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Network science has been extensively developed to characterize the struc-

tural properties of complex systems, including brain networks inferred

from neuroimaging data. As a result of the inference process, networks esti-

mated from experimentally obtained biological data represent one instance

of a larger number of realizations with similar intrinsic topology. A model-

ling approach is therefore needed to support statistical inference on the

bottom-up local connectivity mechanisms influencing the formation of the

estimated brain networks. Here, we adopted a statistical model based on

exponential random graph models (ERGMs) to reproduce brain networks,

or connectomes, estimated by spectral coherence between high-density

electroencephalographic (EEG) signals. ERGMs are made up by different

local graph metrics, whereas the parameters weight the respective contri-

bution in explaining the observed network. We validated this approach in

a dataset of N ¼ 108 healthy subjects during eyes-open (EO) and eyes-

closed (EC) resting-state conditions. Results showed that the tendency to

form triangles and stars, reflecting clustering and node centrality, better

explained the global properties of the EEG connectomes than other combi-

nations of graph metrics. In particular, the synthetic networks generated

by this model configuration replicated the characteristic differences found

in real brain networks, with EO eliciting significantly higher segregation

in the alpha frequency band (8–13 Hz) than EC. Furthermore, the fitted

ERGM parameter values provided complementary information showing

that clustering connections are significantly more represented from EC to

EO in the alpha range, but also in the beta band (14–29 Hz), which is

known to play a crucial role in cortical processing of visual input and

externally oriented attention. Taken together, these findings support the

current view of the functional segregation and integration of the brain in

terms of modules and hubs, and provide a statistical approach to extract

new information on the (re)organizational mechanisms in healthy and

diseased brains.
1. Introduction
The study of the human brain at rest provides precious information that is

predictive of intrinsic functioning, cognition, as well as pathology [1]. In the

last decade, graph theoretic approaches have described the topological structure

of resting-state connectomes derived from different neuroimaging techniques,

such as functional magnetic resonance imaging (fMRI) or magneto- (MEG)

and electroencephalography (EEG).

These estimated connectomes, or brain networks, tend to exhibit similar

organizational properties, including small-worldness, cost-efficiency, modular-

ity and node centrality [2], as well as characteristic dependence from the

anatomical backbone connectivity [3–5] and genetic factors [6]. Furthermore,

they potentially show clinical relevance, as demonstrated by the recent
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development of network-based diagnostics of consciousness

[7,8], Alzheimer’s disease [9], stroke recovery [10] and

schizophrenia [11]. In this sense, quantifying the topological

properties of intrinsic functional connectomes by means

of graph theory has enriched our understanding of the

structure of functional brain connectivity maps [2,12–14].

Nevertheless, these results refer to a descriptive analysis of

the observed brain network, which is only one instance of

several alternatives with similar structural features. This is

especially true for functional networks inferred from empiri-

cally obtained data, where the edges (or links) are noisy

estimates of the true connectivity and thresholding is often

adopted to filter the relevant interactions between the

system units [15–17].

Statistical models are, therefore, needed to reflect the

uncertainty associated with a given observation, to permit

inference about the relative occurrence of specific local struc-

tures and to relate local-level processes to global-level

properties [18]. A first approach consists in generating syn-

thetic random networks that preserve some observed

properties, such as the degree distribution or the random

walk distribution, and then contrasting the values of the

graph indices obtained in these synthetic networks with

those extracted from the estimated connectomes [13]. While

these methods often provide appropriate null models, and

can improve the identification of relevant network properties

[19–21], they do not inform on the organizational mechan-

isms modelling the whole network formation [22,23].

Alternative approaches consider probabilistic growth

models such as those based on spatial distances between

nodes [24]. Interesting results have been achieved in identify-

ing some basic connectivity rules reproducing both structural

and functional brain networks [25,26]. However, these

methods suffer from the rough approximation (e.g. Eucli-

dean) of the actual spatial distance between nodes, and,

moreover, they do not indicate whether the identified local

mechanisms are either necessary or sufficient as descriptors

of the global network structure.

To support inference on the processes influencing the for-

mation of network structure, statistical models have been

conceived to consider the set of all possible alternative net-

works weighted on their similarity to the observed one

[18]. Among others, exponential random graph models

(ERGMs) represent a flexible category that allows the simul-

taneous assessment of the role of specific graph features in

the formation of the entire network. These models were

first proposed as an extension of the triad model defined in

[27] to characterize Markov graphs [28,29] and have been

widely developed to understand how simple interaction

rules, such as transitivity, could give rise to the complex

network of social contacts [30–38].

Recently, the use of ERGMs has been proved to success-

fully model imaging connectomes derived respectively from

spontaneous fMRI activity [39] and diffusion tensor imaging

(DTI) [40]. Despite its potential, the use of ERGMs in network

neuroscience is still in its infancy and more evidence is

needed to better elucidate its applicability to connectomes

inferred from other types of neuroimaging data and across

different experimental conditions. In addition, many

methodological issues remain unanswered, such as the

relationships between the graph metrics included in the

ERGM and the graph indices used to describe the topology

of the observed connectomes.
To address the above issues, we proposed and evaluated

several ERGM configurations based on the combination of

different local connectivity structures (i.e. graph metrics).

Specifically, we modelled brain networks estimated from

high-density EEG signals in a group of healthy individuals

during eyes-open (EO) and eyes-closed (EC) resting states.

Our goal was to identify the best ERGM configuration repro-

ducing EEG-derived connectomes in terms of functional

integration and segregation, and to evaluate the ability of the

estimated ERGM parameters in providing new information

discriminating between EO and EC conditions.
2. Material and methods
2.1. Electroencephalographic data and brain network

construction
We used high-density EEG signals freely available from

the online PhysioNet BCI database [41,42]. EEG data consisted

of 1 min resting state with EO and 1 min resting state with EC

recorded from 56 electrodes in 108 healthy subjects. EEG signals

were recorded with an original sampling rate of 160 Hz. All the

EEG signals were referenced to the mean signal gathered from

electrodes on the ear lobes. We subsequently downsampled the

EEG signals to 100 Hz after applying a proper anti-aliasing

low-pass filter. The electrode positions on the scalp followed

the standard 10–10 montage.

We used the spectral coherence [43] to measure functional

connectivity (FC) between EEG signals of sensors i and j at a

specific frequency band f as follows:

wijð fÞ ¼
jSijð fÞj2

Siið fÞS jjð fÞ
, ð2:1Þ

where Sij is the cross-spectrum between i and j, and Sii and Sjj are

the autospectra of i and j, respectively. Specifically, we computed

cross- and auto-spectra by means of Welch’s averaged modified

periodogram with a sliding Hanning window of 1 s and 0.5 s of

overlap. The number of fast Fourier transform points was set to

100 for a frequency resolution of 1 Hz. As a result, we obtained

for each subject a connectivity matrix W( f ) of size 56 � 56

where the entry wij( f ) contains the value of the spectral coherence

between the EEG signals of sensors i and j at the frequency f.
We then averaged the connectivity matrices within the

characteristic frequency bands theta (4–7 Hz), alpha (8–13 Hz),

beta (14–29 Hz) and gamma (30–40 Hz). These matrices consti-

tuted our raw brain networks whose nodes corresponded to

the EEG sensors (n ¼ 56) and links corresponded to the wij

values. Finally, we thresholded the values in the connectivity

matrices to retain the strongest links in each brain network.

Specifically, we adopted an objective criterion, i.e. the efficiency

cost optimization (ECO), to filter and binarize a number of links

such that the final average node degree k ¼ 3 [44]. We also con-

sidered k ¼ 1, 2, 4, 5 to evaluate the main brain network

properties around the representative threshold k ¼ 3. The result-

ing sparse brain networks, or graphs, were represented by

adjacency matrices A, where each entry indicates the presence

aij ¼ 1 or the absence aij ¼ 0 of a link between nodes i and j.

2.2. Graph indices
We evaluated the global structure of brain networks by measur-

ing graph indices at large-scale topological scales. We focused on

well-known properties of brain networks such as optimal

balance between integration and segregation of information

[2,45,46]. Integration is the tendency of the network to favour

distributed connectivity among remote brain areas; conversely,
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Figure 1. Graphical representation of k-stars and k-triangles.
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segregation is the tendency of the network to maintain connec-

tivity within specialized groups of brain areas [47].

In graph theory, integration has been typically quantified by

the global-efficiency Eg and by the characteristic path length L,

Eg ¼
1

nðn� 1Þ
Xn

i, j¼1, i=j

1

dij

and L ¼ 1

nðn� 1Þ
Xn

i, j¼1, i=j

dij,

9>>>>=
>>>>;

ð2:2Þ

where dij is the distance, or the length of the shortest path,

between nodes i and j [48,49].

Segregation is typically measured by means of the local-

efficiency El and by the clustering coefficient C:

El ¼
1

n

Xn

i¼1

EgðGiÞ

and C ¼ 1

n

Xn

i¼1

2ti

kiðki � 1Þ,

9>>>>=
>>>>;

ð2:3Þ

where Gi is the subgraph formed by the nodes connected to i; ti is

the number of triangles around node i; and ki is the degree of

node i [48,49].

In addition, we evaluated the strength of division of a net-

work into modules by measuring the modularity Q:

Q ¼ 1

l

Xn

i, j¼1

Aij �
kikj

l

� �
dmi ;mj , ð2:4Þ

where l ¼
Pn

i;j¼1 Aij is the number of edges, mi is the module con-

taining node i and dmi
,mj ¼ 1 if mi ¼ mj and 0 otherwise. We used

the Walktrap algorithm to generate a sequence of community par-

titions [50] and we selected the one that maximized Q according to

the standard algorithm proposed in [51]. Modularity can be seen as

a compact measure of the integration and segregation of a network,

as it measures the propensity to form dense connections between

nodes within modules (i.e. segregation) but sparse connections

between nodes in different modules (i.e. inverse of integration).
2.3. Exponential random graph model
Let G be a graph in a set G of possible network realizations, g ¼ [g1,

g2, . . . , gr] be a vector of graph statistics, or metrics, and g* ¼ [g*1, g*2,

. . . , g*r] be the values of these metrics measured over G. Then, we

can statistically model G by defining a probability distribution

P(G) over G such that the following conditions are satisfied:X
G[G

PðGÞ ¼ 1 ð2:5Þ

and

kgil ¼
P

G[G
giðGÞPðGÞ ¼ g�i , i ¼ f1; 2, . . . , rg, ð2:6Þ

where kgil is the expected value of the ith graph metric over G.

By maximizing the Gibbs entropy of P(G) constrained to the

above conditions, the probability distribution reads as:

PðGÞ ¼ eHðGÞ

Z
, ð2:7Þ

where HðGÞ ¼
Pr

i¼1 uigiðGÞ is the graph Hamiltonian, ui is the ith
model parameter to be estimated and Z ¼

P
G[G eHðGÞ is the so-

called partition function [52]. The estimated value of a parameter

ui indicates the change in the (log-odds) likelihood of an edge for

a unit change in graph metric gi. If the estimated value of ui is

large and positive, the associated graph metric gi plays an impor-

tant role in explaining the topology of G more than would be

expected by chance. Note that here chance corresponds to ran-

domly choosing a network from the space G. If instead the

estimated value of ui is negative and large, then gi still plays
an important role in explaining the topology of G but it is less

prevalent than expected by chance [53].

In general, the fact that the space G can be very large even

for relatively small n, as well as the inclusion of graph metrics

that are not simple linear combinations of Gij, in practice make

it impossible to derive analytically the model parameters

vector u ¼ [u1, u2, . . . , ur] [27,31].

Numerical methods, such as Markov chain Monte Carlo

(MCMC) approximations of the maximum-likelihood estimators

(MLEs) of the model parameters vector u, are typically adopted

to circumvent this issue [54].
2.3.1. Model construction and implementation
We considered graph metrics reflecting the basic properties of com-

plex systems such as hub propensity and transitivity in the network

[46,55,56]. Specifically, we focused on k-stars to model highly con-

nected nodes (hubs) and k-triangles to model transitivity, where k
refers to the order of the structures as illustrated in figure 1.

In general, this leads to a large number of model parameters

to be estimated, i.e. n 2 1 for k-stars and n 2 2 for k-triangles. To

avoid consequent degeneracy issues in the ERGM estimation, we

adopted a compact specification for these metrics that combines

them in an alternating geometric sequence [31,57].

Because k-stars are related to the node degree distribution D
[33], we used the geometrically weighted degree distribution GWK as

a graph metric to characterize hub propensity:

GWK ¼ e2t
Xn�1

i¼1

ðð1� e�tÞi � 1þ ie�tÞDi, ð2:8Þ

where t . 0 is a ratio parameter to penalize nodes with extremely

high node degrees.

Similarly, because k-triangles are related to the shared pattern
distribution S, we used the geometrically weighted edgewise shared
partner distribution to characterize transitivity:

GWE ¼ et
Xn�2

i¼1

ð1� ð1� e�tÞiÞSi, ð2:9Þ

where the element Si is the number of dyads that are directly

connected and that have exactly i neighbours in common.

In addition, complementary metrics have been defined based

on the shared partner distribution:

GWN: geometrically weighted non-edgewise shared partner distri-
bution given by equation (2.9), with Si considering

exclusively dyads that are not connected.

GWD: geometrically weighted dyadwise shared partner distribution
given by equation (2.9), with Si considering any dyad,

connected or not.



Table 1. Set of model configurations. Models M1 – M10 include at most
two of the four considered graph metrics, i.e. GWK, GWE, GWN, GWD. The
metric ‘edges’ is fixed and equal to the actual number of edges in the
observed brain networks in all the configurations but M11 model. *Metrics
that are fixed. 3Metrics that are variable.

models edges GWK GWE GWN GWD

M1 * 3 3 – —

M2 * — 3 — 3

M3 * — — 3 3

M4 * — 3 3 —

M5 * — 3 — —

M6 * — — 3 —

M7 * 3 — 3 —

M8 * 3 — — 3

M9 * 3 — — —

M10 * — — — 3

M11 3 — 3 3 —
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The above specifications yield particular ERGMs that belong

to the so-called curved exponential family [33] and that have

been extensively used in social science [32,58,59].

We constructed different ERGM configurations by including

these graph metrics as illustrated in table 1. For the sake of sim-

plicity, we only considered combinations of two graph metrics at

most, except in one case where we also included the number of

edges as a further metric [39,40].

We tested the different configurations by fitting the ERGM to

brain networks in each single subject (N ¼ 108), frequency

band (theta, alpha, beta, gamma) and condition (EO, EC). To fit

ERGMs, we used an MCMC algorithm (Gibbs sampler) that

samples networks from an exponential graph distribution.

Specifically, we set the initial values of the model parameters

u0 by means of a maximum pseudo-likelihood estimation

(MPLE) [54,60]. Then, we adopted Fisher’s scoring method to

update the model parameters u until they converged to

the approximated MLEs û [31]. As we used curved ERGMs,

the ratio parameters t were not fixed but were estimated.

Eventually, for each fitted ERGM configuration we generated

100 synthetic networks in order to obtain appropriate confidence

intervals.
2.3.2. Goodness of fit
First, we used the Akaike information criterion (AIC) to evaluate

the relative quality of the ERGMs’ fit by taking into account the

maximum value of the likelihood function and the number of

model parameters [61].

We also adopted a different approach to assess the absolute

quality of the fit by comparing the synthetic networks generated

by the estimated ERGMs and the observed brain networks.

Specifically, we defined the following score based on the inte-

gration and segregation properties of networks:

dðEg, ElÞ ¼ maxðjhEg
j, jhEl

jÞ, ð2:10Þ

where hEg
,hEl

are the relative errors between the mean values of

the global/local efficiency of the simulated networks and the

value of the observed brain network. By selecting the maximum

absolute error, we were considering the worst case, similar to

what was proposed in [26]. Based on the above criteria, we

selected the best model, which minimizes the AIC and d mean

values. To validate the model adequacy (equation (2.6)), we
computed the Z-scores between the graph metrics’ values of

brain networks and synthetic networks.

Furthermore, we cross-validated the best model configuration

by evaluating the synthetic networks’ fit to graph indices that were

explicitly not included in either the ERGM or the model selection

criteria. We computed Pearson’s correlation coefficient between

the values of the characteristic path length (L), clustering coeffi-

cient (C ) and modularity (Q) extracted from the observed brain

networks and the mean values obtained from the corresponding

simulated networks. In addition, we used the Mirkin index (MI)

[62] to evaluate the similarity between the community partitions

of the observed networks and the consensus partitions of the

corresponding synthetic networks.

2.4. Statistical group analysis
We assessed the statistical differences between the values of the

graph indices extracted from the brain networks in the EO and

EC resting-state conditions. We also computed between-con-

dition differences using the synthetic networks fitted by the

best ERGM. In this case, we considered the mean values of the

graph indices in order to have one value corresponding to one

brain network. Eventually, we computed the statistical differ-

ences between the values of the best ERGM parameters in the

EO and EC conditions in order to assess their potential to pro-

vide complementary information to that provided by standard

graph analysis. For each comparison, we used a non-parametric

permutation t-test and we fixed a statistical threshold of a ¼

0.001 and 100 000 permutations.
3. Results
3.1. Characteristic functional segregation of

electroencephalographic resting-state networks
The group analysis revealed a significant increase in the

local-efficiency in EO, compared with that in EC, for the

alpha band (T ¼ 3.529, p ¼ 0.0007, figure 2). We also reported

a significant increment (T ¼ 3.557, p ¼ 0.0007) for the modu-

larity in the alpha band, while no other statistically significant

differences were observed in the other frequency bands,

graph indices or metrics (electronic supplementary material,

table S3).

These differences were obtained for brain networks

thresholded with an average node degree k ¼ 3 according

to the ECO criterion [44]. We reported a similar increase in

functional segregation (local-efficiency) in the alpha band for

k ¼ 5 (electronic supplementary material, figure S1). More

details on the analysis for k ¼ 5 can be found in the electronic

supplementary material (Supp_text.pdf).

In terms of existing relationships between graph indices

and ERGM metrics, we could not establish univocal asso-

ciations between Eg and El values and the metrics’ values

used in the ERGMs (electronic supplementary material,

table S1). This was especially true for the global-efficiency,

which exhibited significantly high correlations with all the

other graph metrics (Spearman’s jRj . 0.43, p , 10239).

3.2. Triangles and stars as fundamental constituents
of functional brain networks

All the proposed ERGM configurations exhibited a relatively

good fitting in terms of AIC, except for M11 (electronic sup-

plementary material, figure S2). Notably, the latter was the

only configuration where the number of edges was considered
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as a model parameter and not as a constraint. M1 gave the

lowest d(Eg, El) scores compared with the other configurations

in both the EO and EC conditions (figure 3). Notably, the

configurations giving lower d(Eg, El) scores included, directly

or indirectly, the metric GWE, with the exception of M11.

We selected M1 as a potentially good candidate to

model EEG-derived brain networks. According to this

model configuration the mass probability density reads

PðGÞ ¼ Z�1 expfu1GWE þ u2GWKg. The group-median

values of the estimated parameters (u1 and u2) were all

positive and larger than 1 in each band and condition

(table 2). This means that the likelihood of an edge exist-

ing in a simulated network is larger if that edge is part

of a triangle (GWE) or of a star (GWK), and that these

connectivity structures are statistically relevant for the brain

network formation.

Overall, the GWE and GWK values of the synthetic

networks generated by M1 were not significantly different

from those of the observed brain networks (figure 4). This

was true in every subject for GWE (Z , 2.58, p . 0.01)

and in at least 94% of the subjects for GWE (Z , 2.58, p .

0.01). Furthermore, the values of the characteristic path

length (L), clustering coefficient (C ) and modularity (Q)

extracted from synthetic networks were significantly corre-

lated (Pearson’s R . 0.44, p , 1026) with those of the brain

networks in each frequency band (figure 5; electronic

supplementary material, table S2). In addition, synthetic net-

works exhibited a similar community partition to individual
brain networks, as revealed by the low MI values (MI , 0.21)

(electronic supplementary material, figure S3). These results

confirmed that M1 adequately models the obtained EEG

brain networks.

3.3. Simulating network differences between absence
and presence of visual input

Figure 6 illustrates the brain networks for a representative

subject in the alpha band along with the corresponding syn-

thetic networks generated by M1. In both the EO and EC

conditions, simulated networks and brain networks share

similar topological structures characterized by diffused regu-

larity and more concentrated connectivity in parietal and

occipital regions.

The group analysis over the synthetic networks revealed

the ability of M1 to capture not only the individual properties

of brain networks but also the main observed difference

between the EC and EO resting states, reflecting, respectively,

the absence and presence of visual input. Similarly to observed

brain networks, we obtained, for simulated networks, a mar-

ginally significant increase in the local-efficiency from EC to

EO, in the alpha band (T ¼ 3.168, p ¼ 0.002). No other signifi-

cant differences were reported in any other band or graph

index/metric (electronic supplementary material, table S3).

Finally, by looking at the values of the estimated par-

ameters, we observed that u1 values were significantly

larger in EO than in EC for both the alpha (T ¼ 3.746, p ¼



Table 2. Statistics for the estimated parameters of the model configuration M1. Median values and standard errors (within parentheses) are reported for the
two resting-state conditions EO and EC. t-values and p-values (within parentheses) from non-parametric permutation-based t-tests between EO and EC are
shown in the third column of each subsection marked with the heading EO 2 EC.

u1 u2

EO EC EO 2 EC EO EC EO 2 EC

theta 1.528 (0.045) 1.531 (0.039) 20.281 (0.7804) 1.502 (0.169) 1.443 (0.159) 20.406 (0.690)

alpha 1.449 (0.041) 1.297 (0.039) 3.746 (0.0002) 1.327 (0.123) 1.317 (0.532) 21.084 (0.347)

beta 1.487 (0.457) 1.326 (0.046) 1.514 (0.0009) 1.062 (0.149) 1.303 (0.169) 20.890 (0.371)

gamma 1.552 (0.046) 1.509 (8.266) 20.992 (0.8521) 0.878 (0.125) 1.140 (3.002) 21.064 (0.135)
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0.0002) and beta (Z ¼ 1.514, p ¼ 0.0009) frequency bands,

while no significant differences were found for u2 values

(table 2).
0160940
4. Discussion
In recent years, the use of statistical methods to infer the

structure of complex systems has gained increasing interest

[39,64–66]. Beyond the descriptive characterization of net-

works, statistical network models aim to statistically assess

the local connectivity processes involved in the global struc-

ture formation [18]. This is a crucial advance with respect

to standard descriptive approaches because imaging connec-

tomes, as with other biological networks, is often inferred

from experimentally obtained data and therefore the esti-

mated edges can suffer from statistical noise and

uncertainty [67].

In our study, we used ERGMs to identify the local

connectivity structures that statistically form the intrinsic syn-

chronization of large-scale electrophysiological activities. This

model formulation has the advantage of statistically inferring

the probability of edge formation accounting for highly

dependent configurations, such as transitivity structures,

something that is lacking in, for example, the Bernoulli

model. Furthermore, it is possible to include, in theory,

graph metrics measuring global and local properties and dis-

criminating node and edges attributes, such as homophily

effects. In addition, it generalizes well-known network

models such as the stochastic block model, where a block

structure is imposed by including the count of edges between

groups of nodes as a model metric [68].

Here, the results showed that the tendency to form tri-

angles (GWE) and stars (GWK) was sufficient to statistically

reproduce the main properties of the EEG brain networks,

such as functional integration and segregation, measured

by means of global-efficiency Eg and local-efficiency El (elec-

tronic supplementary material, table S3). Our findings

partially deviate from previous studies, which have used

ERGMs to model fMRI and DTI brain networks, where

GWE and the geometrically weighted non-edgewise shared

partner GWN were selected under the assumption that

these could be related, respectively, to local- and global-

efficiency [39,40]. However, here we showed that a univocal

relationship between the ERGM graph indices and the

metrics used to describe the EEG connectomes could not be

statistically established (electronic supplementary material,

table S1). While the propensity to form triangles (GWE) can
lead to cohesive clustering in the network (El), the propensity

to form redundant paths of length 2 (i.e. GWN) is not clearly

related to the formation of short paths between nodes (Eg)

[57]. Thus, while in general a good fit can be achieved by

including GWN in the ERGM, the subsequent interpretation

in terms of brain functional integration appears less straight-

forward. Here, we showed that GWE together with the

tendency to form stars (GWK) gave the best fit in terms of

local- and global efficiency. Triangles and stars, giving rise

to clustering and hubs, are fundamental building blocks of

complex systems reflecting important mechanisms such as

transitivity [48] and preferential attachment [69]. Notably,

the existence of highly connected nodes is compatible with

the presence of short paths (e.g. in a star graph the character-

istic path length L ¼ 2). This supports the recent view of brain

functional integration where segregated modules exchange

information through central hubs and not necessarily

through the shortest paths [70,71].

In the cross-validation phase, the selected model configur-

ation captured other important brain network properties as

measured by the clustering coefficient C, the characteristic

path length L and the modularity Q (figure 5). In terms of

the differences between conditions, the simulated networks

gave a marginally significant increase ( p ¼ 0.002) in El in the

alpha band during EO as compared with EC, while, differently

from observed brain networks, no significant differences were

reported for the modularity Q (electronic supplementary

material, table S3). The latter could be, in part, ascribed to

the absence of specific metrics in the ERGM accounting for

modularity. In this respect, stochastic block models, which

explicitly force modular structures, could represent an interest-

ing alternative to explore in the future [72,73]. Here, the

increased alpha local-efficiency suggests a modulation of aug-

mented specialized information processing, from EC to EO,

that is consistent with typical global power reduction and

increased regional activity [74]. Possible neural mechanisms

explaining this effect have been associated with the automatic

gathering of non-specific information resulting from more

interactions within the visual system [75] and with shifts

from interoceptive towards exteroceptive states [76–78].

As a crucial result, we provided complementary infor-

mation by inspecting the fitted ERGM parameters. The

positive u1 . 1 and u2 . 1 values indicated that both GWE

and GWK are fundamental connectivity features that

emerge in brain networks more than expected by chance

(table 2). However, only u1 values showed a significant differ-

ence (EO . EC) in the alpha band, as well as in the beta band

(table 2), suggesting that the tendency to form triangles,
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rather than the tendency to form stars, is a discriminating fea-

ture of EO and EC modes. More concentrated EEG activity

among parieto-occipital areas has been largely documented

in the alpha and also in the beta bands, the latter reflecting

either cortical processing of visual input or externally

oriented attention [74,79]. Notably, the role of the beta band

could not be found when analysing either brain networks

or synthetic networks (figure 2; electronic supplementary

material, table S3) and we speculate that this result specifi-

cally stems from the inherent ability of ERGMs to account

for potential interaction between different graph metrics [57].

4.1. Methodological considerations
We estimated EEG connectomes by means of spectral coher-

ence. While this measure is known to suffer from possible

volume conduction effects [80], it has also been demonstrated

that, probably due to this effect, it has the advantage of

generating connectivity matrices that are highly consistent

within and between subjects [81]. In addition, spectral coher-

ence is still one of the most used measures to infer FC in the

electrophysiological literature on resting states because of its

simplicity and relatively intuitive interpretation. Thus, con-

structing EEG connectomes by means of spectral coherence

allowed us to better contextualize the results obtained

with ERGM from a neurophysiological perspective. Future

studies will have to assess if and how different connectivity

estimators affect the choice of the model parameters.

We used a density-based thresholding procedure to filter

information in the EEG raw networks by retaining and
binarizing the strongest edges. Despite the consequent

information loss, thresholding is often adopted to mitigate

the uncertainty of the weakest edges, reduce the false posi-

tives and facilitate the interpretation of the inferred network

topology [13,17].

Selecting a binarizing threshold does have an impact on

the topological structure of brain networks [82]. Based on

the optimization of fundamental properties of complex sys-

tems, i.e. efficiency and economy, the adopted thresholding

criterion (ECO) leads to sparse networks, with an average

node degree k ¼ 3, causing possible nodes to be discon-

nected. However, it has demonstrated empirically that the

size of the resulting largest component typically contains

more than 60% of the brain nodes, thus ensuring a sparse

but meaningful network structure [44]. In a separate analysis,

we verified that the validity of the model and the character-

istic between-condition differences observed in the alpha
band were also globally preserved for k ¼ 5 (electronic

supplementary material, Supp_text.pdf).
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2000 Classes of small-world networks. Proc. Natl
Acad. Sci. USA 97, 11 149 – 11 152. (doi:10.1073/
pnas.200327197)

56. Wang XF, Chen G. 2003 Complex networks:
small-world, scale-free and beyond. IEEE Circuits
Syst. Mag. 3, 6 – 20. (doi:10.1109/MCAS.2003.
1228503)

57. Snijders PP, Robins GL, Handcock MS. 2006 New
specifications for exponential random graph models.
Sociol. Methodol. 36, 99 – 153. (doi:10.1111/j.1467-
9531.2006.00176.x)

58. Robins G, Snijders T, Wang P, Handcock M, Pattison
P. 2007 Recent developments in exponential
random graph ( p*) models for social networks.
Soc. Netw. 29, 192 – 215. (doi:10.1016/j.socnet.
2006.08.003)

59. Lusher D, Koskinen J, Robins G. 2012 Exponential
random graph models for social networks: theory,
methods, and applications. Cambridge, UK:
Cambridge University Press.

60. van Duijn MAJ, Gile KJ, Handcock MS. 2009
A framework for the comparison of maximum
pseudo-likelihood and maximum likelihood
estimation of exponential family random graph
models. Soc. Netw. 31, 52 – 62. (doi:10.1016/j.
socnet.2008.10.003)

61. Akaike H. 1998 Information theory and an extension
of the maximum likelihood principle. In Selected
papers of Hirotugu Akaike (eds E Parzen, K Tanabe,
G Kitagawa), pp. 199 – 213. Springer Series in
Statistics. New York, NY: Springer.
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