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Social media are transforming global communication and coordination and

provide unprecedented opportunities for studying socio-technical domains.

Here we study global dynamical patterns of communication on Twitter

across many scales. Underlying the observed patterns is both the diurnal

rotation of the Earth, day and night, and the synchrony required for contin-

gency of actions between individuals. We find that urban areas show a cyclic

contraction and expansion that resembles heartbeats linked to social rather

than natural cycles. Different urban areas have characteristic signatures of

daily collective activities. We show that the differences detected are consist-

ent with a new emergent global synchrony that couples behaviour in distant

regions across the world. Although local synchrony is the major force that

shapes the collective behaviour in cities, a larger-scale synchronization is

beginning to occur.
1. Introduction
The functioning of complex systems, like human societies or living organisms,

depends not only upon the individual functionalities of their parts but also

upon the coordination of their actions. Self-sustaining activities, such as econ-

omic transactions and associated communications, occur through interactions

among people, creating dependencies among their actions. A central challenge

for both sociology and economics is our ability to characterize the collective

actions of individuals that together become the aggregate activity that constitu-

tes our society [1]. Recent studies have shown that these processes can be

observed by looking at communication patterns among individuals in

social groups [2]. Here we analyse Twitter data to describe the underlying

dynamics of social systems. In particular, we study collective activities across

geographical scales, from areas smaller than 1 km2 up to the global scale.

The recent explosion of social media is radically changing the way information

is shared among people and therefore the properties of our society. These new

mechanisms allow people to easily interact with each other and to affordably

exchange and propagate pieces of information at multiple scales. As a conse-

quence, people may be able to engage in types of complex tasks previously

dominated by organizations structured for a particular purpose [3]. By looking

for patterns in the aggregate data, we can retrieve structural and dynamical infor-

mation about the social system [4]. This represents an unprecedented opportunity

to study social systems across many scales. Traditional surveys of small samples,

which are typically limited to a few questions, do not have the scale and frequency

to capture such population dynamics [4].

As highly concentrated social systems, cities are manifestly complex systems

with emergent properties [5]. They are self-organized entities made up of mul-

tiple complex agents that engage in larger-scale, complex tasks. Moreover, cities

have multiscale structures individually through fractal growth and collectively

through size distributions. Their structural patterns have been modelled by

scaling laws [1], archetypes of streets layouts [6,7] and land use [8]. Human-

generated data have been used to understand the dynamical behaviour of
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Figure 1. Global Twitter activity. Background map: Twitter activity in each 0.258 � 0.258 geographical area (base-10 log scale at lower right). Rectangular insets:
Average week of Twitter activity of selected cities in Universal Time (UTC) after subtracting the mean and normalizing by the standard deviation. Square insets: low
(blue) and high (red) points of Twitter activity of several urban areas compared with daily sunlight periods (yellow) during the nine-month observation period
(scales on lower left shown for Santiago are the same for all cities). An animated visualization of the global Twitter activity is shown in the electronic supplementary
material, video S1.
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inhabitants and their impact on the functioning of a city. Pat-

terns of human activity and mobility reveal the spatial

structure of collective interactions [9,10] and the dynamical

properties of urban functional areas [11,12]. Many of these

studies use mobile phone data, which are available only for

a small set of cities.

In this work, we analyse over 500 million geolocated

tweets, posted between 1 August 2013 and 30 April 2014, to

explore patterns of social dynamics in urban areas around

the world. We collected these data using the Twitter streaming

application programming interface (API) [13], which provi-

des over 90% of the publicly available geolocated tweets [14]

in real time. Twitter is an online social network whose users

share ‘micro-blog’ posts from smartphones and other personal

computers. Its population trends younger, wealthier and

urban [15,16], which makes it a good probe of the dynamics

of young workers in cities. Geolocated tweets provide a precise

location of the individuals that post messages, and represent

around 3% of the overall Twitter stream [17]. Twitter activity

has been analysed to understand human sentiments [18],
news sharing networks [19] and influence dynamics [20], as

well as global patterns of human mobility [21], activity [22]

and languages [23].
2. Urban activity
In figure 1, we show the hourly number of tweets during an

average week for a few major metropolitan areas (rectangular

insets) on top of a map representing the global density of

tweets during an average day (52 metropolitan areas across

the world are in the electronic supplementary material).

To construct the average week, we count the number of

tweets in each hour in the urban area i during the observation

period (N weeks), si,t. Time can be written in terms of the hour

of the week t ¼ t0 mod W, where t e f1, . . .,Wg, W ¼ 168, is the

number of hours per week and t0 is the number of hours since

the start of the observation period. We then average the corre-

sponding hours of each week (with the same value of t) after

normalizing by the standard deviation for that day:
si,t ¼
1

N

XN�1

w¼0

si,tþWðw�1Þ � ð1=DÞ
P23

s¼0 si,sþDbt=DcþWðw�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=DÞ

P23
s¼0ðsi,sþDbt=DcþWðw�1Þ � ð1=DÞ

P23
s¼0 si,sþDbt=DcþWðw�1ÞÞ2

q
0
B@

1
CA, ð2:1Þ
where we use a 24 h daily index s e f0, . . . , D 21g, D ¼ 24, to

define the daily average and standard deviation. bxc is the

integer part of x. We further define an average day as

the average over corresponding hours of the days of the

average week:

ŝi,s ¼
1

V

XV�1

d¼0

si,sþDd, ð2:2Þ

where s [ f0, . . . , D 21g and V ¼ 7.
Overall, cities present similar patterns of collective behav-

iour, cycling between peaks and valleys of activity. Such

patterns are also found in phone calls [24], electricity con-

sumption [25] and emails [26]. Peaks occur during daytime

or evening, indicating that people are awake and active,

simultaneously tweeting from work, recreational or residen-

tial areas, whereas valleys occur during night and sleeping

hours, indicating that people are inactive.

The time series’ regular behaviour indicates that people

synchronize their activities throughout the day. This synchrony
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Figure 2. Correlation of the temporal dynamics of cities and heart beats. (a) An example of heart beat ECG signal at approximately 80 beats per minute (red) and
the average week of Twitter activity for three cities: São Paulo (yellow), Jakarta (blue) and London (green). Vertical black lines show the time of synchronization (see
text). (b) Correlation of the heartbeat with 50 000 random series (grey curve), other heartbeats (red line), periodic signals (magenta lines, from left to right:
sawtooth, squared and sinusoid), and all urban areas coloured by group determined by clustering analysis (see §3 and the electronic supplementary material).

Tokyo Jakarta Bangkok

Moscow Paris London

São Paulo

q (10–4 Hz)

ÁA
(q

)Á

1.50

0.75

0
0

0.2 0.4 0.6 0.8 1.0 1.2

New York Los Angeles

Figure 3. Spectral analysis of Twitter activity (amplitude of the Fourier transform) of major urban areas (more cities in the electronic supplementary material).
The dashed lines indicate (from left to right) the frequencies (q) corresponding to the periods of 24, 12 and 8 h respectively.
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Figure 4. Modelling the Twitter activity of major urban areas by spectral decomposition (more cities in the electronic supplementary material). Hourly number of
tweets during an average week (blue dots) are compared with model results from equation (2.3) (red curves).
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Figure 5. Spatio-temporal dynamics of Twitter activity in urban areas. Each row shows activity during an average day according to UTC time for the specified city.
Colours indicate the normalized excess of activity from the average value at that location (scale shown in figure). Animated visualizations of Twitter activity in urban
areas are shown in the electronic supplementary material, videos S2 – S4.
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is not solely due to external factors like light and dark or due to

biological factors like circadian rhythms [27]. The second set of

insets show low (blue) and high (red) points of the activity

along with the time of sunrise and sunset over the year

(yellow shadowed area). The wide range of light and dark

times does not cause a comparable shift in activity times. We

calculated the time difference between the series’ morning val-

leys and sunrise times, as well as the time difference between

the series’ afternoon peaks and sunset times. We grouped

these time differences into 10 day intervals, calculated their

distributions and compared with a null hypothesis that the dis-

tributions do not change. We found that the average largest
and shortest time differences over the observation period

are significantly different ( p , 0.01 for equatorial cities and

p , 0.001 otherwise), indicating that variations in the sunset

or sunrise times do not determine the times of peaks or valleys

of activity.

Our economic system is based upon transactions, com-

munications and coordination involving the activities of

multiple workers. The completion of tasks within a given

time frame depends upon the joint availability of workers

either simultaneously or in the correct sequence [28]. Syn-

chrony has its costs, as commuting traffic jams illustrate,

but many activities are less effective or impossible to do
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Figure 7. Radius of gyration (rg) of tweets during an average day in major metropolitan areas. Series are shown in local time and have been rescaled by subtracting
the average and normalizing by the standard deviation. Blue shading indicates standard work hours (09.00 to 17.00 h) and grey shading indicates standard recrea-
tion and rest hours before midnight. Colours indicate the results of the clustering algorithm (see §3).

Table 1. Maximum and minimum radius of gyration (rg) of tweets during an average day for eight major metropolitan areas in kilometres. The difference of
their magnitudes is significant ( p,0.001). Other cities are in the electronic supplementary material, C.

city max. rg min. rg city max. rg min. rg

Tokyo 23.855 + 0.552 21.413 + 0.612 Jakarta 13.671 + 0.265 12.826 + 0.270

Bangkok 15.047 + 0.382 13.251 + 0.401 Moscow 11.157 + 0.183 9.516 + 0.219

Paris 4.066 + 0.053 3.690 + 0.061 London 13.545 + 0.255 11.892 + 0.320

New York City 38.150 + 1.119 35.572 + 1.158 Mexico 12.977 + 0.368 11.135 + 0.359
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without it. Synchrony enables couples in relationships to

share waking and sleeping schedules. Broad categories of

coordinated behaviours like work, leisure and sleep make

up the temporal superstructure which organizes all other

tasks within the daily time line of a city. For workers on a

09.00 to 17.00 h schedule, working at the same time every

day enables them to meet to conduct business activities

together, whether in person or by telephone. Others who

work outside of regular business hours are able to provide

services like entertainment and shopping opportunities to

those who work during the primary shift. The coordination

of social activities during these off hours is possible because

of the synchrony of standard work and rest hours. Biological

circadian rhythms are important for the synchronization of

sleeping hours [27] and the interactions of couples contribute

to the synchronization of activities.

Similar patterns arise in the biological activity of living

organisms, like heartbeats or respiration, or in their collective

activity, like in termite colonies [29] or ecosystems like forests

[30]. Heartbeats, in particular, have properties that appear

in some ways similar to urban dynamics. For comparison,

we show in figure 2a the electrocardiogram (ECG) of a

43-year-old man [31,32] together with the Twitter activity

from São Paulo (yellow), Jakarta (blue) and London (green).

The similarity between heartbeats and Twitter activity is

remarkable and quantified in figure 2b by correlating ECG
signals of individual heartbeats with urban Twitter acti-

vity (also see the electronic supplementary material, B).

The signature of a regular heartbeat is obtained by segmenting

the ECG into equal average heartbeat intervals that are further

divided into 24 segments (similar to the 24 h in a day). This

signature is correlated with the ECG and Twitter activity.

The correlation is done by placing the minimum value in

each period for both signals at the centre of the correlation

window. The heartbeats are highly correlated with the

Twitter activity in urban areas, just less than the correlation

of heartbeats with each other. The correlations with the

time series are compared with those of 50 000 random time

series, as well as with those of periodic series, in figure 2b.

While the high level of correspondence is not essential to our

discussion, the reasons for it can be understood. Both regular

heart activity and human urban activity have three primary

periods. The heart experiences a strong (ventricular) contrac-

tion, a secondary (atrial) contraction and a period in which

both are relaxing. Human urban collective activity has a pri-

mary work shift, a secondary work and recreation shift, and

a sleep shift.

The threefold cyclical Twitter behaviour was further ana-

lysed by spectral decomposition (Fourier transform). The

spectral behaviour of the Twitter activity series from six

major cities is shown in figure 3 and the remaining cities are

shown in the electronic supplementary material. All frequency



fr
eq

ue
nt

ly
 v

is
ite

d 
lo

ca
tio

ns

0 2015
hour of the day

105 0 20

0 1.00.8
Twitter activity

0.60.40.2

15
hour of the day

105

1.0

0.9

0.8

0.7

G
in

i c
oe

ff
. h

om
e 

cl
us

te
rs

Gini coeff. work clusters

0.6

0.5
0.5 0.6 0.7 0.8 0.9 1.0

(a) (b) (c)

Figure 8. Clusters of frequently visited locations according to the time of the day of individual activity. Dominant location clusters have primary activity during either
conventional work (09.00 to 17.00 h) or rest hours according to local time. (a) Total activity in all cities at clusters whose primary activity is during conventional
work hours. (b) As in (a) but for clusters whose primary activity is not during work hours (scale is shown in the figure). (c) Geographical heterogeneity (similar to
Gini) coefficient of conventional work and rest hours locations.

3

–3

–2

–1

0

1

co
or

di
na

te
-2

2

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20161048

6

spectra have three significant components at 24, 12 and 8 h

(dashed lines). The first is due to variations associated with

the daily cycle, the second to variations during 12 h periods,

night and day, the third corresponds to periodic variations

within work, recreation and sleep ‘shifts’.

Based on the frequency decomposition, we can model the

kinetics by adding three sinusoid signals of 24, 12 and 8 h

periods, respectively. In the model, the activity s(t) is defined as:

sðtÞ ¼ a24 sin
2pt
24
þ u24

� �
þ a12 sin

2pt
12
þ u12

� �

þ a8 sin
2pt
8
þ u8

� �
, ð2:3Þ

where t is time in hourly resolution, u represents the respective

signal phase and a is the signal amplitude in the range [0, 1].

We fit the parameters u and a for each time series by minimiz-

ing the quadratic error. The model fits well the observed data

( p , 0.001), as shown in figure 4; electronic supplementary

material, F.

–4 43210–1–2–3

coordinate-1

Figure 9. Multidimensional scaling and clustering of city activity according to
their time series vectors in local time. Colours indicate the results of the clus-
tering algorithm (see text). Star symbols represent Asian and Oceanian cities.
Circular symbols represent Middle Eastern, European and African cities. Tri-
angular symbols represent South and North American cities. Axes
correspond to reduced dimensions obtained from multidimensional scaling.
3. Spatial patterns
While there are social behaviours that differ among individ-

uals and cultures, there are also those that are common and

universal such as the very existence of cities and urban

areas. In cities, many people concentrate in a few but dense

business or commercial areas during work hours, whereas

they disperse to typically sparse residential areas at rest

hours. We expose this behaviour by looking at both spatial

variation of Twitter activity and individual mobility patterns.

We first disaggregated the average day of Twitter activity

into a lattice of 20 � 20 patches in each urban area. In

figure 5, we show patches of local activity for 10 major

metropolitan areas after subtracting the average, normalizing

by the standard deviation and colouring the activity above

average values (see equation (2.2) where i represents each
patch). The average and standard deviation are for each

patch, rather than the whole city (see electronic supplementary

material, C).

In all cities, there are peaks of intense activity occurring

near central areas which expand towards more peripheral

areas over time. In figure 6, we show the distribution of

tweets as a function of the distance to the city centre,

during the most contracted (blue) and expanded (red) times
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between 09.00 and 00.00 h. The city centre is calculated as the

centre of gravity of the spatial activity. For each city, we com-

pared these two distributions, with a null hypothesis that

they are similar to each other. After applying bootstrapping,

we found that the average distance of tweets to the city centre

differs significantly during the most contracted and

expanded times ( p , 0.001). This effect is also manifest in

the hourly variation of the radius of gyration (rg) in

figure 7. We calculate the hourly radius of gyration by per-

forming bootstrapping at each hour of the day across the

whole observation period and averaging across the same

hour of all days. The radius of gyration of each city shows

a daily cycle of contraction and expansion during work

(blue shaded region in figure 7) and rest hours (grey sha-

dowed regions in figure 7), respectively. Table 1 shows the

maximum and minimum values of the radius of gyration

between 09.00 and 00.00 h. In all urban areas, the radius of

gyration varies significantly ( p , 0.001).
We apply bootstrapping in the following way. For

each hour of the day h, we take N ¼ 500 sample sets fh,i of

M ¼ 500 tweets j and calculate the tweets’ distance to the

city centre dj. Then we calculate the average distance

mfh;i
¼ 1=M

P
j[fh,i

dj for each sample set, as well as the average

distance across all sample sets m̂h ¼ 1=N
P

i mfh;i
, standard

deviation ŝh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

P
i ðm̂h � mfh,i

Þ2
q

and standard error

�sh ¼ ŝh=
ffiffiffiffiffi
M
p

. We determine hmax and hmin as the times where

m̂h is either the maximum or minimum between 09.00 and

00.00 h. We determine the p-value that m̂hmax
and m̂hmin

are

part of the same distribution. As m̂hmax
and m̂hmin

are selected

from 24 values for extremality, we used extreme value theory

[33]. Using Monte Carlo sampling, the p-value that m̂hmax
is

within the m̂hmin
distribution and vice versa is p , 0.001 in all

cases shown and in over 90% of the cities included in the elec-

tronic supplementary material. Analogous procedures are

performed with the radius of gyration obtaining similar results.



2.5(a)

(b)

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

Z
-s

co
re

2.5

–1.5
0 2015

hours in an average day
105

–1.0

–0.5

0

0.5

1.0

1.5

2.0

Z
-s

co
re

Figure 11. Deviation from the average number of directed mentions (a) and
shared hashtags (b) between the European and Asian longitude ranges
during an average day in units of standard deviations (Z-score). Grey sha-
dowed regions represent the synchronized times.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20161048

8
Second, we analysed the most frequently visited locations of

each user. By applying a clustering algorithm [34], two clusters

of frequently visited locations were identified (figure 8). In one

cluster, most tweets are sent during work hours (after 09.00 and

before 17.00), while in the other cluster most tweets are sent

during rest hours (after 20.00 and before 02.00). This technique

has been used to identify work and home locations from

mobile phone data [35]. In general, work locations are less

homogeneously distributed than residential locations. We

counted the number of work and residential locations in each

patch of the 20 � 20 grids, respectively. We found that work

locations are more spatially clustered, which results in a

higher spatial heterogeneity (similar to Gini) coefficient

(figure 8c). Moreover, the average distance between residential

locations with respect to the city centre is significantly larger

than that of work locations ( p , 0.001 for half of the analysed

cities), indicating that home locations are more widespread.

Despite overall similarities, cities have distinct signatures

in the number and shape of peaks of activity in both time

(figures 1 and 2) and space (figure 5). By applying a clustering

algorithm [34] to the time-series vectors, starting from the mini-

mum of activity, we found an optimal partition [36] of three

clusters of cities with remarkable cultural and regional affinity.

These clusters have been coloured accordingly in figures 1 and

2, as well as in the dimensionally reduced space [37] shown in

figure 9. One class of cities, including Jakarta and other Asian

and Oceanian cities (blue series in figure 1 and blue symbols in

figure 9), has a single large peak of activity during the day.

Another class, including São Paulo and multiple North and

South American cities (yellow series in figure 1 and yellow

symbols in figure 9), has two small peaks of activity in the

morning and a large peak in the evening. Finally, a third

class, including London and multiple Middle Eastern,

European and African cities (green series in figure 1 and

green symbols in figure 9), has two equally sized peaks of

activity, respectively, at morning and afternoon. Differences

are also manifest spatially (figure 5). Asian cities (top three

rows) gradually increase their activity (coloured patches),

showing spatial peaks, and then rapidly decrease it (black

patches). European cities (middle three rows) have a strong

spatial peak of activity in the morning near the centre of the

city and other dispersed peaks in the afternoon at peripheral

areas. Finally, North and South American cities (bottom four

rows) have several smaller peaks of activity around multiple

centres and one large peak at the end of the day throughout

the city. Interestingly, the morning peaks of the European

cities coincide in time with the large afternoon peaks of Asian

cities (see columns 8 h–10 h), which is an indication of syn-

chrony. This synchrony is manifested as simultaneous peaks

of activity in the time series (vertical black lines in figure 2; elec-

tronic supplementary material, A). It turns out that some of these

differences can be traced to global patterns of behaviour.
4. Global synchrony
In figure 10a, we show patterns of collective behaviour at

a global scale after aggregating tweets by longitude. Each

longitude has cycles of activity similar to those of individual

cities (figures 1, 2 and 5). Minima (white dashed line) and

maxima (black dashed line) shift from east to west due to

diurnal synchronization of sleep and wake cycles and the

Earth’s rotation. The ubiquity of this pattern manifests
homogenization in habits and customs among globally differ-

entiated cultures and social contexts. Furthermore, there is a

specific synchronization in figure 5 that is actually a global

phenomenon. Distinct from the other behaviours that track

the daily period and therefore are diagonal, between longi-

tudes 08 and 1808, a horizontal line (black) shows a

simultaneous peak of activity that occurs daily across the Euro-

pean, Asian, African and Oceanian continents. This horizontal

peak reflects large-scale dependencies across half of the world.

The synchronization of activity is manifest in a dynamic

correlation network between nodes representing cities, whose

edges appear when the urban time series are correlated

above a given threshold (r . 0.9). Correlations are calculated

by using overlapping time windows of 12 h across the cities’

average day time series. Highly synchronized cities have

stronger connections with each other than with the rest of

the network. In figure 10b,c, we show two snapshots of the

correlation network at different times. Cities are generally

linked within times zones, because it is natural for cities to be

synchronized to those in similar longitudes (figure 10b). How-

ever, at the time of global synchronization (figure 10c) cities

across Eurasia and Africa are strongly coupled, manifest-

ing their synchronous activity. Such global synchronization

can be expected to arise in the context of increasing global

interactions consistent with synchronization in many complex

systems [39].

For additional evidence that synchronization arises from

social interactions, we studied directed messages in the content

of tweets (mentions) and topic identifiers (hashtags) between

the European and Asian longitude ranges (figure 11). We
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Figure 12. (a) Model outcomes for multiple values of intercity influence at multiple longitudes (a) and night activity (b) with the same initial conditions. Longi-
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found that the number of interurban directed messages and

common hashtags simultaneously peak during the synchro-

nized time. At this time a significantly larger number of

directed messages are sent between these regions and more

hashtags are shared in their messages with respect to other

times of the day ( p , 0.001). These results indicate that

people tend to share more information about increasingly

similar topics as they synchronize their activities.

We model the global synchronization process with an

iterative dynamical model based on the tendency of tweets

to trigger other tweets. The full model includes the tendency

of people to tweet before going to bed and absence of tweets

at night. The model is defined by the iterative map in the

changing daily dynamics of a city:

siðs,tÞ ¼ siðs,t� 1Þ þ a
X
j=i

sjðs,t� 1Þ þ b
X
sb

dðs� sbÞ,

ð4:1Þ

where si represents the temporal activity of city i, s [ [0, 23]

indicates time of the day, t represents day-to-day changes,

which is our iterative variable (we ignore weekend

differences for this purpose), and sb indicates the location-

dependent time of evening activity. Parameters a [ [0, 1]

and b [ [0, 1] indicate the weights of intercity influence at

multiple longitudes and evening activity, respectively.
Activity is set to zero between times 0 , s , 8. We normalize

si(s,t) at each iteration so that
P

s siðs; tÞ ¼ 1. At t ¼ 0, si(s)

is set to random values.

In figure 12a, we present the outcomes of the model

for multiple values of intercity influence (a) and evening

activity (b). The initial conditions vary among cities but do

not change for different a and b configurations. The blue diag-

onals indicate local sleeping times. If a ¼ b ¼ 0, the model

results in an independent random distribution of activities

among cities. For positive values of a, cities are able to influ-

ence each other and horizontal stripes emerge, indicating the

synchronization of activities in cities at multiple longitudes.

The horizontal stripes emerge at the times where the sum of

initial conditions is slightly higher and therefore symmetry

breaks. Similarly, higher values of b result in peaks of activities

before sleeping time (red diagonals). Both behaviours are sim-

ultaneously found for intermediate values of these parameters

(i.e. a ¼ 0.4 and b ¼ 0.2).

We add an inactive ocean to the model in figure 12b and

average over 100 realizations of two specific parameter

values. The inactive areas affect the number of active cities

at each time of the day. As a result, the synchronized peaks

of activity (red horizontal stripes in squared panels) emerge

at the times where most of cities are active (blue curve in

rectangular panels) and consequently the sum of initial
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conditions is consistently higher. These results show that

synchronous peaks of activity emerge from reinforcement

and interaction mechanisms.
oyalsocietypublishing.org
J.R.Soc.Inter
5. Conclusion
The patterns we identified manifest how social activities lead

to dependencies among the communication between individ-

uals, especially their synchronization. Synchronization may

arise because of explicit coordination, but more generally

occurs due to availability of individuals to perform actions

when others trigger responses from them. Urban synchrony

is manifest in each urban area. We have found that global

synchrony appears to be arising in the context of increasing

global communication. Through synchronization, the timing
of human communication and activities becomes constrained

to the norms and conventions of the social environment.

As people create and maintain temporally sensitive relation-

ships, the complexity of the larger scale behaviour of the

social system increases. These collective behaviours may

be linked to collective capabilities that provide products,

services and information that cannot be obtained by an

individual alone.
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