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� Background Plants, though sessile, employ various strategies to defend themselves against herbivorous insects
and convey signals of an impending herbivore attack to other plant(s). Strategies include the production of volatiles
that include terpenoids and the formation of symbiotic associations with fungi, such as arbuscular mycorrhiza
(AM). This constitutes a two-pronged above-ground/below-ground attack–defence strategy against insect
herbivores.
� Scope Terpenoids represent an important constituent of herbivore-induced plant volatiles that deter herbivores
and/or attract their predators. Terpenoids serve as airborne signals that can induce defence responses in systemic
undamaged parts of the plant and also prime defence responses in neighbouring plants. Colonization of roots by
AM fungi is known to influence secondary metabolism in plants; this includes alteration of the concentration and
composition of terpenoids, which can boost both direct and indirect plant defence against herbivorous insects.
Enhanced nutrient uptake facilitated by AM, changes in plant morphology and physiology and increased transcrip-
tion levels of certain genes involved in the terpenoid biosynthesis pathway result in alterations in plant terpenoid
profiles. The common mycorrhizal networks of external hyphae have added a dimension to the two-pronged plant
defence strategy. These act as conduits to transfer defence signals and terpenoids.
� Conclusion Improved understanding of the roles of terpenoids in plant and AM defences against herbivory and of
interplant signalling in natural communities has significant implications for sustainable management of pests in ag-
ricultural ecosystems.

Key words: Terpenoids, herbivorous insects, indirect defence, induced defence, priming, arbuscular mycorrhiza,
common mycorrhizal networks.

INTRODUCTION

Terpenoids represent the largest and structurally the most di-
verse group of volatiles released by plants. Biologically, a wide
array of terpenoids can enable plants to interact with other or-
ganisms, such as insects, pathogens and neighbouring plants
(Kant et al., 2004; Mercke et al., 2004; Kappers et al., 2005;
Cheng et al., 2007a, b). Terpenoids are emitted either constitu-
tively or induced in response to biotic (Dudareva et al., 2006,
2013; Unsicker et al., 2009; Rasmann et al., 2012) and abiotic
(Gouinguené and Turlings, 2002; Loreto and Schnitzler, 2010)
stresses.

Attack by insects induces plants to emit a blend of volatile
organic compounds (VOCs). Terpenoids are important mem-
bers of the class of herbivore-induced plant volatiles (HIPVs)
(Gershenzon and Dudareva, 2007; Mumm et al., 2008). Some
terpenoids serve as repellents (Laothawornkitkul et al., 2008;
Unsicker et al., 2009; Maffei, 2010), while others function in
indirect plant defence by attracting arthropods that prey upon or
parasitize herbivores (Kessler and Baldwin, 2001; Rasmann
et al., 2005; Schnee et al., 2006). Additionally, terpenoids are
produced in response to oviposition and are involved in the at-
traction of egg-parasitizing insects (Conti et al., 2008; Büchel
et al., 2011; Tholl et al., 2011; Hilker and Fatouros, 2015).

In addition to their roles in direct and indirect defences, plant
terpenoids, along with other HIPVs, such as green leaf volatiles

(GLVs), serve as airborne signals that can be perceived by
undamaged systemic parts of the same plant (Frost et al., 2007;
Heil and Silva Bueno, 2007) and by neighbours (Karban et al.,
2000). In response to perceived volatile signals, plants express
defence genes and synthesize secondary metabolites (Shulaev
et al., 1997; Arimura et al., 2000b; Sugimoto et al., 2014) or
prime their defences against pests (Engelberth et al., 2004; Heil
and Kost, 2006; Ton et al., 2006). Although primed plants do
not show any trait of resistance, they become prepared to re-
spond more rapidly and more intensely when attacked (Conrath
et al., 2006; Heil and Ton, 2008).

The synthesis of terpenoids can be altered by numerous bi-
otic and abiotic factors (Owen and Pe~nuelas, 2005; Pe~nuelas
and Munné-Bosch, 2005; Brunetti et al., 2013). Among such
influencing factors is the formation of arbuscular mycorrhiza
(AM), defined as a symbiotic association of plant roots with
soil fungi belonging to the phylum Glomeromycota. Arbuscular
mycorrhizal fungi are heterokaryotic, obligate symbionts that
confer on plants multifarious benefits, like improved access to
nutrients and water and enhanced resistance to biotic and abi-
otic stresses (Finlay, 2008; Smith and Read, 2008; Miransari,
2010; Ruiz-Lozano et al., 2012; Evelin et al., 2013). In return
for such colossal benefits, the fungus obtains carbon from the
plants (Smith and Gianinazzi-Pearson, 1988; Smith and Read,
2008). Arbuscular mycorrhiza interconnects plants by means of
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an extensive subterranean hyphal network. This network is spe-
cialized for nutrient (primarily phosphate) and water uptake
(Miller et al., 1995). The bidirectional exchange of nutrients be-
tween the symbionts takes place at highly branched intracellular
structures called arbuscules, which are formed in the inner cor-
tex of the plant root by the mycobiont (Harrison, 2005;
Parniske, 2008). This interaction plays a crucial role in plant
ecosystem functioning, as more than 80 % of the terrestrial
plant species rely on AM fungi for their mineral nutrition
(Smith and Read, 2008).

The formation of AM changes the physiology and ecology of
the plant. Arbuscular mycorrhiza potentially strengthens both
direct and indirect plant defence systems (Pozo and Azc�on-
Aguilar, 2007; Jung et al., 2012; Borowicz, 2013) by altering
the secondary metabolism of the plant (Hohnjec et al., 2005;
Walker et al., 2012). Formation of AM has been demonstrated
to change the concentration and composition of terpenoids
(Copetta et al., 2006; Khaosaad et al., 2006; Kapoor et al.,
2007; Rapparini et al., 2008). This alters the plant’s attractive-
ness and also the insect’s behaviour (Schausberger et al., 2012;
Babikova et al., 2014a; Shrivastava et al., 2015). Cascading ef-
fects on higher trophic levels have also been reported (Gange
et al., 2003), as have indirect effect on predators and parasitoids
of herbivores (Gange et al., 2003; Guerrieri et al., 2004; Laird
and Addicott, 2007). Consequently, increased knowledge of the
mechanisms that influence production of terpenoids in AM
plants will make important contributions to the biocontrol and
integrated management of pests.

In this review, readers are first introduced to the terpenoids
that contribute to HIPVs, and their synthesis in the plant cell.
The review emphasizes the role of terpenoids in plant defence
against herbivorous insects (Fig. 1) and discusses their probable
role in airborne signalling within the plant and to nearby plants.
It then focuses on the significance of terpenoids in AM-mediated
reinforcement of direct and indirect defences against herbivory
(Fig. 2), further discussing various mechanisms underlying
changes in the concentration and composition of terpenoids in
mycorrhizal plants. Finally, it outlines the prospects for bioengi-
neered terpenoid-producing plants and AM symbiosis in the sus-
tainable management of pests in agricultural systems.

TERPENOIDS IN HIPVS

Terpenoids are one of the important constituents of volatiles
that are released by plants in response to herbivore attack
(Gershenzon and Dudareva, 2007; Mumm et al., 2008). They
are low molecular weight compounds derived from the basic
five-carbon building blocks of isopentenyl diphosphate (IPP).
The key players among the terpenoid volatiles that significantly
contribute to HIPVs are monoterpenes (C10), sesquiterpenes
(C15) and homoterpenes such as 4,8-dimethylnona-l,3,7-triene
(DMNT) and 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT)
(Leitner et al., 2005; Arimura et al., 2008; Mithöfer and
Boland, 2012). Isoprene (2-methyl-1,3-butadiene), although not
produced by many plants, has also been demonstrated to play
an important role in defence against insect herbivory
(Laothawornkitkul et al., 2008).

There are two pathways for the production of terpenoids:
the cytoplasmic mevalonate (MVA) pathway and the plastidial

2-C-methyl-D-erythritol 4-phosphate (MEP) pathway (Aharoni
et al., 2005; Rodr�ıguez-Concepcion, 2006; Cheng et al., 2007a).
Both pathways generate universal precursors for terpenoid syn-
thesis from IPP and its isomer dimethylallyl diphosphate
(DMAPP). While monoterpenes are synthesized via the MEP
pathway, sesquiterpenes are produced by the MVA pathway. In
contrast to the conventional allocation, which suggests the MVA
and MEP pathways are strictly independent, there is emerging
evidence that the two pathways cross-talk by allowing IPP to
shuttle between different compartments (Piel et al., 1998; Bick
and Lange, 2003; Bartram et al., 2006; Rodr�ıguez-Concepcion,
2006). However, it has been found that�80 % of the IPP derived
from the MEP pathway contributes to sesquiterpene biosynthesis
following herbivory (Bartram et al., 2006; Arimura et al., 2008).

Condensation of C5 units gives rise to all-trans or all-cis
prenyl diphosphate precursors that are converted by the terpene
synthase (TPS) enzymes of different subfamilies into acyclic,
mono-, bi- or tricyclic monoterpenes, sesquiterpenes or semivo-
latile diterpenes (Chen et al., 2011). Terpene synthases are gen-
erally multiproduct enzymes, and thus even a single TPS can
significantly enhance the diversity of terpenoids (Gershenzon,
1994; Tholl, 2006; Arimura et al., 2008). The primary terpene
skeletons may be further modified through secondary enzy-
matic reactions, such as dehydrogenations, hydroxylations,
methylations and acylations (Dudareva et al., 2006).

Some terpenoids, such as b-ionone, are produced not directly
from IPP, but instead from tetraterpenes such as carotenoids, by
carotenoid cleavage dioxygenases (Dudareva et al., 2013).
Homoterpenes such as DMNT and TMTT are synthesized by
oxidative degradation of the sesquiterpene (3S)-(E)-nerolidol
and the diterpene geranyl linalool by cytochrome P450 en-
zymes (Arimura et al., 2009; Maffei, 2010).

TERPENOIDS IN DEFENCE AGAINST

HERBIVORY

Direct interaction

Terpenoids can serve as repellents and reduce larval feeding
and oviposition by herbivores (De Boer et al., 2004;
Laothawornkitkul et al., 2008; Unsicker et al., 2009; Maffei,
2010). For example, linalool (a monoterpenoid) and (E)-b-far-
nesene (a sesquiterpene) produced by plants repel herbivores
and aphids, respectively (Aharoni et al., 2003; Unsicker et al.,
2009; Maffei, 2010). Although the exact mechanisms by which
terpenoids affect insect pests are not known, probable processes
include the inhibition of ATP synthase, alkylation of nucleo-
philes and interference with moulting (Langenheim, 1994).
Terpenoids such as a-pinene and b-pinene have been shown to
disturb the nervous system in insects by inhibition of
acetylcholinesterase (Yeom et al., 2012).

Indirect above-ground interactions

Terpenoids emitted as a result of herbivore attack have an
important role in a plant’s indirect defences, attracting predators
or parasites of herbivores and facilitating location of the at-
tacked plants (Heil, 2008). For example, infestation of lima
bean leaves by spider mites (Tetranychus urticae) triggers the
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de novo production of terpenoids such as (E)-b-ocimene, linal-
ool, DMNT and TMTT (Dicke et al., 1990, 1999; De Boer
et al., 2004; Shimoda et al., 2005), which lure the predacious
mites (Phytoseiulus persimilis) that prey on spider mites
(Takabayashi and Dicke, 1996). The volatiles from spider mite-
infested lima beans, treated with fosmidomycin (an inhibitor of
the MEP pathway) were less attractive to the predatory mites
than those from infested control plants, indicating the signifi-
cance of terpenoids in indirect defence (Mumm et al., 2008).

The high chemical diversity within HIPV mixtures compli-
cates identification of the compound(s) actually responsible for
signalling herbivore enemies. However, it has been demon-
strated by investigation of individual compounds that terpe-
noids such as the homoterpene TMTT can attract predatory
mites (De Boer et al., 2004). Genetic engineering for enhanced
expression of genes encoding enzymes for the formation of ter-
penoids has ascertained the role of individual compounds in tri-
trophic interactions. Transgenic Arabidopsis thaliana
overexpressing strawberry nerolidol synthase, a TPS, attracted
more predatory P. persimilis mites (Kappers et al., 2005).
Similarly, overexpression of a corn TPS gene (TPS10) in A.
thaliana augmented the attractiveness of these transgenic plants
to the parasitic wasp Cotesia marginiventris (Schnee et al.,

2006). Interestingly, changes in HIPV blends emitted at differ-
ent times can impact the interactions among a plant, its herbi-
vores and their parasitoids, and stimulate different preferences
for herbivores and their parasitoids (Mathur et al., 2013;
Pashalidou et al., 2015). The generalist Spodoptera littoralis
preferred undamaged Brassica juncea plants, whereas its para-
sitoid (C. marginiventris) preferred 48-h damaged plants
(Mathur et al., 2013). In Brassica nigra, parasitoid wasps
(Cotesia glomerata) were attracted to plants infested with eggs
just before and shortly after larval hatching of Pieris brassicae
(Pashalidou et al., 2015). The authors have correlated this pref-
erence to temporal changes in the blend of HIPVs (terpenoids).

Response to oviposition

Plants may respond to herbivore egg deposition and activate
defences before actual feeding injury is initiated, which might
be a successful tactic to reduce impending herbivory (Hilker
et al., 2002; Mumm and Hilker, 2006; Pashalidou et al., 2015).
Analogous to HIPVs, plant volatiles induced specifically by in-
sect oviposition are termed oviposition-induced plant volatiles
(OIPVs) (Hilker and Fatouros, 2015). Terpenoids are important
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FIG. 1. Overview of terpenoids in plant defence against herbivorous insects. Volatile terpenoids that belong to the HIPVs (herbivore-induced plant volatiles) and
OIPVs (oviposition-induced plant volatiles) are released in response to herbivore attack and oviposition, respectively. Terpenoids induce defence responses in the
systemic parts of the same plant. These volatiles attract insect carnivores that feed on the herbivores, thereby inducing indirect defence in plants, and prime neigh-
bouring conspecific and heterospecific plants. The perception of terpenoids by neighbouring plants results in influx of calcium ions and membrane depolarization.

Epigenetic regulation of this priming response is reported to evoke the priming memory for up to 5 d. Terpenoids also affect tritrophic interactions in soil.
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members of the class of OIPVs (Conti et al., 2008; Tholl et al.,
2011). The OIPV-specific terpenoids attract egg parasitoids
(Wegener and Schulz, 2002; Mumm and Hilker, 2005; Büchel
et al., 2011). Intriguingly, the attractiveness of egg-laden fo-
liage to the egg parasitoid has been related to an increase in
transcription levels of sesquiterpene synthase (Köpke et al.,
2010; Beyaert et al., 2012). Oviposition on Pinus sylvestris nee-
dles by the sawfly Diprion pini induced both local and systemic
emission of terpenoid volatiles (Hilker et al., 2002; Mumm and
Hilker, 2006). This response was specific to oviposition, and
could not be induced by artificial wounding (Hilker and
Fatouros, 2015). However, volatile cues to attract egg parasit-
oids have not yet been identified.

Response to below-ground infestation

Below-ground VOC patterns are generally distinct from vola-
tiles released from above-ground plant tissues (Pe~nuelas et al.,
2014). Terpenes are the most prominent VOCs emitted from
below-ground tissues (Rasmann et al., 2005; Ali et al., 2011;
Palma et al., 2012; Pe~nuelas et al., 2014), and among these ses-
quiterpenes are the compounds that show the greatest diffusion
in the soil (Hiltpold and Turlings, 2008). Terpenoids have been
shown to play a crucial role in the specificity of below-ground

tritrophic interactions (Rasmann and Turlings, 2008). The most
well-studied example is the induction of (E)-b-caryophyllene by
maize roots infested by larvae of the leaf beetle Diabrotica virgi-
fera virgifera, which attracted the entomopathogenic nematode
Heterorhabditis megidis (Rasmann et al., 2005). On the other
hand, (E)-b-caryophyllene also served as an attractant aiding
D. virgifera larvae to identify a susceptible host (Robert et al.,
2012). One possible explanation for the contradictory observa-
tions in the above studies is that as maize roots only emit (E)-b-
caryophyllene (Hiltpold and Turlings, 2008), it can be presumed
that the entomopathogenic nematode H. megidis has developed
an adaptation to take cues from the (E)-b-caryophyllene emitted
by maize roots for efficient prey-searching.

Multiple herbivore infestations

In nature, plants are generally infested by two or more herbi-
vore species, either concurrently or serially. However, most of the
studies in this area have been conducted on single-herbivore at-
tack under controlled conditions. Infestation by two or more in-
sect species causes complex variations in volatile profile, and
cannot be predicted on the basis of observations on single herbi-
vores. When two or more herbivores co-infest, the effects may be
negative or additive, or one type of herbivore takes priority. For
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FIG. 2. Overview of arbuscular mycorrhiza (AM)-reinforced defence against herbivorous insects. Plants colonized by AM fungi are more tolerant by virtue of supe-
rior growth and nutrient uptake. Formation of AM may result in increased glandular trichome density, availability of substrates, induction of MEP (higher expression
of DXS and DXR) and MVA (higher expression of HMGR) pathways, and induction of terpene synthases (TPSs). These factors in various combinations result in
changes in the terpenoid profile in mycorrhizal (M) plants, inducing both direct and indirect defence responses against herbivore attack in the plant. Mycorrhizal col-
onization results in amplification of a wound signal, leading to priming of neighbouring plants. Common mycelial networks (CMNs) serve as signalling conduits be-

tween interconnected plants under herbivore attack. JA, jasmonic acid; SA, salicylic acid.
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example, concurrent occurrence of herbivory above- as well as
below-ground by S. littoralis and D. virgifera, respectively,
negatively influenced tritrophic signalling due to decreased
(E)-b-caryophyllene production by maize roots (Rasmann and
Turlings, 2007). This may be explained by reduced availability of
a C source required for the synthesis of the terpenoid precursors.
On the other hand, HIPVs emitted by lima beans and pepper
plants infested by two herbivore species attracted more predatory
mites and predatory mirid bugs, respectively, compared with vo-
latiles emitted by plants infested by either herbivore separately
(Dicke et al., 2009). Furthermore, most studies are performed un-
der highly controlled conditions, which impedes application of
the results in natural environments. Thus, a major challenge is the
development of experimental designs that consider the ecological
reality of infestations.

AIRBORNE SIGNALLING TO NEIGHBOURING

PLANTS AND SYSTEMIC PARTS OF THE SAME

PLANT

The airborne volatile signals from herbivore-damaged plants
(emitters) enable nearby conspecific and heterospecific undam-
aged plants (receivers) to foresee the impending arrival of herbi-
vores and tailor their defence accordingly (Baldwin and Schultz,
1983; Arimura et al., 2000a; Engelberth et al., 2004; Karban
et al., 2006; Heil and Silva Bueno, 2007; Ramadan et al., 2011).
Herbivore-induced plant volatiles serve as external signals for
within-plant communication, and elicit a defence response in sys-
temic parts of the affected plant (Karban et al., 2006; Frost et al.,
2007; Heil and Silva Bueno, 2007; Park et al., 2007; Das et al.,
2013). Damaged leaves immediately release VOCs and commu-
nicate more quickly with leaves located nearby that are not di-
rectly connected by vasculature (Heil and Ton, 2008). Plants
may react to the signals connected with the presence of herbi-
vores by upregulating defence genes (Arimura et al., 2000b),
leading to increased production of defence-related metabolites
such as phytohormones, proteinase inhibitors, terpenoids and/or
extrafloral nectar (Tscharntke et al., 2001; Engelberth et al.,
2004; Kost and Heil, 2006; Frost et al., 2008a; Blande et al.,
2010). These changes are ultimately translated into reduced her-
bivory and improved fitness of receiver (Karban and Maron,
2002; Kost and Heil, 2006; Muroi et al., 2011). The responses in-
clude a combination of priming and induced defences, according
to the allocation cost of different classes of defence, with plants
priming more expensive responses and inducing less costly me-
tabolites, such as extrafloral nectar or HIPVs, to attract natural
enemies of the herbivore (Kost and Heil, 2006; Frost et al.,
2008b). Participation of volatiles in interplant below-ground in-
teractions is not well elucidated (Schenkel et al., 2015; Delory
et al., 2016). Whether VOCs emitted by roots in the rhizosphere
can diffuse into the phyllosphere and convey signals to prime
above-ground parts of the same plant is also not effectively docu-
mented (Erb et al., 2008).

ROLE OF TERPENOIDS IN AIRBORNE

SIGNALLING

An important step in understanding the mechanistic foundations
of airborne priming is the elucidation of the actual messengers.

Green-leaf volatiles and terpenoids are two important compo-
nents of HIPVs. Green-leaf volatiles, which are aldehydes, al-
cohols and esters resulting from lipoxygenase cleavage of fatty
acids, account for the distinctive odour of damaged leaves
(Paré and Tumlinson, 1999). Although evidence for GLVs as
priming signals has been observed in several plant species
(Farag and Paré, 2002; Ruther and Fürstenau, 2005; Ruther and
Kleier, 2005; Kost and Heil, 2006; Sugimoto et al., 2014), re-
ports on terpenoids have been variable. The role of volatile ter-
penes in plant–plant interactions was initially reported in lima
bean, where terpenoids such as b-ocimene, DMNT, TMTT and
linalool, released upon feeding of T. urticae, induced the ex-
pression of defence genes encoding lipoxygenase (synthesis of
jasmonic acid) and the pathogenesis-related protein PR-2 (b-
1,3-glucanase) (Arimura et al., 2000b). In maize, however, ter-
penoids were not associated with priming defence responses in
the receiver plants (Ruther and Fürstenau, 2005).

Early events in the perception of volatile signals comprise an
alteration of the plasma membrane potential (Vm) and an in-
crease in cytosolic calcium ([Ca2þ]cyt) (Zebelo et al., 2012). It
was observed that GLVs such as (E)-2-hexenal, (Z)-3-hexenal
and (Z)-3-hexenyl acetate induced stronger Vm depolarization
and a greater increase in cytosolic calcium flux compared with
terpenoids such as a-pinene and b-caryophyllene. These terpe-
noids induced a significant Vm depolarization with respect to
controls, but did not exert any significant effect on [Ca2þ]cyt ho-
meostasis (Zebelo et al., 2012). Moreover, Vm depolarization
was found to increase with increasing GLV concentration.
Green-leaf volatiles are immediately released after damage and
their release ceases within a few minutes of damage (Arimura
et al., 2009), while the release of monoterpenes typically starts
24 h after attack (Dudareva et al., 2006; Pichersky et al., 2006).
The emission of terpenoids is often systemic and extended
(Paré and Tumlinson, 1999). These observations indicate that
GLVs are better candidates than terpenoids for conveying air-
borne signals of herbivore attack. Further studies are required
to identify the messengers (volatiles) involved in transmitting
signals within and to nearby plants. The complementary ap-
proach of using plant mutants deficient in various components
of HIPVs (GLVs or terpenoids) has enabled the role of individ-
ual compounds in plant–plant signalling to be deciphered
(Baldwin et al., 2006). However, using this technique, Paschold
et al. (2006) observed that neither GLVs nor terpenoids prime
the expression of defence genes in Nicotiana attenuata. The
role of various HIPVs as volatile priming signals has continued
to be uncertain because in most studies healthy plants were
treated with synthetic volatiles, a procedure that does not satis-
factorily mimic the exact timing and concentrations of HIPV
emissions in nature. Furthermore, genetic manipulation of
plants for enhanced synthesis of HIPVs may result in several
undesirable effects (Erb et al., 2015). As individual volatile
compounds do not participate in plant–insect interactions in iso-
lation, another key issue for exploration is the interactive effects
of different VOCs in these interactions. Furthermore, tech-
niques based on the limit of detection of terpenoids do not take
into consideration the sensitivity of perception by biological
systems (insects), and hence do not necessarily provide biologi-
cally useful information.

After herbivore departure, plants likely cease to release
HIPVs that attract parasitoids (Puente et al., 2008). If emission
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were to continue, signals would deliver unreliable information
to parasitoids, which would then be incapable of tracking their
hosts. Receiver plants are not aware of how much later the her-
bivores will arrive, and therefore have no clues regarding how
long the primed state should be maintained. However, very lit-
tle is known about how receiver plants control the duration of
the primed state, which is of importance in terms of the arrival
time of herbivores. The molecular mechanisms involved in sus-
taining the primed state are also unresolved. Ali et al. (2013)
demonstrated that the priming effect of HIPVs on resistance
against herbivores is memorized and stored by plants through
epigenetic regulation of DNA, with plants able to evoke this
memory when attacked by herbivores. Treatment with HIPV
was shown to result in demethylation of cytosine sites in the
promoter region of a herbivore-responsive gene for Bowman–
Birk-type trypsin inhibitor (TI). Further experiments are re-
quired to substantiate understanding of the epigenetic control of
airborne signalling between plants.

ARBUSCULAR MYCORRHIZA AND

HERBIVOROUS INSECT RESISTANCE

Arbuscular mycorrhizal fungi are reported to affect the perfor-
mance of herbivores (Gange and West, 1994; Vicari et al.,
2002; Pozo and Azc�on-Aguilar, 2007; Gehring and Bennett,
2009; Borowicz, 2013). Arbuscular mycorrhiza symbioses ad-
versely affect root-feeding insects, while their effects on leaf-
feeding insects are variable (Pozo and Azc�on-Aguilar, 2007;
Gehring and Bennett, 2009; Borowicz, 2013). The extent of
protection also changes with the feeding style of the attacking
herbivore. Arbuscular mycorrhiza symbiosis seems to benefit
phloem-sucking insects (aphids) (Gange et al., 1999; Koricheva
et al., 2009), while effects on chewing and leaf-mining insects
are largely adverse (Gange and West, 1994; Vicari et al., 2002;
Hoffmann et al., 2009); counter-examples, however, also exist
(Babikova et al., 2014b; Shrivastava et al., 2015). This consid-
erable variation can be ascribed to some extent to the species
(plant, fungus and herbivore) involved in the tripartite interac-
tions (Bennett and Bever, 2007; Gange, 2007; Leitner et al.,
2010; Pineda et al., 2010). Akin to the complexity of plant–her-
bivore–natural enemy tripartite interactions, AM also affects
predators and parasitoids of herbivores (Gange et al., 2003;
Guerrieri et al., 2004; Laird and Addicott, 2007).

Participating AM fungi may induce resistance to neighbour-
ing plants, via hyphal networks functioning as plant–plant un-
derground communication systems (Song et al., 2010;
Babikova et al., 2013). Common mycorrhizal network serve as
conduits facilitating the transfer of defence signals and also ter-
penoids between neighbouring plants under herbivore attack
(Song et al., 2014).

ROLE OF TERPENOIDS IN AM-REINFORCED

RESISTANCE AGAINST HERBIVOROUS

INSECTS

The significance of below-ground interactions between plant
and AM fungi for assessing VOC emission rates and their con-
sequent ecological role in the deployment of indirect defences
by plants has been emphasized (Rapparini et al., 2008). The

indirect effect of AM on herbivore defence has been corre-
lated to changes in the blend of terpenoids that alter plant at-
tractiveness and insect behaviour (Babikova et al., 2014a).
In Phaseolus challenged by spider mites, for example, AM
symbiosis with Funneliformis mosseae increased the emis-
sion of b-ocimene and b-caryophyllene, resulting in in-
creased attraction of predators of spider mites (Schausberger
et al., 2012). Similarly, Shrivastava et al. (2015) observed a
greater defence response against beet armyworm
(Spodoptera exigua) in AM than in non-mycorrhizal plants,
partly attributable to the difference in levels and blends of
terpenoids. Arbuscular mycorrhiza formation led to en-
hanced levels of monoterpenes and sesquiterpenes, including
monoterpenes such as myrcene, which were not detected in
non-mycorrhizal plants. Myrcene is a semiochemical utilized
by insects for communication, e.g. to deter thrips (Broughton
and Harrison, 2012) or to attract aphidophagous hoverflies in
a terrestrial orchid (Stökl et al., 2011).

EFFECTS OF ARBUSCULAR MYCORRHIZA ON

TERPENOIDS

Arbuscular mycorrhiza symbiosis can affect a number of vola-
tile organic compounds, including terpenes. Arbuscular mycor-
rhiza fungal colonization has been shown to enhance the
production of triterpenoids (Akiyama and Hayashi, 2002),
apocarotenoids (Klingner et al., 1995; Fester et al., 2002;
Strack and Fester, 2006; Akiyama, 2007; Walter and Strack,
2011) and abscisic acid (Meixner et al., 2005) in roots of vari-
ous plants. Systemic effects of AM on the quantity and quality
of terpenoids in above-ground parts of plants have also been
mooted (Kapoor et al., 2002a, b; Copetta et al., 2006;
Khaosaad et al., 2006; Kapoor et al., 2007; Zubek et al., 2010;
Weisany et al., 2015; Rydlov�a et al., 2016). These studies have
so far been largely confined to the effects of AM on individual
components of terpenoids or a suite of terpenoids (essential oil
composition) that have pharmaceutical value. Arbuscular my-
corrhiza may enhance the biosynthesis of an individual terpe-
noid either by increase in isoprene precursors through the
induction of biosynthesis pathways and/or by induction of ter-
pene synthase enzymes (Shrivastava et al., 2015). Increases in
the level of substrates by enhanced P uptake and increased pho-
tosynthetic efficiency have been described (Wright et al.,
1998a, b; Kapoor et al., 2002a, b; Rasouli-Sadaghiani et al.,
2010). The role of P is perceptible in the synthesis of terpenoids
both via the MVA pathway, which requires acetyl-CoA, ATP
and NADPH, and via the MEP pathway, requiring glyceralde-
hyde phosphate and pyruvate, of which P is a constituent.
Photosynthesis provides ATP and carbon substrate (glyceralde-
hyde-3-phosphate or pyruvate) for isoprene synthesis. Increased
foliar biomass in AM plants results in greater photosynthetic
capacity and thus increased production of total photosynthates
required for terpenoid biosynthesis (Niinemets et al., 2002; Cao
et al., 2008; Hofmeyer et al., 2010). However, P nutrition alone
fails to explain terpenoid accumulation in AM fungus-co-
lonized plants (Copetta et al., 2006; Khaosaad et al., 2006;
Rydlov�a et al., 2016). This is not unanticipated, assuming that
the biosynthesis of isoprene precursors is regulated by complex
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mechanisms, some of them independent of P nutrition (Kirby
and Keasling, 2009; Vranova et al., 2012; Kumari et al., 2013).

The enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS)
catalyses the rate-limiting step of the MEP pathway. Walter
et al. (2000) first demonstrated fungal-induced upregulation of
DXS and DXR (1-deoxy-D-xylulose 5-phosphate reductoisomer-
ase) transcript levels in AM-colonized roots of various cereals.
This was followed by a series of reports on the upregulation of
DXS transcripts in mycorrhizal roots of various plants (Hans
et al., 2004; Strack and Fester, 2006; Floß et al., 2008).
Transcription of genes encoding DXS and DXR enzymes is
upregulated by AM symbiosis and correlated with quantitative
terpenoid concentration in leaves (Mandal et al., 2015a). This
increase in transcription and terpenoid content has been ascribed
to an increased concentration of the phytohormone jasmonic
acid (Mandal et al., 2015a; Nair et al., 2015) and/or improved
mineral nutrient availability (Mandal et al., 2015a), and may
therefore be influenced by both nutritional and non-nutritional
mechanisms (Mandal et al., 2013). Results obtained so far sug-
gest that the AM fungal-mediated increase in concentrations of
terpenoids is due to enhanced production of IPP/DMAPP de-
rived from the MEP pathway (Mandal et al., 2015a). There
were have been no reports of AM-mediated changes in the
MVA pathway in the literature until recently, when
Venkateshwaran et al. (2015) reported that mevalonic acid is
crucial for the transduction of symbiotic signals produced by
AM fungi to induce symbiotic gene expression in plants.

Arbuscular mycorrhiza influences the concentration of spe-
cific terpenoids and their derivatives in plants by upregulating
the transcription of downstream genes of the dedicated biosyn-
thesis pathway (Mandal et al., 2015a, b). Induction of TPS fam-
ily genes TPS31, TPS32 and TPS33 in mycorrhizal tomato
(Zouari et al., 2014) further suggests a probable mechanism un-
derlying the change in terpenoid profile observed in AM plants.

Glandular trichomes are one of the most common secretory
structures that produce and accumulate terpenoids in plants
(Karban and Baldwin, 1997; Van Schie et al., 2007; Kang
et al., 2010; Schilmiller et al., 2010). A direct relation between
augmented concentration of terpenoids and glandular trichome
density has been observed in a number of plants (Ringer et al.,
2005; Bartram et al., 2006; Behnam et al., 2006; Mu~noz-
Bertomeu et al., 2006). Correspondingly, an increase in tri-
chome density upon colonization by AM fungi has often been
proposed to augment concentration of terpenoids (Copetta
et al., 2006; Kapoor et al., 2007; Morone-Fortunato and Avato,
2008). It was demonstrated in Artemisia annua that AM en-
hances glandular trichomes by inducing the transcription of
TTG1 (transparent testa glabra 1), a transcription factor that
acts at the top of the regulatory hierarchy of trichome develop-
ment (Mandal et al., 2015a). However, continued studies are re-
quired to elucidate the mechanisms of enhanced production of
glandular trichomes and further ascertain the role of phytohor-
mones in AM plants.

CONCLUSIONS AND FUTURE PROSPECTS

The volatile nature of terpenoids confers the ability to act as ef-
ficient signalling molecules. Potential deployment in pest man-
agement practices in agriculture depends upon the efficient

control of emission (augmenting or repressing) in plants
(Vickers et al., 2014). Genetic manipulation of plants for terpe-
noid emission is a promising method to alter tritrophic interac-
tions. In recent years, transgenic plants producing terpenoids
have been used to repel herbivores (Aharoni et al., 2003), deter
oviposition (McCallum et al., 2011) and attract predators
(Bouwmeester et al., 2003; Kappers et al., 2005; Beale et al.,
2006) and parasitoids (Schnee et al., 2006). The physiological
cost of terpenoid production has been assumed to be minor,
given their low molecular weight and the relatively low concen-
trations emitted (Dicke and Sabelis, 1990; Halitschke et al.,
2000). On the other hand, a number of studies have demon-
strated that constitutive transgenic production of terpenes can
result in negative physiological effects on the plant (Aharoni
et al., 2003; Robert et al., 2013). These effects may be mani-
fested as stunted growth, reduced reproductive yield and also
enhanced conspicuousness and attractiveness of plants to pests
(Robert et al., 2013). Furthermore, constitutive emission of
HIPVs by transgenic plants would render these emissions unre-
liable as cues for natural enemies that might waste hunting time
in prey-free environments (Gish et al., 2015). Therefore, syn-
chronized engineering strategies that consider herbivore-
induced emissions are required to circumvent these cost effects.
Further studies are required to evaluate the physiological and
ecological costs of terpenoid manipulation in the field to deter-
mine the future of this approach for environmental pest man-
agement strategies (Robert et al., 2013).

Engineering of tritrophic interactions to successfully protect
crop species requires consideration of a number of aspects
(Bouwmeester et al., 2003; Degenhardt et al., 2003). For exam-
ple, identification of an appropriate carnivore species for effec-
tive control of herbivore populations is required – one that is
naturally present in the cultivation area and attracted by manip-
ulating a known terpenoid (Vickers et al., 2014). Engineered
emissions, however, should not attract other herbivores. The
overall benefit of manipulated terpenoid emissions can be sig-
nificantly enhanced by making the release inducible, by insert-
ing a herbivore-inducible tissue-specific promoter with the
terpene synthase gene (Degenhardt et al., 2009). Such con-
trolled release would prevent the attraction of herbivores by
healthy plants and would lead to recruitment of natural enemies
only when the plant is attacked by herbivores (Robert et al.,
2013). The lack of understanding of mechanisms by which
plants recognize and respond to olfactory cues restricts the
prospects for the utilization of terpenoids in crop plants. The
highly simplified community structure of large-scale agricul-
tural plantings is another challenge for the effective application
of HIPVs, as natural enemy attraction may be ineffective in
controlling pests in the core regions of large agricultural fields
(Gish et al., 2015).

Alteration of the terpenoid profile in AM plants appears to
be one of the important mechanisms for augmented defence
against herbivorous insects. Different AM fungal species have
variable effects on terpenoid blends (Kapoor et al., 2002b;
Sailo and Bagyaraj, 2005; Arpana et al., 2008), and conse-
quently likely differentially influence plant–herbivore and
higher trophic level interactions. In this context, comparative
studies using different AM fungal species are warranted, to en-
able differentiation of universal from species-specific re-
sponses, and also to identify those AM fungal species efficient
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in defence against specific herbivores. As the efficiency of AM
symbiosis may be limited by nutrient availability in agricultural
fields, comprehensive studies are also required to evaluate the
relevance of AM symbiosis to herbivore defence under differ-
ent nutrient regimes.
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Büchel KK, Malskies S, Mayer M, et al. 2011. How plants give early herbivore
alert: volatile terpenoids emitted from elm attract egg parasitoids to plants
laden with eggs of the elm leaf beetle. Basic and Applied Ecology 12:
403–412.
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Degenhardt J, Hiltpold I, Köllner TG, et al. 2009. Restoring a maize root sig-
nal that attracts insect-killing nematodes to control a major pest.
Proceedings of the National Academy of Sciences of the USA 106:
13213–13218.

798 Sharma et al. — Terpenoids in plant defence against herbivorous insects

Deleted Text: for 
Deleted Text: wards


Delory BM, Delaplace P, Fauconnier ML, du Jardin P. 2016. Root-emitted vo-
latile organic compounds: can they mediate belowground plant-plant interac-
tions? Plant and Soil 402: 1–26, in press. doi:10.1007/s11104-016-2823-3.

Dicke M, Sabelis MW. 1990. Does it pay plants to advertize for bodyguards?
Towards a cost-benefit analysis of induced synomone production. In:
Lambers H, Cambridge ML, Konings H, Pons TL, eds. Causes and conse-
quences of variation in growth rate and productivity of higher plants. The
Hague: SPB Academic Publishing, 341–358.

Dicke M, Vanbeek TA, Posthumus MA, et al. 1990. Isolation and identification
of volatile kairomone that affects acarine predator-prey interactions – in-
volvement of host plant in its production. Journal of Chemical Ecology 16:
381–396.

Dicke M, Gols R, Ludeking D, Posthumus MA. 1999. Jasmonic acid and her-
bivory differentially induce carnivore-attracting plant volatiles in lima bean
plants. Journal of Chemical Ecology 25: 1907–1922.

Dicke M, van Loon JJA, Soler R. 2009. Chemical complexity of volatiles from
plants induced by multiple attack. Nature 5: 317–324.

Dudareva N, Negre F, Nagegowda DA, Orlova I. 2006. Plant volatiles: recent ad-
vances and future perspectives. Critical Reviews in Plant Sciences 25: 417–440.

Dudareva N, Klempien A, Muhlemann K, Kaplan I. 2013. Biosynthesis, func-
tion and metabolic engineering of plant volatile organic compounds. New
Phytologist 198: 16–32.

Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH. 2004. Airborne sig-
nals prime plants against insect herbivore attack. Proceedings of the
National Academy of Sciences of the USA 10: 1781–1785.

Erb M, Ton J, Degenhardt J, Turlings TC. 2008. Interactions between
arthropod-induced aboveground and belowground defenses in plants. Plant
Physiology 146: 867–874.

Erb M, Veyrat N, Robert CAM, et al. 2015. Indole is an essential herbivore-
induced volatile priming signal in maize. Nature Communications 6: 6273.

Evelin H, Giri B, Kapoor R. 2013. Ultrastructural evidence for AMF mediated
salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23: 71–86.
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