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Functional requirements may constrain phenotypic diversification or foster it.

For insect mouthparts, the quantification of the relationship between shape

and function in an evolutionary framework remained largely unexplored.

Here, the question of a functional influence on phenotypic diversification

for dragonfly mandibles is assessed with a large-scale biomechanical analysis

covering nearly all anisopteran families, using finite element analysis in com-

bination with geometric morphometrics. A constraining effect of phylogeny

could be found for shape, the mandibular mechanical advantage (MA), and

certain mechanical joint parameters, while stresses and strains, the majority

of joint parameters and size are influenced by shared ancestry. Furthermore,

joint mechanics are correlated with neither strain nor mandibular MA and

size effects have virtually play no role for shape or mechanical variation.

The presence of mandibular strengthening ridges shows no phylogenetic

signal except for one ridge peculiar to Libelluloidea, and ridge presence is

also not correlated with each other. The results suggest that functional traits

are more variable at this taxonomic level and that they are not influenced

by shared ancestry. At the same time, the results contradict the widespread

idea that mandibular morphology mainly reflects functional demands at

least at this taxonomic level. The varying functional factors rather lead to

the same mandibular performance as expressed by the MA, which suggests

a many-to-one mapping of the investigated parameters onto the same

narrow mandibular performance space.

1. Introduction
Insects show a remarkable variety of mouthparts, but the factors leading to this

variety are poorly understood. It is unclear at which levels mouthpart form is

mainly regulated by functional requirements such as food spectrum or weight

optimization, and when phylogeny or development play a major role [1–4].

Surprisingly few studies have assessed the mechanical performance of insect mand-

ibles. So far, insect mandible bite performance has been shown to be influenced by

the origin and attachment sites of the mandible muscles [5–8], muscle mass, muscle

physiology and structure, as well as innervations [8–12]. Distantly related lineages

such as beetles and grasshoppers show larger differences in mandible shape [13,14],

which is presumably related to different food types [15–17].

Owing to the high diversity in the shape of mouthparts across insects, the influ-

ences of function and phylogeny are difficult to separate from each other, and from

other factors such as the ecological niche or development. In this context, dragon-

flies represent a useful model system, because their lifestyle and mouthpart

morphology are comparably uniform. All dragonflies are aerial hunters that prey

on other winged insects such as flies, mosquitoes or even other dragonflies,

which they often consume on the wing, and they show the same larval development

with several stages of aquatic larvae before moulting (with a drastic morphological
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Table 1. Taxon sampling used and overview of head sizes and mandible
ridge presence. AAR, anterior acetabular ridge; PCR, posterior condylar
ridge; MR, median ridge; LR, lateral ridge.

family species

head

width (mm) AAR PCR MR LR

Zygoptera C. splendens 6.12 0 0 0 0

Epiophlebiidae E. superstes 7.72 0 0 0 0

Gomphidae O. forcipatus 9.70 1 1 0 0

Gomphidae H. brevistylus 10.55 1 0 0 1

Gomphidae Z. batesi 9.59 1 0 0 1

Petaluridae P. raptor 11.61 1 0 0 1

Petaluridae T. thoreyi 10.90 0 0 0 1

Aeshnidae A. imperator 9.88 1 0 0 0

Aeshnidae A. mixta 8.38 1 0 0 1

Aeshnidae A. anisoptera 10.69 1 0 0 1
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reorganization) to the adult [18]. Mandible gross morphology is

also the same among all adult dragonflies with a row of sharp

teeth-like structures (incisivi) in the apical position and another

row of subapical incisivi in the mesal area and a similar shape

overall [19,20]. Thus, their ecomorphology with regards to

food uptake and potential developmental constraints is largely

similar. Given these similarities, it should be possible to study

the influence of small morphological variations on function

with the background of a phylogenetic framework. Here, we

use a group of dragonfly species which show the same muscular

arrangement, the same joint type and the same gross mandibular

form to investigate the interplay of shape and biomechanics and

the influence of phylogeny on these factors. In particular, we

study whether shape, biomechanics or size show a phylogenetic

signal and whether shape, biomechanics and size correlate with

each other.

Aeshnidae A. isoceles 9.61 0 1 0 0

Aeshnidae O. pryeri 8.53 0 0 0 0

Austropetaliidae P. apicalis 9.74 0 0 0 0

Cordulegastridae A. sieboldii 12.57 1 1 0 0

Cordulegastridae C. bidentata 8.69 1 1 0 0

Neopetaliidae N. punctata 8.97 0 1 0 0

Libelluloidea M. taeniolata 10.00 1 0 1 1

Libelluloidea E. elegans 10.78 0 0 1 1

Libelluloidea C. aenea 8.12 1 0 1 1

Libelluloidea S. vulgatum 5.22 0 0 1 0

Libelluloidea L. depressa 8.21 0 0 1 0

e
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2. Material and methods
We used the damselfly Calopteryx virgo and a range of dragonfly

species (Odonata: Anisoptera) covering all currently recognized

families except Chlorogomphidae and Synthemistidae (table 1)

for our analyses. The resulting dataset consisted of 21 mandible

models. All samples are housed in the alcohol collection of the

Zoological Research Museum Alexander Koenig (ZFMK). For

the sake of brevity, species are named only with their genus

name in the following. The description of morphological struc-

tures follows the terminology of Beutel et al. [21]. New terms

for mandible structures not covered so far in the literature

are defined at the appropriate points in the text when they are

first used.

2.1. Bite force measurements
In order to understand how bite force influences strain levels,

we measured the bite force of five out of the 21 studied species

(Sympetrum, Cordulegaster, Onychogomphus, Aeshna and Anax),

covering a wide range of body size and taxonomy, that were

available locally (collection permit 67.1-2.03.20-33/13-M

(ZFMK)). Bite force measurements were performed using

a bespoke set-up described in other studies [22,23]. Briefly,

it consisted of a custom-built specimen fixation device and

an adjustable piezoelectric mini-force sensor (SKB pinforce

sensor Z18152X2A3sp and Z18152X2A7sp; Kistler, Winterthur,

Switzerland). Bite series were filtered (Butterworth, low pass,

fourth order, 50 Hz cut-off, recursive), and single bites were ident-

ified when the force–time curve showed a continuous increase of

at least 0.02 N, an unambiguously identifiable absolute maximum,

absence of local minima between biting onset and peak force, and

absence of movement artefacts owing to movement of the insect.

Please refer to David et al. [22,23] for further details.

2.2. Mechanical testing via nano-indentation
We used the same set of freshly collected dragonflies for measur-

ing the material parameters of the mandibles. Mandibles were

excised and embedded in Epoxy Resin L (R&G Faserverbund-

werkstoffe, Germany). Semi-thin cross sections were cut from

the embedded samples, using a microtome equipped with a

6 mm diamond knife (Diatome, Switzerland), in 4 mm slices

until a suitable cross-sectional profile was identified, at which

point the surface was polished by cutting a few ultrathin sections

at 0.5 mm.

An area function covering all contact depths obtained in

the measurements was established by indenting a polymethyl

methacrylate test specimen of known hardness and modulus. To

obtain data from cuticle that is fully saturated with water, a drop
of distilled water was put on the faces of the resin blocks for at

least 20 min before the test; this was sufficient to saturate the

material and stabilize the material properties [24]. After this, an

appropriate position for indentation was located and another

drop of distilled water was placed between the surface and tip

to ensure wet cuticle properties. After another 5–10 min, the

water was removed again and measurements (N ¼ 6–15 per

sample at locations at least 4 mm apart) were taken in rapid succes-

sion, typically every 15 s. This measurement process followed a

protocol optimized in earlier studies [24,25] and ensured that

wet cuticle properties were measured. Contact depths ranged

from 130 to 1500 nm, with a maximum load during indentation

of 1500 mN and loading and unloading rates of 20 mN s21, and a

2 s holding time at peak load to compensate for material creep.

Hardness (H) and reduced Young’s modulus (E) were both deter-

mined from the unloading portions of the load–displacement

curves following established procedures [26].

2.3. Three-dimensional model generation
To obtain models of the mandibles suitable for finite element

analysis (FEA), we performed synchrotron radiation micro-

computed tomography (SR-mCT). For preparation, collected

odonates were either freshly placed into Bouin solution [27] or

taken from the alcohol collection at ZFMK. Samples were

washed in 70% EthOH, critical point dried (model E4850;

BioRad), and mounted on specimen holders. SR-mCT was carried

out at the Deutsches Elektronen Synchrotron (beamlines DORIS

III/BW2 and PETRA III/IBL P05; DESY, Hamburg, Germany)

or at the Swiss Light Source of the Paul-Scherrer Institut (PSI; Vil-

ligen, Switzerland; beamline TOMCAT) using established

procedures [28–30]. Subsequent segmentation of the recon-

structed image stacks was accomplished with ITK-SNAP [31].

STL files were then imported into AVIZO (v. 9.0.1; FEI, USA) for

generation of the tetrahedral meshes which were then exported

in UNV format for import into the finite element (FE) solver.

We plotted the cuticle thickness on the three-dimensional

models of the mandibles in order to correlate mandible thickness

with strain patterns from the FEA.
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Figure 1. (a) Set-up for measuring bite forces (lateral view) and principal mandible organization in dragonflies (lower right, frontal view). The black arrow indicates
the viewing angle for the three-dimensional model. (b) Three-dimensional representation of a dragonfly mandible in lateral view to show the position of the
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2.4. Finite element analysis
We used the FE solver ANSYS (v. 14.5; ANSYS, Inc., USA) for the

FEA. The models typically consisted of approximately 175 000

second-order tetrahedral elements (ANSYS type SOLID92). The

models were minimally constrained at one node in the x-, y- and

z-directions at the anterior and posterior joints, thus allowing

free rotation about the joint axis. Nodes over the area of

the muscle attachment site were connected individually by

LINK180 elements to an additional node in space, so that the

direction of the muscle was defined correctly. The measured

material properties were not significantly different between the

five species measured and between dry (6.7+1.2–8.9+
0.9 GPa) and rewetted (5.4+0.9–9.8+ 1.7 GPa) mandibles.

Thus, we used the mean Young’s modulus over all measurements

for rewetted mandibles (8.8 GPa). We applied a unit load of 1 N to

the mandible tips to allow for comparison of strain patterns

and thus mouthpart performance in these differently sized

mandibles. Bite force measurements for a subset of the species

investigated show that mandible bite forces range between 0.3

and 1.8 N depending on the species investigated [22,23]. After

the FE solutions were completed, first and third principal strain

distributions were displayed on the three-dimensional models,

which correspond to the most tensile (11) and most compressive

(13) strains at each point of the model. Strain values were also

extracted from the middle part of each mandible (the mesal area

in posterior view) in order to compare these between species with-

out taking into account local peak strains at the muscle insertions,

bite points and joints.
2.5. Joint mechanics
To study a potential correlation of mandible joint performance

with phylogeny, we used the ANSYS output for the joint reaction

forces (JRFs). The two mandible joints and the apical mandi-

ble define a triangle (henceforth called the joint-tip triangle;

landmarks 1, 10 and 13 in figure 1) where the small side of

this triangle defines a virtual axis between the anterior and

posterior joint that was used to align the mandibles to each

other. The JRF vectors were then imported into BLENDER and

plotted onto these joint-tip triangles to provide a visual

representation of the variance in the size and direction of the

mandibles’ JRFs. Joint-tip triangles were scaled to a length of 1

with respect to the joint axis and aligned along this axis to

allow for comparison of the magnitude and direction of the

JRFs in three dimensions (electronic supplementary material,

three-dimensional model S2). Additionally, we calculated the
mechanical advantage (MA) for each mandible. As in vertebrates

[32,33], the dicondylous insect mandible can be modelled as a

third-order lever. The mandible-closing MA is the ratio between

the inner lever arm, which is the distance between the point of

application of the input force (here the adductors insertion)

and the mandible joint, and the outer lever arm, which is the dis-

tance between the mandible joint and the biting point at the tip

of the mandible. The MA thus gives a proportion of the muscle

force that is transferred to the food item during biting. In a com-

parative context, the MA can be a useful proxy to assess the

biomechanical disparity among taxa, which might be decoupled

from the morphological disparity [34,35]. We used the kappa

statistic as implemented in the GEOMORPH package [36,37] to

test for potential phylogenetic signal in JRFs and the MA and

we calculated phylogenetically independent contrasts to test for

correlations between JRFs, size, MA and the biomechanical

data represented by the median of the 1000 nodes showing the

highest displacements in the median region of each mandible

(median of the peak displacements, henceforth MPDs). The phy-

logeny used, including branch lengths, was obtained from Letsch

et al. [38] and pruned in R using the PHYTOOLS package [39] to

represent the biomechanical taxon sampling.

2.6. Geometric morphometrics
A series of 18 three-dimensional landmarks, 13 homologous

and five semilandmarks, was chosen to represent the three-

dimensional shape of each mandible (figure 1 and electronic

supplementary material, table S1). All landmarks were exported

from BLENDER (v. 2.77; www.blender.org) from STL models of the

mandibles for analysis within the statistics software R [39–42].

After a Procrustes superimposition [43,44] to correct for effects

of rotation, translation and size, a principal component analysis

(PCA) was performed to investigate the variance associated

with the shape variables expressed as principal component

scores. Phylogenetic ANOVA, as implemented in GEOMORPH

(procD.pgls), was used to investigate the association of shape

(all principal components) with size, MPDs, JRFs and the MA.

A multivariate K-statistic [36,37] incorporated within the

GEOMORPH package in R was used to account for potential

phylogenetic signal in the shape data and in the biomechanical

data represented by the MPDs of each mandible. See Adams

[36] and Blomberg et al. [37] for an estimate of statistical power

in relation to sample size. In addition, we tested a potential

pairwise correlation of mandible ridges using Pagel’s pairwise

correlation test of discrete datasets [45] as implemented in the

PHYTOOLS package for R [39], again taking the phylogeny

http://www.blender.org
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Figure 2. (Opposite.) (a) Overview of the head of Onychogomphus forcipatus (Gom-
phidae) in lateral view shows the location of the mandibles within the head and the
axis of rotation generated by the anterior and posterior mandibular joints. (b)
Dimensionless thickness plots for representatives of all dragonfly families. Blue
areas represent the thinnest regions, and red areas the thickest. Black and blue
arrows indicate ridges and pseudo-ridges mentioned in the text; asterisks indicate
the location of joints. Note the appearance of a median ridge in all Libelluloidea
studied. Left column, anterior view; middle column, lateral view; right column, pos-
terior view. Left column black arrowhead: anterior acetabular ( pseudo)ridge; middle
column: lateral ridge; right column: posterior condylar ( pseudo)ridge. Blue arrow-
heads indicate locations of the anterior and posterior dorsal ridges enframing the
mandibular orifice. ADR, anterior dorsal ridge; ama, anterior mandibular articulation;
inc, incisival area; ma, mesal area; PDR, posterior dorsal ridge; pma, posterior man-
dibular articulation. Mandible joints are aligned to each other, so that the virtual axis
of rotation of the mandible points perpendicular out of the figure. Mandibles not
to scale.
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published in Letsch et al. [38] as a basis. To test whether the

mandible ridges showed a phylogenetic signal, we used the

phylo.d function in the package CAPER, which is able to

handle binary coded characters and provides an estimate (D)

for the phylogenetic signal based on the sum of changes in

estimated nodal values of the binary trait tested along the

edges of the phylogeny. Additionally, probabilities are calculated

for D resulting from no phylogenetic structure (phyl.sig), and
whether D is based on Brownian motion (BM.sig) for each

respective character.
3. Results
3.1. Mandible thickness and the variation of mandible

shape and mandible ridges
The principal structure of the dragonfly mandible consists

of two ball-and-socket articulations, a strongly sclerotized

z-shaped mesal edge with four prominences and usually

three distal incisivi (figures 1 and 2). The mandibular orifice

is broadly triangular in dorsal view. Thickness plots and exter-

nal observation show that mandibles of all species have a

system of up to six ridges, which are areas of thickened cuticle

(figure 2). Among these, the anterior and posterodorsal ones

(ADR and PDR, respectively) are present in all species and

border the triangular mandibular orifice. The remaining four

ridges are variable in location and thickness (figure 2). If pre-

sent, the anterior acetabular and the posterior condylar ridge

(AAR and PCR, respectively) run from the anterior and pos-

terior articulation, respectively, towards the distal incisivi but

end blindly well before they reach the distal area of the mand-

ible (taxon dependent). Thickness plots also show that some

mandibles, such as those of Calopteryx, Epiophlebia, Tachopteryx
and some of the Aeshnidae and Libelluloidea, have anterior

ridge-like areas at the same position as the ridges, but, in

fact, these are just elevated curved regions only slightly thicker

than the surrounding areas (figure 2). We henceforth refer to

these structures as pseudo-ridges, in contrast to ‘true’ ridges

that are thickened areas of the cuticle and show a thickness

equal to the dorsal ridges. On the posterior side of the mand-

ibles, pseudo-ridges are more frequently encountered, with

true ridges only present in Onychogomphus, Cordulegastridae

and Neopetalia. A mesal ridge, which is not visible externally,

is present in all Libelluloidea studied (figure 2). A lateral

ridge, which originates at the attachment site of the mandibu-

lar abductor and extends half way to the apical incisivi in some

species, is absent in Calopteryx, Epiophlebia, Onychogomphus,
Oligoaeschna, Anotogaster and the Libellulidae studied. The lat-

eral ridge is strongly developed in Petaluridae and in certain

Gomphidae, but weakly developed in the rest of the species.

PCA of mandible shape revealed four major components

which together account for 68.38% of the shape variance

(figure 3). Phylogenetic signal could be detected in the
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shape data based on the multivariate K-statistic (Kmult ¼ 0.68,

p ¼ 0.0001). Taxa that are represented by more than two

species such as Libelluloidea, Aeshnidae and Gomphidae are

separated from each other in the morphospace of most of the

principal component combinations. Petaluridae and Cordule-

gastridae are also separated in nearly all principal component

combinations, but these are only represented by two species

each. The austropetaliid Phylopetalia is an outlier in nearly all

principal component combinations. The plot PC1 versus PC2

(figure 3a) shows that the majority of shape variation along

PC1 is related to the anterior mandibular joint (landmark 13),

the anterior dorsal ridge (L14) and the shape of the anterior

acetabular (L15 þ 16) and the lateral ridge (L17 þ 18). With

respect to the consensus shape, the anterior mandibular joint

tends to be located more ventrally, while the anterior ridge is

located more dorsally at the negative side of PC1. The anterior

acetabular ridge is shorter and narrower and the lateral ridge is

longer and wider, while at the positive extreme of PC1 the situ-

ation is reversed. Along PC2, shape variation again relates to

the anterior and posterior joints (L10þ 13) and to the anterior

acetabular and the lateral ridge. PC2 mainly codes for the

width of the ridges and the joints. Compared with all the

above-mentioned structures, the incisivi of the mandibles

show only minor shape variations.

Mandible shape is not affected by size, strain (MPDs),

JRFs or the MA based on the phylogenetic ANOVA

(table 2). With the exception of the median ridge, which is

a highly conserved trait among Libelluloidea (D ¼ 22.66;

phyl.sig ¼ 0.0001; BM.sig ¼ 0.9879), the presence of mandib-

ular ridges does not show phylogenetic signal (table 2). Based

on the Pagel [45] correlation test, the mandibular ridges also

do not show pairwise correlations to each other (table 2).

The ADR and PDR ridges have not been included in this

test because they are present in all taxa studied.
3.2. Mandible mechanics and the relation to shape
and size

All mandibles show high strain directly at their distalmost tips

where the bite force was applied, as well as at the attachment

site of the large adductor muscle, which is always much thicker

than the surrounding areas. Strain patterns differ between the

anterior and posterior sides in each species with a generally

higher strain (11 and 13) on the posterior side. Compressive

strains are higher in the lateral regions of the mandibles.

A conspicuously thickened but externally indiscernible area

lateroventral of the apical incisivi (figures 2 and 4, e.g. Cordule-

gaster) shows high compressive strain (13) in most of the

species. Areas of high tensile strain (11) are located medially

between the apical incisivi and the mesal area and, depending

on the species, laterally at the mesal base (figure 4 and electronic

supplementary material, figure S1).

While the thickness plots show that the presence and con-

figuration of mandibular ridges and pseudo-ridges are highly

variable, FEA shows that strain distributions are not always

related to ridge presence and location (figure 4 and electro-

nic supplementary material, figure S1). In Aeshnidae, the

distribution of the most tensile strains (first principal

strain, 11) does not overlap with the areas where the anterior

acetabular ridge and the lateral ridge are present. Also, there

is a low overlap of ridge presence with strain patterns in

Libelluloidea. For the most compressive principal strains at

each point (13), Libelluloidea show no overlap of strain and

structure for the prominent medial and lateral ridges.

In contrast to the thickness plots and strain distributions,

box plot graphs of the median and overall variation in prin-

cipal strain values for all mandibles (figure 5) indicate a

family-specific grouping for Libellulidae, Macromiidae

and Gomphidae, whereas median strain seems to be more
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Table 2. Statistical testing framework to test the influence of shape, size,
biomechanical determinants and trait presence on each other and to test
phylogenetic signal. AAR, anterior acetabular ridge; PCR, posterior condylar
ridge; MR, median ridge; LR, lateral ridge, JRF, joint reaction force; MPD,
median peak displacement; PIC, phylogenetic independent contrasts. For
the definition of JRF angles please refer to figure 6. Italic font indicates
significant values.

tested traits K p-value

kappa JRF (a) 0.91 0.0127

JRF (b) 0.89 0.0185

JRF (g) 0.57 0.2133

JRF (d) 0.55 0.2460

JRF (u) 0.26 0.9054

JRF (h) 0.29 0.8175

MA 0.66 0.1059

R2 p-value

Procrustes PGLS shape versus size 0.0758 0.7373

shape versus MPDs 0.0702 0.5726

shape versus JRF (a) 0.0432 0.7568

shape versus JRF (b) 0.0424 0.5351

shape versus JRF (g) 0.1430 0.2442

shape versus JRF (d) 0.1246 0.2523

shape versus JRF (u) 0.0640 0.9732

shape versus JRF (h) 0.1070 0.8429

shape versus MA 0.0762 0.0904

PIC size versus MPDs 0.0927 0.0972

JRF (a) versus MPDs 0.0005 0.9222

JRF (b) versus MPDs 0.0328 0.4319

JRF (g) versus MPDs 0.0598 0.2854

JRF (d) versus MPDs 0.0010 0.8900

JRF (u) versus MPDs 0.1281 0.1112

JRF (h) versus MPDs 0.1021 0.1580

MA versus MPDs 0.3439 0.0052

JRF (a) versus size 0.0504 0.3280

JRF (b) versus size 0.0143 0.6063

JRF (g) versus size 0.0714 0.2417

JRF (d) versus size 0.0710 0.2431

JRF (u) versus size 0.2739 0.0149

JRF (h) versus size 0.3836 0.0028

MA versus size 0.1625 0.0700

estimated D

no phyl.sig

[ p] (BM.sig

[ p])

Phyl. signal in

ridge

presence

AAR 0.67 0.27 (0.21)

PCR 20.32 0.06 (0.65)

MR 22.74 1 (0.02)

LR 0.78 0.33 (0.16)

likelihood

ratio p-value

pairwise

correlation of

ridges

AAR j PCR 2.1031 0.7168

AAR j MR 0.9736 0.9138

AAR j LR 5.8201 0.2138

PCR j MR 2.6425 0.4742

PCR j LR 6.0530 0.1945

MR j LR 1.4166 0.8413
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variable in Cordulegastridae, Petaluridae and Aeshnidae.

Although the application of a unit force of 1 N to each mand-

ible facilitates an easier comparison of strain patterns, for

those species where bite forces could be measured [22,23]

the box plots are also scaled in order to derive an estimate

of the in vivo strain values. Results show that Sympetrum
most likely experiences lower in vivo strain, whereas
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Cordulegaster, Onychogomphus, Anax and Aeshna have higher

in vivo values, in the case of Anax and Aeshna nearly twice

as high. Phylogenetic signal could not be detected in the

strain data represented by the MPDs of each mandible

based on the kappa statistic (K ¼ 0.50, p ¼ 0.3289).

Analysis of the joint mechanics expressed in terms of JRF

vectors shows a similar family-specific pattern as in the box

plots of strain distributions for the angle between anterior and

posterior JRFs in posterior view (a, figure 6), whereas such a pat-

tern is not apparent for the rest of the measured angles (b 2 h;

figure 6). The JRF angles a and b show phylogenetic signal

(a: K ¼ 0.91, p ¼ 0.01; b: K ¼ 0.89, p ¼ 0.02; table 2), whereas

the distribution of the mandibular advantage does not show sig-

nificant phylogenetic signal. JRF angles u and h (the lateral

‘spread’ of posterior and anterior JRF vectors, see figure 6)

show a correlation with mandible size (table 2). The mean

value of the mandible-closing MA over all species is 0.38+
0.017 with the lowest values (0.35) shown by species such as

Neopetalia and Phyllopetalia. The highest MAs (0.41) are shown

by Aeshna and Sympetrum. The MA is correlated with MPDs,

whereas the JRFs do not show such a correlation.
4. Discussion
4.1. The interplay of shape, biomechanics, phylogeny

and size in dragonfly mandibles
Surprisingly few studies have tried to quantify mandible

shape and biomechanics in insects [7,8,11,13], and there are

no studies combining biomechanical determinants with

shape characteristics in a phylogenetic framework. Our

results obtained from the three-dimensional shape analysis

and FEA of mandibles belonging to 21 different species of dra-

gonflies suggest a rather complicated interplay of shape,

biomechanics and phylogeny in taxa with uniform feeding

habits. Mandible shape shows phylogenetic signal and a
Kmult value lower than 1 suggests that taxa are more similar

than expected under a Brownian motion model of evolution.

This effect could also be detected for some biomechanical

determinants (table 2), specifically for the angle between

anterior and posterior JRFs in anterior view (JRF a) and the

direction of the posterior JRF in lateral view (JRF b). A possible

explanation is selection of the above-mentioned biomechani-

cal factors to reach a certain mandible performance which, in

turn, requires convergent evolution of a combination of

shape variables supporting the required mechanical perform-

ance. In line with this suggestion is the correlation of the MA

with MPDs (table 2), because the MA is solely a shape-

dependent index of mandible performance. Furthermore, the

results suggest that size effects only play a minor role for

specific JRF angles although size differences are more than

twofold (table 1).

The lacking phylogenetic signal in MPDs despite such a

signal in JRFs could be due to the averaging of strain results

over a wide shape area. For a more detailed account, it would

be necessary to compare different strain patterns with each

other and assess the phylogenetic signal in pattern variation.

However, such an approach is obviously difficult to realize

because this would require an exact structural similarity of

each mandible so that an element-by-element comparison of

strain values is possible.

Phylogenetic signal in a combination of shape and

functional parameters has not been assessed so far in

insects but is a well-known phenomenon in vertebrates

[46–51]. It was shown that multiple processes can in fact

produce patterns of phenotypic diversification similar

to phylogenetic signal [36,37,50,52,53]. In those instances

where biomechanical determinants were additionally

measured, the decisive influence of biomechanics on

shape and vice versa was apparent [4,54–56], and in

some instances superposing phylogenetic signal [55].

Overall, our results suggest that the disparity in the pheno-

type is lower than expected under Brownian motion and
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biomechanics do not follow this pattern. In fact, our results

suggest that the biomechanical determinants measured

here seem to be decoupled from the shape variation at

this taxonomic level.

The MA values measured for dragonflies are in the range

of the most advantageous lever ratios (i.e. the most joint-near-

tooth row or advantageous muscle insertions) measured for

vertebrates [57–59] and the American cockroach [8]. This

relative uniformity of MA in distantly related taxa such as

cockroaches and dragonflies suggests that the observed

differences in biomechanical determinants and shape lead

to a comparably narrow overall mandible performance

space represented by the MA. Taking into account the

above-mentioned decoupling of mechanics from shape, we

suggest that this narrow MA range might be the effect of a

‘many-to-one mapping’ of different forms to the same func-

tion [46,47,60], leading to the same functional performance

space. However, more insect lineages need to be studied to

corroborate this notion.
4.2. Biomechanical characteristics of dragonfly
mandibles

Generally, higher strains are located around bite points and

muscle attachments, as observed in similar FE studies of

vertebrate crania and mandibles [61–63] and insect mand-

ibles [64,65]. Another general area of high strain is located

in all mandibles between the apical incisival area and the

z-shaped mesal edge. Although it is currently not possible

to reliably compare and test strain patterns against shape,

we suggest that this correspondence in overall strain distri-

bution is most probably related to the similarity in overall

mandible morphology and applied loadings and constraints.

Visual examination of the detailed strain patterns at the lat-

eral parts of the mandibles, however, shows that the local

strain distributions are highly variable. For example, strain

is not correlated with the presence of ridges in most of the

Aeshnidae and Libelluloidea studied. A similar phenomenon

of non-correspondence of ridges with strain could be

observed in vertebrates where the function of the brow

ridge (supraorbital torus) in primates has been the subject
of much debate, with studies showing that brow ridges are

indeed lightly loaded during normal biting [66].

We applied a unit bite force (1 N) to all mandibles,

because actual bite force values are not known for many of

the rare species we investigated here. It should be remem-

bered that absolute bite forces are not relevant for the

purpose of this study, because strain patterns are of course

independent of the absolute magnitude values of bite

forces. On the other hand, the application of a standardized

bite force allows an easy comparison of the relative mandible

efficiencies. Our results suggest that the mandible shapes of

Gomphidae and Macromiidae are among the most efficient

in terms of principal strain distribution (figure 5). Taking

into account the bite forces which could be measured

[22,23], the observed strain distributions for a unit force

load are most likely an overestimation of in vivo strain in

the smaller Libellulidae and Calopteryx, whereas they are an

underestimation for the larger species within Aeshnidae,

Cordulegastridae, Macromiidae, Petaluridae and to a lesser

extent Gomphidae (figure 4). As in vertebrates, absolute

bite force in dragonflies probably depends on head geometry,

which also determines the characteristics of the lever arm

system, e.g. adductor muscle mass and muscle architecture

such as pennation and fibre length [59,67–69]. In contrast to ver-

tebrates, however, an allometric scaling of bite force was not

found for the species investigated here [22], which is also indi-

cated by the lacking relationship between size and MPDs

(table 2). The middle-sized gomphid Onychogomphus forcipatus
showed an even higher bite force than one of the largest

European dragonflies, Cordulegaster bidentata [22]. Future

studies, taking into account more insect lineages, have to eluci-

date whether a non-allometric scaling of absolute bite forces is

a more widespread phenomenon among insects.

4.3. A wider evolutionary perspective on mandible
mechanics in basal insects

Strain levels at the posterior side of the mandibles are

consistently higher than on the anterior sides (figure 3),

which is most probably related to the posteriorly directed

force vector of the main mandibular adductor muscle.
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Interestingly, at the same time, the condyle-like mandibular

part of the posterior joint shows a remarkable structural simi-

larity within ectognathous insects (bristletails, silverfish and

winged insects) compared with the anterior joint, although

the food spectrum is highly variable [21,70–73]. Bristletails

feed on algae, lichens and mosses, silverfish consume organic

detritus and mayflies mainly feed on algae and detritus, with

predacious species as the exception. A potential reason for

this relative structural constancy in the posterior condyle

may be the higher loadings this structure experiences

compared with the anterior joint during biting. The structural

change of the posterior mandibular joint during the evolution

of the insect mandible might be restricted owing to functional

demands, as was suggested for structures in other animal

groups [2,4,56]. In contrast, strain levels at the anterior man-

dibular joint are lower and this joint is at the same time

structurally more variable throughout the early split ectog-

nathous insects. Bristletails show a loose contact with the

head capsule at the anterior part of the mandible [73], silver-

fish have a pincer-like structure guiding the mandible during

movement in one direction [72,74], whereas mayflies show an

anterior articulation complex in fact composed of two mand-

ible–head contacts [75]. Finally, dragonflies and the majority

of other chewing–biting insects, e.g. Polyneoptera, show the

typical ball-and-socket joint type at the anterior side of

the mandible. This structural variability in the anterior mand-

ible joint during early insect evolution might have been

possible owing to the lower loadings experienced so that

the constraining effect of biomechanics on shape was less.

However, biomechanical data for bristletails, silverfish and
mayflies will be needed to test these ideas in an evolutive

framework. Because sensitivity studies have proven the sig-

nificant negative impact of simplifications in geometry and

boundary conditions for vertebrates [67,76–87], much more

experimental data on insect mouthpart mechanics are

needed to quantitatively assess patterns of biomechanical

evolution across insects.
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