated populations collapse to the alternative overexploited state. (Online version in colour.)
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depletion may lead to a decrease in the intrinsic growth rate

of a population favouring the chances of stochastic extinction

[43–45]. We mimic all these effects by gradually changing

growth rate r0 (¼[0.01, 3]), while setting the overall harvesting

rate F to zero (figure 1a). We call this scenario the ‘demographic

change scenario’. Changing growth rate in the Ricker model

leads to a well-known series of transitions from stable equilibrium

to cycles through a flip bifurcation, and eventually transitions to

chaos through a series of period-doubling bifurcations [9,46].

At zero growth rate, the population goes to extinction through a

transcritical bifurcation.

In the second scenario, we hypothesized that a population runs

the risk of collapse due to direct exploitation pressure [47]. We

labelled this the ‘exploitation scenario’ and we simulated it by pro-

gressively increasing harvesting rate F (¼[0, 3]), starting from a

stable non-fluctuating population (r0 ¼ 0.75) (figure 1b). Intensify-

ing harvesting leads to the abrupt collapse of the population due to

the crossing of a fold bifurcation that forces the population to shift

from an underexploited to an overexploited state of low biomass.

In both scenarios, we gradually increased the bifurcation par-

ameters, r0 and F, respectively, in 100 equidistant steps. At each

step, we burned-in the models for a period of 100 time steps to dis-

card transients, and we simulated another 100 points to use as time

series for analysis. For each step of the bifurcation parameter, we

produced 1000 replicate time series that were used to estimate non-

linearity and CSD indicators. We also compared the stationary

distributions of the indicators to a transient simulation scheme,

where growth rate r0 (¼[0.01, 3]) and harvesting rate F (¼[0, 3])

continuously increased over 200 time steps. In such a transient
scheme, we estimated all indicators within a moving window

equal to half the size of the time series (i.e. 100 points).
2.2. Nonlinearity derived from empirical dynamical
modelling

We use nonlinearity (i.e. quantification of state-dependence) as a

potential new indicator for anticipating shifts in ecological

dynamics. To determine whether a time series reflects changes

in state-dependence, we compared the out-of-sample forecast

skill of a linear model (i.e. relying on global information for fore-

casts) versus an equivalent nonlinear model (i.e. relying on local

information). This involves state-space reconstruction (also

known as EDM) using lagged coordinate embeddings with a

two-step procedure as follows. First, we used simplex projection

[27] to determine the embedding dimension (E) of the system. E
represents the number of independent variables (axes) needed to

reconstruct the system state-space and is operationalized as the

number of lagged coordinates used to reconstruct the system

attractor. A set of trial values for E is used to test different attrac-

tor shapes. The best E for a given time series is selected according

to forecast skill, calculated as the correlation coefficient between

actual and model forecast values from the time series. The best E
also defines the number of points for the neighbourhood around

the current system state for forecasting.

Second, using this embedding dimension, S-map [31] is

applied to compare linear versus nonlinear forecasting models,

by tuning a nonlinear weighting parameter u. u is a parameter
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that progressively weighs the neighbourhood around the current

system state. Forecasts in S-map are made using all points in the

attractor but with different weights depending on their proximity

to the current system state. At u ¼ 0, the weighting surface is flat

and all points in the attractor are equally used for forecasting

[32]. At u . 0, the weighting surface gives exponentially greater

weight to the local neighbourhood around the current system

state. As u increases, points far on the trajectory from the current

state receive ever-diminishing weight until they do not contribute

any information to the forecast algorithm. If the forecast skill of the

nonlinear model (u . 0) outperforms that of the linear model (u ¼

0), the observed dynamics in the system are classified as nonlinear

(or state-dependent). As in simplex projection, forecast skill is

evaluated based on the correlation between S-map predicted

out-of-sample values and the actual observed values in the time

series. A full description of this established methodology with

related algorithms can be found in [1,32,48,49].

We applied the above two-step procedure after first-

differencing and standardizing both simulated and empirical

time series [32]. As EDM requires a time series of at least 30 obser-

vations [50], we used simulated time series of 100 time steps and

selected empirical records that contained at least 30 points. We

produced simplex projections using lagged coordinates of one

time step (t ¼ 1) for a series of different embedding dimensions

E. We used a range of E: 1 through 10 for the empirical data and

1 through 3 for the simulated data—we used a smaller range of E
for the simulated data as we knew the dimensionality of the

Ricker model attractor is three according to Whitney’s theorem

that n � E � 2n þ 1, where n is the dimensionality of the

system (n ¼ 1 for our model). We chose the best embedding

dimension E for each time series by estimating the Pearson corre-

lation (r) between observed and forecast values. The best E was

then used for fixing the embedding space in the S-map. In the S-

map, we estimated forecasting skill as above for a range of u

values [0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, 5]. Lastly,

we quantified the improvement in forecasting skill of the nonlinear

over the linear model as the difference in Pearson correlation: Dr ¼

max(ru 2 ru¼0): the maximum difference between the correlation

ru at each u to the correlation ru¼0 found for u ¼ 0. In other

words, Dr defines how much the best model outperforms the

linear model [40]. If the linear model is the best model, Dr is

equal to zero. Dr served as the indicator of nonlinearity.

2.3. Critical slowing down indicators
CSD is defined as the decrease in recovery rate upon small pertur-

bations in the vicinity of local bifurcation points [9]. It is a generic

property of dynamical systems that undergo transitions between

different attractors when a stress parameter crosses a threshold.

In mathematical terms, CSD is associated with a diminishing

dominant eigenvalue l, where l defines the rate of exponential

decay of a perturbation close to equilibrium (Dx ¼ e2lt) [22]. The

consequence of this slow decay is that both variance and autocor-

relation of the recorded ecosystem dynamics will increase close to a

transition point [12]. We estimated variance as coefficient of vari-

ation (CV ¼ standard deviation/mean), and autocorrelation at

lag-1 (AR1) as the Pearson correlation between lagged time series

at one time step [51].

2.4. An empirical example: comparing stability across
fish populations

We tested the indicators in empirical fisheries datasets collected

from scientific surveys on the Northeast Shelf (NES) in the north-

west Atlantic and in the southern California Current Ecosystem

(CCE) in the eastern Pacific. NES data were collected through the

Northeast Fisheries Science Center. These data are relative biomass

estimates generated from an annual fall bottom trawl survey and
include 29 stocks of demersal fishes sampled from 1963 to 2008.

Of these, 20 stocks were exploited (subject to fishing pressure).

CCE data were collected through the California Cooperative

Oceanic Fisheries Investigations (CalCOFI). These data are relative

biomass estimates generated from regular ichthyoplankton tows

and include 29 coastal-neritic fish species [52] sampled from

1951 to 2007. Among the 29 species, 16 were exploited and 13

were unexploited. We omitted missing values in estimating

the indicators. The NES data are available from the Northeast

Fisheries Science Center, National Marine Fisheries Service

(NMFS), National Oceanic and Atmospheric Administration

(NOAA), USA (http://www.nefsc.noaa.gov/nefsc/saw/). The

CCE fish data are available from the Southwest Fisheries Science

Center, NMFS, NOAA, USA (http://coastwatch.pfeg.noaa.gov/

erddap/search/index.html?page=1&itemsPerPage=1000&search

For=calcofi).

We compared indicators from the fisheries data to distri-

butions of indicators of exploited and unexploited populations

from our simulated scenarios. In the demographic change scen-

ario, we marked populations with r . 1.48 as exploited, and

populations with r , 1.48 as unexploited, while in the exploita-

tion scenario, exploited populations were harvested with rate F
between 0.57 and 1.18, and unexploited populations with rate

F below 0.57. We then randomly selected 2000 exploited and

unexploited population time series.

All simulated data and the estimation of the nonlinearity and

CSD indicators were produced using Matlab v. 2015a (Math-

works). For open source options, nonlinearity indices can be

estimated using the rEDM package (https://cran.r-project.org/

web/packages/rEDM/index.html), and CSD indicators can be

computed using the R package earlywarnings (https://cran.

r-project.org/web/packages/earlywarnings/index.html).
3. Results
In our demographic change scenario, increases in growth rate

led to a sequence of well-understood transitions: a shift

from stable point to excitable point equilibrium dynamics,

followed by a transition to regular oscillations, and finally a

shift to chaos. In addition, there was also a transition to extinc-

tion when growth rate decreased to 0. Obviously, stochasticity

makes the boundaries between these attractors difficult to ident-

ify, as exemplified by the simulated time series in figure 1a. We

found that CSD indicators (CV, AR1) and nonlinearity (Dr)

could partly differentiate the transitions between these dynami-

cal regimes (figure 1c). Around the boundary to spiralling

dynamics, CV and Dr were the lowest, while AR1 changed

sign from positive to negative values. These patterns reflected

the fact that close to this boundary disturbances die off fast but

in an oscillating manner, determined by the decreasing local

eigenvalue that shifts sign in the deterministic model (see the

electronic supplementary material, figure S1). Before the onset

of cycles, all indicators increased, reflecting the progressive

loss of stability in the deterministic model. In particular, AR1
reached its highest (negative) value, signalling the birth of the

deterministic cyclic attractor. As the instability increased further

towards the transition to chaos, CV andDr continued to strongly

increase, but AR1 decreased weakly implying that correlated

patterns were disrupted due to the chaotic dynamics. Lastly,

in the opposite direction, the approach to extinction was

marked by a clear increase in all indicators that reflected a

considerable loss of stability.
In the exploitation scenario, a gradual increase in harvest-

ing rate F caused populations to experience a slight decrease

until collapsing to an overexploited state (figure 1b). Owing
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to stochasticity, the collapse occurred earlier than the actual

transition of the deterministic model (figure 1b). Approaching

the transition, the stability of the point equilibrium gradually

diminished (electronic supplementary material, figure S1d ).

Consequently, we found that both CSD indicators (CV, AR1)

increased (figure 1d). Strikingly, nonlinearity (Dr) increased

as well before the collapse (figure 1d). Once the transition

was crossed, the pattern reversed: CV, AR1 andDr all dropped,

marking the progressive gain in stability and the decrease in

nonlinearity of the overexploited state.

Nonlinearity Dr is estimated after the empirical reconstruc-

tion of the underlying dynamical attractor (best embedding

dimension E) and the fitting of a model with varying levels

of state-dependence (best weighting factor u). In figure 2, we

explicitly monitored both these quantities in our simulations.

In the demographic change scenario, we found that the fraction

of nonlinear models with best embedding dimension E ¼ 2

peaked around the onset of the chaotic regime, while the

proportion of linear models with the best forecasts (u ¼ 0)

dropped to 0 almost at the shift to cyclic dynamics

(figure 2a,c). In the exploitation scenario (figure 2b,d ), the

patterns were noisy, although we noticed an increasing trend

and a peak in the most nonlinear model (u ¼ 5) at the shift to

overexploitation.
We also compared results from the stationary distributions

to a situation where external conditions change continuously

with time. We simulated this more realistic scenario by linearly

increasing growth and harvesting rates over 200 time steps,

and we measured CSD and nonlinearity indicators within a

moving window along the time series (figure 3). We found

similar patterns to those obtained in the case of stationary dis-

tributions (figure 1). However, we found strong uncertainties

in the patterns of nonlinearity especially for the demographic

change scenario (figure 3g,h).

Ideally, for populations that have a history of monitoring,

there exist biomass estimates at different levels of stress

(environmental conditions, exploitation) that help compare

stability among populations using the above presented indi-

cators. Unfortunately, in our empirical fisheries records, we

have no explicit values of demographic rates (such as r in our

model), nor of harvesting rate F as in the simulations. Instead,

we can only discriminate populations based on whether

they were commercially fished (i.e. exploited) or not (i.e.

unexploited or bycatch). Using this discrimination as a proxy

for exploitation stress, we tested for differences in CV, AR1
and Dr between exploited versus unexploited populations

and we compared them to the patterns found from our scen-

arios (figure 4a–c). We found that mean Dr and AR1 were
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higher for exploited populations than unexploited populations

in both datasets (figure 4e,f ), whereas mean CV was higher in

exploited populations in the CCE but not in the NES dataset

(figure 4d). However, only Dr and CV were significantly

higher in the CCE exploited populations (Mann–Whitney

U-test). Taking both datasets together (electronic supplementary

material, table S1), we found negative correlations between CV
and AR1 for both exploited and unexploited populations, stron-

ger positive correlation between CV and Dr for unexploited

than exploited populations, and also stronger positive corre-

lation between AR1 and Dr for unexploited than exploited
populations. However, similar to our simulated time series,

only the correlations between CV and Dr were significant.
4. Discussion
Driven by chaotic dynamics, stochasticity or alternative

attractors, our ability to accurately describe nonlinear systems

and to efficiently manage them remains limited. Here, we

explored whether EDM can complement CSD indicators for

detecting transitions in the dynamics of ecological systems.
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Both approaches belong to a class of model-free methods

for describing ecological dynamics. EDM has never been

explored as a means of measuring ecosystem stability or

detecting the risk of dynamical transitions in the generic

sense as CSD indicators do. Our results show that elevated

nonlinearity Dr based on EDM can be potentially used as

an indicator for the proximity to transitions between alterna-

tive states as well as to transitions from stable dynamics to

irregular oscillations.

Nonlinearity (or state-dependence), measured as Dr,

basically captures changes in the deterministic stability of

the Ricker model in terms of degree of state-dependence

(figure 1 and electronic supplementary material, figure S1).

In the demographic change scenario, the gradual increase of

Dr from a stable equilibrium to oscillations and finally chaos

is expected as populations become increasingly unstable and

unpredictable. This implies that future states are better pre-

dicted by using local information: that is, points that are

closer together in the reconstructed state space of dimension

2 (figure 2a). On the other hand, the rise of Dr before the

shift to the alternative state is less intuitive in the exploitation

scenario. Owing to critical slowing, there is a build-up of

memory in the produced time series. This implies that the

best reconstructed attractor is of dimension 1 (figure 2b),

which basically means that future states are better predicted

by using local information that corresponds to points closer

in time.

One may observe a large difference in the behaviour of

the indicators between the two scenarios. In the exploitation
scenario, all three indicators peak at the transition to the

alternative state (figure 1d ), while in the demographic

change scenario, indicators change in a smooth way

(figure 1c). This observation raises challenges in the operatio-

nalization of these indicators. Ideally, an indicator should

produce a distinct mark of changing dynamics. This is true

for the exploitation scenario, because the change in the

dynamics is related to a true discontinuity in the stability of

the system (electronic supplementary material, figure S1d). In

this case, all three indicators serve as independent signals of

the approaching discontinuity. In the demographic change

scenario, however, changes in dynamics are continuous (elec-

tronic supplementary material, figure S1c). Therefore, it is

expected that these indicators (as any other indicator) would

also change in a continuous way. For this reason, inter-

pretations of changes in dynamics could only be based

on parallel monitoring and comparison among multiple

indicators [51].

For example, we find that elevated nonlinearity and rising

variability are strongly correlated in both scenarios (Pearson

correlation: demographic change scenario 0.86, exploitation

scenario 0.88). This observation implies that similar changes

in nonlinearity (Dr) and variability (CV) may be a good

proxy for detecting shifts in population dynamics that are

characterized by non-fixed point attractors and strong stochas-

ticity. This is because rising variance and nonlinearity can be

understood as fingerprints of increasing state-dependence

[31] that is not affected by the nature of the underlying determi-

nistic attractor. Population dynamics are typically the result of
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a mix of transients across stable and unstable equilibria affected

by environmental and demographic stochasticity. CSD indi-

cators can capture changes in these dynamics but only when

it comes to stable equilibria in the presence of weak stochasti-

city [12]. Identifying transitions across chaotic attractors or,

more generally, in systems with nonlinear dynamics may be

difficult with CSD indicators [53,54]. By contrast, EDM-derived

nonlinearity may be broader in its application as it can capture

changes in dynamics beyond stable attractors typical of the

dynamics encountered in natural systems.

Our findings suggest that an ecosystem manager could esti-

mate both CSD and EDM metrics in order to rank populations

according to their stability [55]. For instance, Krkosek & Drake

[56] looked at patterns of CV and AR1 for Pacific salmon popu-

lations and found that they were higher for pink salmon stocks

that had a population growth rate close to zero. In this work,

the authors assumed that salmon populations would suffer

a transcritical bifurcation due to growth rates approaching

zero. Trends in CV and AR1 in our analyses are in line with

these findings (figure 1). Moreover, we also find that nonlinear-

ity increases at decreasing growth rates approaching to zero.

Our results imply that regardless of the type of transition (be

it a transcritical, a fold or a flip bifurcation), a simultaneous

increase in CV and nonlinearity could signal proximity to a

transition in ecological dynamics. When tested in the empirical

data, CV and nonlinearity also show a consistent positive

relationship (electronic supplementary material, table S1) that

follows our theoretical expectations. However, we failed to

find an unequivocal signature in the indicators that discrimi-

nate the exploited from the unexploited group. For example,

we found elevated nonlinearity and AR1 in the exploited

populations for both NES and CCE datasets, but higher

variability only for the CCE dataset (figure 4). Although the

datasets we analysed are sampled under the same environ-

mental conditions, differences in life-history traits between

species can modify population responses to the same stress

[52]. If information on such differences is available, correcting

for them across populations may improve the interpretation

of the indicators.
The indicator patterns we identified in our Ricker-type

model will most probably also hold for other discrete or

continuous population models with similar bifurcations.

Nonetheless, a number of factors can confound the detection

capacity of the indicators. For example, we found strong fluctu-

ations in nonlinearity estimates, especially in the exploitation

scenario (electronic supplementary material, figure S2f).

Changes in variance and autocorrelation can also be unreliable

in the presence of short time series [51], high levels of stochas-

ticity [57], fast changing stress drivers [54,58] or due to

portfolio effects [56] and life-history strategies [59]. Further

research is needed to find if similar constraints hold for the

elevated nonlinearity indicator we propose here.

In the quest for understanding and anticipating eco-

system responses to stress, testing novel and alternative

approaches is of high priority. The indicators we examined

here contribute to equation-free, data-driven approaches

that aim at quantifying differences in the stability of popu-

lations under increasing environmental stress. Translating

such differences to a risk assessment scheme might be a

useful tool for improving ecosystem management in the

face of global environmental change.
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17. Möllmann C, Diekmann R. 2012 Marine ecosystem
regime shifts induced by climate and overfishing: a
review for the Northern Hemisphere. Adv. Ecol. Res. 47,
303 – 347. (doi:10.1016/B978-0-12-398315-2.00004-1)

18. Carpenter SR. 2005 Eutrophication of aquatic
ecosystems: bistability and soil phosphorus. Proc.
Natl Acad. Sci. USA 102, 10 002 – 10 005. (doi:10.
1073/pnas.0503959102)

19. Drake JM, Griffen BD. 2010 Early warning signals of
extinction in deteriorating environments. Nature
467, 456 – 459. (doi:10.1038/nature09389)

20. O’Regan SM, Drake JM. 2013 Theory of early
warning signals of disease emergence and leading
indicators of elimination. Theor. Ecol. 6, 333 – 357.
(doi:10.1007/s12080-013-0185-5)

21. Schindler DE, Hilborn R. 2015 Prediction, precaution,
and policy under global change. Science 347,
953 – 954. (doi:10.1126/science.1261824)

22. Wissel C. 1984 A universal law of the characteristic
return time near thresholds. Oecologia 65,
101 – 107. (doi:10.1007/BF00384470)

23. Kuehn C. 2011 A mathematical framework for critical
transitions: bifurcations, fast-slow systems and
stochastic dynamics. Phys. D Nonlinear Phenom. 240,
1020 – 1035. (doi:10.1016/j.physd.2011.02.012)

24. Dai L, Vorselen D, Korolev KS, Gore J. 2012 Generic
indicators for loss of resilience before a tipping
point leading to population collapse. Science 336,
1175 – 1177. (doi:10.1126/science.1219805)

25. Batt RD, Carpenter SR, Cole JJ, Pace ML, Johnson
RA. 2013 Changes in ecosystem resilience detected
in automated measures of ecosystem metabolism
during a whole-lake manipulation. Proc. Natl Acad.
Sci. USA 110, 17 398 – 17 403. (doi:10.1073/pnas.
1316721110)

26. Carpenter SR et al. 2011 Early warnings of regime
shifts: a whole-ecosystem experiment. Science 332,
1079 – 1082. (doi:10.1126/science.1203672)

27. Sugihara G, May RM. 1990 Nonlinear forecasting as
a way of distinguishing chaos from measurement
error in time series. Nature 344, 734 – 741. (doi:10.
1038/344734a0)

28. Takens F. 1981 Detecting strange attractors in
turbulence. In Dynamical systems and turbulence.
Lecture Notes in Mathematics, pp. 366 – 381. Berlin,
Germany: Springer.

29. Deyle ER, May RM, Munch SB, Sugihara G. 2015
Tracking and forecasting ecosystem interactions in
real time. Proc. R. Soc. B 283, 20152258. (doi:10.
1098/rspb.2015.2258)

30. Perretti CT, Munch SB, Sugihara G. 2013 Model-free
forecasting outperforms the correct mechanistic
model for simulated and experimental data. Proc.
Natl Acad. Sci. USA 110, 5253 – 5257. (doi:10.1073/
pnas.1216076110)

31. Sugihara G. 1994 Nonlinear forecasting for the
classification of natural time-series. Phil. Trans. R. Soc.
Lond. A 348, 477 – 495. (doi:10.1098/rsta.1994.0106)
32. Hsieh CH, Glaser SM, Lucas AJ, Sugihara G. 2005
Distinguishing random environmental fluctuations
from ecological catastrophes for the North Pacific
Ocean. Nature 435, 336 – 340. (doi:10.1038/
nature03553)

33. Boettiger C, Ross N, Hastings A. 2013 Early warning
signals: the charted and uncharted territories.
Theor. Ecol. 6, 255 – 264. (doi:10.1007/s12080-
013-0192-6)

34. Britten GL, Dowd M, Worm B. 2016 Changing
recruitment capacity in global fish stocks. Proc. Natl
Acad. Sci. USA 113, 134 – 139. (doi:10.1073/pnas.
1504709112)

35. Holyoak M, Baillie SR. 1996 Factors influencing
detection of density dependence in British birds.
Oecologia 108, 54 – 63. (doi:10.1007/BF00333214)

36. Lima M, Harrington R, Saldaña S, Estay S. 2008
Non-linear feedback processes and a latitudinal
gradient in the climatic effects determine green
spruce aphid outbreaks in the UK. Oikos 117,
951 – 959. (doi:10.1111/j.0030-1299.2008.16615.x)

37. Vasseur DA, Fox JW, Letters E. 2007 Environmental
fluctuations can stabilize food web dynamics by
increasing synchrony. Ecol. Lett. 10, 1066 – 1074.
(doi:10.1111/j.1461-0248.2007.01099.x)

38. Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J,
Ernande B, Dieckmann U. 2004 Maturation trends
indicative of rapid evolution preceded the collapse
of northern cod. Nature 428, 4 – 7. (doi:10.1038/
nature02453.1.)

39. Ernande B, Dieckmann U, Heino M. 2004 Adaptive
changes in harvested populations: plasticity and
evolution of age and size at maturation.
Proc. R. Soc. Lond. B 271, 415 – 423. (doi:10.1098/
rspb.2003.2519)

40. Anderson CNK, Hsieh CH, Sandin SA, Hewitt R,
Hollowed A, Beddington J, May RM, Sugihara G.
2008 Why fishing magnifies fluctuations in fish
abundance. Nature 452, 835 – 839. (doi:10.1038/
nature06851)

41. Desharnais RA, Constantino RF, Cushing JM, Henson
SM, Dennis B. 2001 Chaos and population control of
insect outbreaks. Ecol. Lett. 4, 229 – 235. (doi:10.
1046/j.1461-0248.2001.00223.x)

42. Estay SA, Lima M, Harrington R. 2009 Climate
mediated exogenous forcing and synchrony in
populations of the oak aphid in the UK. Oikos 118,
175 – 182. (doi:10.1111/j.1600-0706.2008.17043.x)

43. Griffen BD, Drake JM. 2008 Effects of habitat quality
and size on extinction in experimental populations.
Proc. R. Soc. B 275, 2251 – 2256. (doi:10.1098/rspb.
2008.0518)

44. Belovsky G, Mellison C, Larson C, Van Zandt PA.
1999 Experimental studies of extinction dynamics.
Science 286, 1175 – 1177. (doi:10.1126/science.286.
5442.1175)

45. Sommer S, van Benthem KJ, Fontaneto D, Ozgul A.
In press. Are generic early-warning signals reliable
indicators of population collapse in rotifers?
Hydrobiologia. (doi:10.1007/s10750-016-2948-7)

46. May RM. 1974 Biological populations with
nonoverlapping generations: stable points, stable
cycles, and chaos. Science 186, 645 – 647. (doi:10.
1126/science.186.4164.645)

47. Beddington JR, May RM. 1977 Harvesting natural
populations in a randomly fluctuating environment.
Science 197, 463 – 465. (doi:10.1126/science.197.
4302.463)

48. Glaser SM et al. 2014 Complex dynamics may limit
prediction in marine fisheries. Fish Fish. 15,
616 – 633. (doi:10.1111/faf.12037)

49. Sugihara G, May R, Ye H, Hsieh C-H, Deyle E,
Fogarty M, Munch S. 2012 Detecting causality in
complex ecosystems. Science 338, 496 – 500.
(doi:10.1126/science.1227079)

50. Hsieh CH, Anderson C, Sugihara G. 2008 Extending
nonlinear analysis to short ecological time series.
Am. Nat. 171, 71 – 80. (doi:10.1086/524202)

51. Dakos V et al. 2012 Methods for detecting early
warnings of critical transitions in time series
illustrated using simulated ecological data. PLoS
ONE 7, e41010. (doi:10.1371/journal.pone.0041010)

52. Hsieh CH, Reiss CS, Hunter JR, Beddington JR, May
RM, Sugihara G. 2006 Fishing elevates variability in
the abundance of exploited species. Nature 443,
859 – 862. (doi:10.1038/nature05232)

53. Hastings A, Wysham DB. 2010 Regime shifts in
ecological systems can occur with no warning. Ecol.
Lett. 13, 464 – 472. (doi:10.1111/j.1461-0248.2010.
01439.x)

54. Dakos V, Carpenter SR, van Nes EH, Scheffer M.
2015 Resilience indicators: prospects and limitations
for early warnings of regime shifts. Phil.
Trans. R. Soc. B 370, 20130263. (doi:10.1098/rstb.
2013.0263)

55. Scheffer M, Carpenter SR, Dakos V, van Nes E. 2015
Generic indicators of ecological resilience: inferring
the chance of a critical transition. Annu. Rev. Ecol.
Evol. Syst. 46, 145 – 167. (doi:10.1146/annurev-
ecolsys-112414-054242)
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