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While multiallelic copy number variation (mCNV) loci are a major com-

ponent of genomic variation, quantifying the individual copy number of a

locus and defining genotypes is challenging. Few methods exist to study

how mCNV genetic diversity is apportioned within and between populations

(i.e. to define the population genetic structure of mCNV). These inferences

are critical in populations with a small effective size, such as Amerindians,

that may not fit the Hardy–Weinberg model due to inbreeding, assortative

mating, population subdivision, natural selection or a combination of these

evolutionary factors. We propose a likelihood-based method that simul-

taneously infers mCNV allele frequencies and the population structure

parameter f, which quantifies the departure of homozygosity from the

Hardy–Weinberg expectation. This method is implemented in the freely

available software CNVice, which also infers individual genotypes using

information from both the population and from trios, if available. We studied

the population genetics of five immune-related mCNV loci associated with

complex diseases (beta-defensins, CCL3L1/CCL4L1, FCGR3A, FCGR3B and

FCGR2C) in 12 traditional Native American populations and found that the

population structure parameters inferred for these mCNVs are comparable

to but lower than those for single nucleotide polymorphisms studied in the

same populations.
1. Introduction
Multiallelic copy number variation (mCNV) is an underappreciated and com-

plex component of genetic variation that has been challenging to detect for

two reasons. First, they are not effectively tagged by flanking single nucleotide

polymorphisms (SNPs). Second, direct measurements of hybridization intensity

from SNP or comparative genome hybridization arrays are often noisy. Tech-

niques based on polymerase chain reaction (PCR) such as the paralogue ratio

test (PRT) [1] and, more recently, sequence read depth analysis from short-

read second-generation sequencing have begun to allow analysis of mCNV
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across different human populations [2–5]. However, the

number of human populations studied remains low and

has focused mainly on Europeans.

Complex mCNV involves genes that are of biological and

medical interest. For example, the immune system proteins

beta-defensins (DEFB), macrophage inflammatory protein 1a

(MIP-1a) and Fcg receptors (FCGRs) are encoded by mCNV

loci that modulate susceptibility to infectious and autoimmune

diseases. DEFB are small cationic peptides with a role in innate

immunity that interact with pathogens by depolarizing and

rendering their cellular membrane permeable. Increases in

copy number (CN) of DEFB are associated with psoriasis [6],

as well as an increase in HIV load and impaired immune recon-

stitution following the initiation of highly active antiretroviral

therapy [7].

MIP-1a, also known as the chemokine ligand 3-like 1

(encoded by CCL3L1), binds the CC chemokine receptors

CCR1, CCR3 and CCR5, and their CNV has been inconsistently

associated with clinical parameters of HIV infection [8,9].

A cluster of Fc gamma receptors with low affinities for IgG

shows mCNV (FCGR3A, FCGR3B and FCGR2C), and there is

some evidence of association with disease. Low FCGR3B CN

is associated with glomerulonephritis, systemic lupus erythema-

tosus and rheumatoid arthritis [10,11], and the non-synonymous

FCGR2C mutation rs10917661 results in an activated FcRIIc

protein with cytotoxic effects [12].

The study of mCNV is challenging due to difficulties

in quantifying the number of copies of a locus in an individual

[13] and, consequently, quantifying how genetic diversity is

apportioned between individuals and populations. Typing

methods do not reveal true genotypes for CNV loci, as is

the case of SNPs; rather, quantitative information about total

copy numbers of a locus in both chromosomes (diploid CN)

is produced. Therefore, in the absence of information from

segregation in pedigrees or physical information from molecu-

lar methods such as fibre-FISH, the true CN genotype that

identifies the allele carried by each chromosome can only be

probabilistically inferred from the distribution of observed

diploid copy numbers in a population. This limits the appli-

cation of population genetics models developed for diploid

genotypes, and indeed, specific methods have been proposed

to (i) infer combined SNPs/CNV haplotypes [14]; (ii) quantify

population differentiation by the FST-like VST statistic in which

quantitative intensity ratios are directly obtained from the gen-

otyping signals [15]; and (iii) infer CN allele frequencies

assuming Hardy–Weinberg equilibrium [16]. However, some

natural populations do not fit the Hardy–Weinberg model,

due to inbreeding, assortative mating, population subdivision,

natural selection or a combination of these evolutionary forces.

This article has two goals. The first is to propose a method

(focused on mCNVs) to study the genetic structure of popu-

lations (i.e. the departure from the Hardy–Weinberg model

due to the apportioning of genetic diversity within and

between populations). To achieve that aim, we generalize

the Gaunt et al. [16] algorithm, allowing for deviations from

Hardy–Weinberg equilibrium. We implemented our more

general approach in the R software CNVice, an acronym for

inbreeding coefficients estimation for CNV data, freely available

at https://github.com/mairarodrigues/cnvice. Although

CNVice measures the departure from Hardy–Weinberg

equilibrium in general, and not only that due to recent iden-

tity by descent (i.e. inbreeding), the name of the software is

reminiscent of the classical inbreeding studies of Wright [17].
We implement a method in CNVice that simultaneously

infers for a population (i) the CNV allele frequencies and (ii)

a multiallelic f, the most classical and widely used

population genetics parameter [17,18]. f quantifies the depar-

ture of homozygosity from Hardy–Weinberg expectations,

summarizing the genetic structure of natural populations. For-

mally, the probability of a homozygous genotype (hk, hk) for

the allele k is fpk þ ð1� fÞp2
k and of a heterozygous genotype

(hk, hq) for the alleles k and q is (1 2 f )2pkpq [19], where pk

and pq are the frequencies of k and q alleles in

the population. The Hardy–Weinberg equilibrium corre-

sponds to the specific case of f ¼ 0. Moreover, our method

infers individual genotype probabilities for CNV loci, based

on the observed individual diploid CN, the population allele

frequency distribution, the inferred f parameter, as well as

information on inheritance patterns from trios, if available.

The second goal of our article is to determine the popu-

lation genetics and genetic structure of three immune-

related mCNV loci in Native American populations, which

have been rather neglected in human genome diversity

studies. We studied 12 traditional villages from three ethnic

South American native groups (figure 1a) whose genetic

structure has probably been affected by evolutionary factors,

such as strong genetic drift and inbreeding, that are more rel-

evant in small populations and that render methods

assuming Hardy–Weinberg equilibrium suboptimal.

Using CNVice, we inferred CN genotypes at the beta-

defensin (DEFB) locus, the CCL3L1/CCL4L1 locus and the

low affinity Fc gamma receptor cluster locus (FCGR). mCNV

at the FCGR locus can be further subdivided into CNV of the

individual genes, namely FCGR2C, FCGR3A and FCGR3B.

All mCNV loci studied show a high level of CN diversity.
2. Results and discussion
2.1. Assessing population structure with CNVice
We tested CNVice and compared it with CoNVEM [16],

which also estimates mCNV allele frequencies using the

expectation maximization (EM) algorithm but assumes

Hardy–Weinberg equilibrium. For this, we used simulated

data representing different levels of diversity at a mCNV

locus (measured by expected heterozygosity H under

Hardy–Weinberg equilibrium, and by the number of alleles,

electronic supplementary material, table S1). The ranges of

parameters were consistent with those previously observed

at the mCNV loci analysed in this study. Both CoNVEM

and our new CNVice software estimate allele frequencies for

mCNV loci. Electronic supplementary material, figure S1,

compares allele frequencies estimated with CoNVEM and

CNVice, under different levels of population diversity. In

general, CoNVEM and CNVice produce similar allele fre-

quency estimates. However, in some instances, CNVice

estimates are more accurate than CoNVEM as the departure

from Hardy–Weinberg equilibrium increases (electronic

supplementary material, figure S1a and table S2).

Table 1 and electronic supplementary material, table S2,

show CNVice inferences of allele frequencies and fCNV on

simulated data. In all cases, CNVice 95% CIs of allele fre-

quencies contain the true allele frequencies. Moreover,

CNVice estimations of allele frequencies become less accurate

when the allele frequency spectrum is dominated by a very

common allele (more than 0.60). In this case, the frequency

https://github.com/mairarodrigues/cnvice
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Figure 1. (a) Geographical location of the three studied ethnic groups (Ashaninka, Matsiguenga and Aymara). (b) Barplot of individual continental ancestry for the
populations included in this study and for parental populations from public databases: (1) Yoruba (HapMap YRI, n ¼ 176); (2) European ancestry individuals (HapMap
CEU, n ¼ 174); and the Peruvian populations from the present study. Ashaninka villages: (3) Cushireni, n ¼ 17; (4) Mayapo, n ¼ 17; (5) Charahuaja, n ¼ 16; (6) Capitiri,
n ¼ 11; (7) Ivosote, n ¼ 11. Matsiguenga villages: (8) Monte Carmelo, n ¼ 25; (9) Shimaa, n ¼ 72. Aymara villages: (10) Jayu Jayu, n ¼ 10; (11) Ccopamaya, n ¼ 49;
(12) Laraqueri, n ¼ 8; (13) Pichacani, n ¼ 32; (14) Camicachi, n ¼ 13. Ancestry colours: blue: African; red: European; green: Native American. This analysis used 103 ances-
try informative markers [19] and was performed with Admixture v. 1.2 software. (c) Profiled-likelihood and maximum-likelihood estimation of the population
structure parameter fCNV for each multilocus CNV locus. The vertical axis of each locus is standardized according to its maximum likelihood. Native American squares
correspond to the entire set of studied individuals from the three ethnic groups. (d ) Empirical distribution of the f parameters estimated for 695 unlinked SNPs for
each ethnic group.
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of the most common allele is underestimated and the

frequencies of rare alleles are overestimated.

CNVice is novel in its estimation of the population struc-

ture parameter f from mCNV data. The estimator fCNV

captures the population structure for most mCNV loci

when there is departure from Hardy–Weinberg equilibrium

(table 1; electronic supplementary material, table S2), but,
as in the case of allele frequency estimations, f is underesti-

mated when there is a very common allele. When the

mCNV locus diversity is very low, due to the presence of a

predominant allele (frequency . 0.80 in electronic sup-

plementary material, table S2), CNVice estimators have a

large bias, a problem shared by most estimators of f statistics

in scenarios of low genetic diversity [20].



Table 1. Estimation of the population structure parameter f by CNVice. Monte Carlo simulations (1000 replications) were performed sampling from populations
with different levels of diversity, assuming a sample size of 100 individuals and different values of the f parameter: 0.05, 0.10 and 0.20. Estimated fCNV values
correspond to the mean of the 1000 replications. Allele frequencies and diversity parameters for the six simulated populations are in electronic supplementary
material, table S1. Allele frequencies estimated by CNVice together with fCNV are listed in electronic supplementary material, table S3.

pop alleles
genetic
diversity

observed f 5 0.05 f 5 0.10 f 5 0.20

estimated
fCNV [CI 95%]

estimated
fCNV [CI 95%]

estimated
fCNV [CI 95%]

1 3 0.66 0.07150 [0.00000;0.23972] 0.10221 [0.00000;0.29497] 0.17170 [0.00000;0.40610]

2 4 0.38 0.03901 [0.00000;0.21126] 0.06026 [0.00000;0.27732] 0.10469 [0.00000;0.39309]

3 3 0.56 0.04858 [0.00000;0.16891] 0.08628 [0.00000;0.23701] 0.17951 [0.00000;0.37278]

4 9 0.88 0.05316 [0.00000;0.20805] 0.08369 [0.00000;0.27313] 0.17085 [0.00000;0.41368]

5 9 0.19 0.17217 [0.00000;0.69289] 0.18816 [0.00000;0.72492] 0.23368 [0.00000;0.81062]

6 7 0.61 0.03502 [0.00000;0.19410] 0.05859 [0.00000;0.26130] 0.12928 [0.00000;0.42511]
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2.2. The genetic structure of Native American
populations for immune-related multiallelic copy
number variation loci

The very low European or African admixture of the studied

populations indicates that they are reasonable representatives

of autochthonous Native American traditional popula-

tions (figure 1b, average individual non-Native American

ancestry: 2%). Previous studies of the genetic structure and

evolution of mCNV have focused on the global level

[3,15,21,22]. This is the first population genetics study that

assesses the level of population structure of mCNV loci (in

this case, immune-related) in a set of autochthonous and tra-

ditional villages from different linguistic groups, residing in

different environments (the Andean highlands and the

Amazon Yunga forest) (figure 1a). In this case, the 12 studied

populations are scattered in an area of nearly 25 000 km2 (simi-

lar to the size of Sardinia) that was peopled at least 10 000 years

ago [23]. Therefore, our study is informative about how

inbreeding, genetic drift, gene flow and probable selective

pressures (associated with different environments) shape the

genetic structure of traditional populations for mCNV loci.

Figure 1c,d and electronic supplementary material, tables

S3–S7, show the observed diploid CN distributions, the

inferred allele frequencies and fCNV for the studied mCNV

loci. Estimated fCNV values are within the range of f estimates

observed for unlinked SNPs in the same populations

(figure 1d ). CNVice allows assessment of the uncertainty of

the inference by examining the estimated fCNV-likelihood pro-

file (figure 1c). On the other hand, it has the limitation that it

only allows positive values of fCNV.

The five immune-related mCNV loci studied here have a

level of population structure (mean fCNV ¼ 0.018) that is lower

than the mean f ¼ 0.136 observed for 695 unlinked SNPs. The

two Matsiguenga villages, which are separated by nearly

80 km in the same Amazon Yunga valley, show the highest

level of population structure (figure 1c, mean fCNV ¼ 0.04).

DEFB mCNV [21] and FCGR mCNV [22] have low levels of

genetic structure worldwide when compared with genome-

wide estimates for CNV loci [15]. When we used CNVice to

estimate allele frequencies and fCNV based on published DEFB
[21] and FCGR3B data [22], we confirmed the low level of

worldwide genetic structure previously observed (electronic

supplementary material, tables S8 and S9 and figure S3). By
contrast, the genetic structure of CCL3L1/CCL4L1 is higher

worldwide [3]. The estimated fCNV values for Native Americans

studied here are partially consistent with the patterns of popu-

lation structure observed for FCGR mCNV and CCL3L1/
CCL4L1 mCNV worldwide. Indeed, despite local variation in

the fCNV statistics between the 12 Native American populations,

the inferred fCNV values across the populations are 0 for DEFB,

FCGR3A and FCGR2C and higher (0.016) for CCL3L1/CCL4L1
(electronic supplementary material, tables S3–S7). FCGR3B
had the highest observed fCNV (0.076).

The following features of the genetic structure of the

immune-related mCNVs in Peruvian Native Americans are

noteworthy:

(i) For DEFB (electronic supplementary material, table S3),

the Shimaa population exhibited an elevated frequency

of a diploid CN of 7 (11.4% versus 1.7% globally [21]).

Considering that the two-copy allele is most common

worldwide, the Shimaa result probably derives from

being the only studied population in which the five-

copy allele is common (frequency of 9% versus less

than 0.4% elsewhere), which may reflect the action of

genetic drift.

(ii) For CCL3L1/CCL4L1 (electronic supplementary

material, table S4), our Native American populations

share modal diploid copy numbers (3–4 copies) with

West African Yoruba [9] and differ from Europeans

(modal diploid CN: 2 [24]). This is because Native

Americans show two-copy alleles as modal. Native

Americans are more diverse than Europeans [24] but

less diverse than Africans [9].

(iii) Both the CCL3L1/CCL4L1 genes occur in a single CNV

block in most populations (although they are separate

in a small number of Ethiopian samples) [9]. The high

correlation (Pearson R2 . 0.91, p , 0.001) between the

normalized CN values across the pairs of the three

amplified loci (CCL3C, CCL4A and LTR61A; figure 2)

in Native American populations suggests that, in

these populations, the region encompassing the

CCL3L1 and CCL4L1 genes is on the same repeat unit.

(iv) For FCGR3B, the Amazonian Yunga populations have

the highest known frequency of gene deletion, probably

due to genetic drift with frequencies of homozygosity

for this deletion of 2.4% and 11.6% in Ashaninkas
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number values for CCL3C, CCL4A and LTR61A markers for 522 Native American
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Figure 3. Improving individual CNV genotype estimation with trio information.
(a) Vector of allele frequencies for the locus DEFB in the Ashaninka population;
(b) individual genotype probabilities for ASH06 without using trio information
but conditioning on observed diploid copy number, inferred allele frequencies
and fCNV; (c) individual genotype posterior probabilities for ASH06 (i.e. consid-
ering parental CNV information). (Online version in colour.)
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and Matsiguengas, respectively, versus less than 0.31%

in the worldwide Human Genome Diversity Panel

(HGDP) populations [22]. This trend is also seen,

although less strikingly, for FCGR2C gene deletions

(electronic supplementary material, tables S6–S7).

(v) Q57X is a relevant substitution in FCGR2C (rs10917661,

electronic supplementary material, table S10). While the

frequency of this sequence variant in South and Central

Native American samples from the HGDP is similar to

that in many other global populations (0.24) [22], our

samples from Western South Amerindians have the

lowest frequency (0.07) of this allele (electronic sup-

plementary material, table S10); only that in East

Asians is lower (0.05).

2.3. Inferring copy number variation genotypes using
trios

Defining individual CN genotypes for mCNV may be challen-

ging, but it is important, for example, to identify carriers of

specific alleles to be re-sequenced to study their associated

nucleotide diversity and genomic organization. This infor-

mation may be particularly relevant in neglected populations

with few studied individuals such as Native Americans, to

compare the nucleotide diversity and genomic organization

of CNV alleles with other well-studied populations. As an

example of how CNVice uses both population diploid CN fre-

quencies and trio diploid copy numbers to infer individual

mCNV genotypes, we consider data from an Ashaninka trio

for the DEFB cluster (a mother with 2 copies, a father with 4

copies and an offspring with 4 copies) (figure 3). In this popu-

lation, the DEFB diploid CN varies from 0 to 9 with the

following respective absolute frequencies: (0, 0, 7, 45, 51, 23,

10, 5, 1, 1) for 143 individuals (i.e. 0 individuals with 0 copy,

0 individuals with 1 copy, eight individuals with 2 copies and

so forth) (electronic supplementary material, table S11, line 6,
column Diplotype frequencies (CN)). The possible genotypes

for the offspring ASH064, as for all individuals with 4 copies

in the population, are (0, 4), (1, 3) or (2, 2). First, CNVice esti-

mates fCNV ¼ 0 and the vector of allele frequencies for the

population, P ¼ (0, 0.25, 0.56, 0.12, 0.04, 0.02, 0, 0.002, 0, 0) for

alleles from 0 to 7 copies, using the observed CN distribution

above (figure 3a). Based on this information and following

equation (3.1) in §3.2, the probabilities of each of the three gen-

otypes are 0.839 for (2, 2), 0.161 for (1, 3) and 0 for (0, 4). Note

that these genotype probabilities apply to all individuals with

diploid CN equal to 4 (figure 3b).

Equation (3.1) (§3.2) estimates a prior probability of a gen-

otype, given population genetics information. If trio

information is available, CNVice uses the parents’ diploid

CN information applying the Bayes theorem, to estimate a

posterior probability of a genotype, considering the prior

probability estimated by equation (3.1) and also diploid CN

information from the parents. As shown in figure 3c, for indi-

vidual ASH06, with information of the parents’ diploid CN,

CNVice infers that this individual carries the (1, 3) genotype

and not the (2, 2) genotype for DEFB. This calculation takes

into account the population allele frequencies, the individ-

ual’s genotype frequencies and the parents’ genotype

frequencies. As figure 3 shows, because there is no allele 0

in the population, the genotypes (0, 4) for individual

ASH06, (0, 2) for the individual’s mother and (0, 4) for the

individual’s father are eliminated from the calculation. As

the only possible allele the mother can pass on to her off-

spring is 1, the only possible genotype for ASH06 is (1, 3).

This reasoning is formalized in equation (3.2) of §3.2.

We tested this functionality of CNVice in 53 trios with

unique diploid CN combinations for DEFB, CCL3L1/
CCL4L1, FCGR3A, FCGR3B and FCGR2C, and found that

the inferences of offspring genotypes improve in 49% of

cases, with the posterior probability of the most likely geno-

type increasing on average from 0.74 to 0.83 (electronic

supplementary material, table S11 and figure S2). This

means that, in general, the information about the diploid

CN of the parents reduces the uncertainty about the
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individual genotype. However, a decrease in the probability

of the most likely genotype, or an increase in the uncertainty

of the individual genotype (as seen in 7.6% of cases in

electronic supplementary material, figure S2), is still an opti-

mized result and indicates that there was as overestimation in

the prior probability. Because trio information limits the poss-

ible genotypes of an individual, by imposing additional

constraints on its calculation, trio information corrects such

over- or underestimates of prior probabilities.
 .org
J.R.Soc.Interface
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3. Material and methods
In this section, we outline the material and methods; further

details are given in the electronic supplementary material section.

3.1. Populations, samples and genotyping
We analysed between 324 and 375 individuals (depending on the

locus) hierarchically sampled from 12 populations (hereafter

called villages), belonging to three Peruvian ethnic groups

(figure 1a; electronic supplementary material, table S12): (i) 143

Ashaninka from five villages along the Junin River (central

Peru); (ii) 113 Matsiguenga living in the villages of Monte

Carmelo (n ¼ 24) and Shimaa (n ¼ 89), in southern Peru; and

(iii) 120 Aymara highlanders from the Andean region, living in

five villages near Titicaca Lake (southern Peru). The Ashaninkas

and Matsiguengas are settled in the Amazon Yunga tropical

forest environment, and their languages belong to the Arawak

linguistic family, while the highlanders’ language, Aymara,

belongs to the Andean linguistic family. For population genetics

analyses, we avoided genotyping parents, offspring or siblings

for CNVs, except for the Ashaninkas. For the latter, 69 families

composed of two parents and their offspring were further geno-

typed for 277 individuals, which include the 143 unrelated

individuals considered for the main analyses (electronic sup-

plementary material, table S12). The Institutional Review

Boards of the participant institutions approved this study.

We used 103 ancestry informative marker SNPs [25] to esti-

mate African, European and Native American ancestry in these

villages, using the software Admixture v. 1.2 [26].

To compare the genetic structure based on mCNVs with that

based on SNP genotypes, we used 695 SNPs that were unlinked

between them as well as with respect to the mCNV loci. These

SNPs were genotyped in 124 individuals from the same studied

populations. The 695 SNP genotypes are the intersection of two

datasets obtained using different technologies: 1442 gene-centric

and cancer-associated SNPs from an Illumina Golden Gate

Oligonucleotide Pool Assay (genotyped by Dr Stephen J Cha-

nock’s group at the National Cancer Institute), and 2.3M SNPs

genotyped with the Illumina’s HumanOmni2.5-8v1 array. We

used the hierfstat R package [27] to estimate the f statistics for

each SNP.

We measured diploid CN in the DEFB region, CCL3L1/
CCL4L1 and for the FCGR3A, FCGR3B and FCGR2C genes,

using the PRT approach, described previously for each locus

[1,28,29]. The latter technique is a development of quantitative

PCR that uses a single primer pair to simultaneously amplify

both a test locus and a reference locus, allowing an accurate

CN determination [1].

After amplification, the ratio of the amounts of amplification

products (i.e. the corresponding areas under their capillary elec-

trophoresis peaks) between the reference and test locus is

calculated. Reference samples with known CN (electronic sup-

plementary material, table S13) are then used to convert these

ratios in an expected CN estimation, which is a continuous

number. Next, a probabilistic model is used to obtain a maxi-

mum-likelihood estimation of the discrete CN, combining
information from different primers [28]. The relative proportions

of each allele for SNPs on the promoter of DEFB103 (rs2737902),

FCGR3A/FCGR3B genes (rs1042207 C . T, Arg234X), FCGR3B
HNA1a/1b allelotype (rs76714703 C . T, Asn468Ser) and

FCGR2C null variation (rs10917661 C . T, Glu57X) were deter-

mined using multiplex restriction enzyme digest variant ratio

(REDVR) [21,22].

The combined use of multiplex REDVR with PRT allows the

determination of CN, the relative proportion of each allele for

SNPs and paralogue genes, which adds an additional layer of

complexity. For instance, in contrast with the CCL3L1/CCL4L1
and beta-defensin CNs, which gene products are identical

between copies, or almost so (and are very likely to have the

same function), we can distinguish between deletions in

FCGR3A or in FCGR3B. Considering their importance as function-

ally distinct genes, they are separately included in the analysis.

This strategy also implies that FCGR regions are analysed at a

higher resolution respect to the other studied mCNVs loci.
3.2. Algorithm
CNVice performs four analyses. First, it estimates allele frequencies

for a given population assuming Hardy–Weinberg equilibrium,

using the EM algorithm as implemented in CoNVEM [16],

conditioned on the observed diploid CN frequencies.

Second, CNVice implements a more general approach to

study population structure by jointly estimating fCNV (i.e. the

population structure parameter f ) and allele frequencies. For

this, a profiled likelihood function and EM algorithm is used

[30,31], where the set of allele frequencies is the main parameter

and fCNV is the perturbation parameter. The perturbation par-

ameter is replaced by a maximum-likelihood estimate in the

original likelihood while maintaining fixed values for allele fre-

quencies. The analytical derivation and CNVice algorithm are

detailed in the electronic supplementary material, and in

figure 4, respectively.

Third, CNVice calculates individual genotype probabilities

given a diploid CN and estimates population genotype frequen-

cies, based on both the observed diploid CN distribution and the

estimated fCNV and allele frequencies, using the expression

Pf̂ ind
ðhk, hqjjÞ ¼

2Pf̂ ðhk, hqÞ
Pm

k¼0

Pm
q¼0 Pf̂ ðhk, hqÞ

, j ¼ k þ q, ð3:1Þ

where Pf̂ ind
ðhk, hqjjÞ is the expected genotypic proportion given

the estimated fCNV.

Finally, CNVice uses trio information, if available, to improve

the inference of mCNV genotype by considering diploid copy

numbers of the parents and using Bayes theorem. The offspring

genotype probability given the diploid CN and genotypic

probability of the parents is

Pf
_

ind
ðhks,hqsjjsÞ¼

Pf
_ðhks,hqsjhkm,hqm,hkf ,hqf ÞPf

_ ðhkm,hqmjjmÞPf
_ ðhkf ,hqf jjf Þ

Pm

km¼0

Pm

qm¼0

Pm

kf¼0

Pm

qf¼0

Pf
_ðhks,hqsjhkm,hqm,hkf ,hqf ÞPf

_ðhkm,hqmjjmÞPf
_ðhkf ,hqf jjf Þ

,

ð3:2Þ

where hks and hqs denote the offspring’s alleles; hkm and hqm

denote the mother’s alleles; hkf and hqf denote the father’s alleles;

jm denotes the mother’s diploid CN; and jf denotes the father’s

diploid CN. It is required that

(1) ks þ qs ¼ js;
(2) (hks ¼ hkm) or (hks ¼ hqm) or (hks ¼ hkf ) or (hks ¼ hqf ); and

(3) (hqs ¼ hkm) or (hqs ¼ hqm) or (hqs ¼ hkf ) or (hqs ¼ hqf ).

For the Native American data, we estimated allele frequencies

and fCNV using CNVice. We also used CNVice to assess trios



Figure 4. CNVice algorithm. hk and hq are alleles, where k and q represent the number of copies of a gene in each chromosome. The observed diploid copy number,
or the total copy number, is denoted by j, where j ¼ k þ q, k and q being natural numbers. The population structure parameter is f (or fCNV), and the probability
of an allele to be k is pk. For example, an individual with genotype (h3, h1) for a locus L has 3 copies of the allele in one chromosome, 1 copy on the other, and
diploid copy number 4; the probability of the allele to be h3 in the population is given by p3 and of the allele h1 is given by p1. n is the total number of individuals
in the sample, and g is the number of iterations. dit is a binary variable that indicates whether the t allele is present in genotype i ¼ (hk, hq). Steps: E, expectation;
M, maximization.
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from the Ashaninka population and to infer individual

genotypes using information about their parents’ diploid CN.
4. Conclusion
We present a novel likelihood approach, implemented in the

CNVice software, which allows for the study of the genetic

structure of natural populations using the classical f statistic fra-

mework. Using Monte Carlo simulations, we show that our

method improves (i) the estimation of allele frequencies when

departure from Hardy–Weinberg equilibrium increases and

(ii) the estimation of individual genotypes in comparison

with existing methods, in particular when trio information is

available. Using our approach, we observed a low level of
genetic structure for three immune-related mCNV loci in a

set of traditional Native American populations, settled for at

least 10 000 years in the different Andean and Amazon

Yunga environments. Our method, used here to infer the gen-

etic structure of traditional Native American populations, is

also applicable to the most diverse diploid species of animals

and plants, where departure from the Hardy–Weinberg

model due to drift, assortative mating or natural selection

may be stronger and more frequent than in human

populations.

Data accessibility. Details of the statistical methods presented here are in
the electronic supplementary material. CNVice is implemented in R,
and the source code can be found at https://github.com/mairarodri-
gues/cnvice. The article’s supporting data are also available as
electronic supplementary material. The software run time depends

https://github.com/mairarodrigues/cnvice
https://github.com/mairarodrigues/cnvice
https://github.com/mairarodrigues/cnvice
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mostly on the number of alleles and the sample size that form the dis-
tribution of observed diplotype frequencies given as input. For
example, an input containing the distribution of eight alleles in a
sample size of 120 individuals takes 7.42 min to run in a computer
with 12 GB of RAM, while the same allele distribution in a sample
size of 30 individuals takes almost seven times less (that is, 1 min).
Similarly, an input with four alleles and sample size of 120 takes
only 13 s. CNVice also works for larger CN ranges (it has been
tested for distributions with up to diploid CN ¼ 20).
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