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Moving nitrogen to the centre of plant defence against pathogens
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� Background Plants require nitrogen (N) for growth, development and defence against abiotic and biotic stresses.
The extensive use of artificial N fertilizers has played an important role in the Green Revolution. N assimilation can
involve a reductase series (NO–

3 ! NO–
2 ! NHþ4 ) followed by transamination to form amino acids. Given its wide-

spread use, the agricultural impact of N nutrition on disease development has been extensively examined.
� Scope When a pathogen first comes into contact with a host, it is usually nutrient starved such that rapid assimila-
tion of host nutrients is essential for successful pathogenesis. Equally, the host may reallocate its nutrients to de-
fence responses or away from the site of attempted infection. Exogenous application of N fertilizer can, therefore,
shift the balance in favour of the host or pathogen. In line with this, increasing N has been reported either to increase
or to decrease plant resistance to pathogens, which reflects differences in the infection strategies of discrete patho-
gens. Beyond considering only N content, the use of NO–

3 or NHþ4 fertilizers affects the outcome of plant–pathogen
interactions. NO–

3 feeding augments hypersensitive response- (HR) mediated resistance, while ammonium nutrition
can compromise defence. Metabolically, NO–

3 enhances production of polyamines such as spermine and spermidine,
which are established defence signals, with NHþ4 nutrition leading to increased c-aminobutyric acid (GABA) levels
which may be a nutrient source for the pathogen. Within the defensive N economy, the roles of nitric oxide must
also be considered. This is mostly generated from NO–

2 by nitrate reductase and is elicited by both pathogen-
associated microbial patterns and gene-for-gene-mediated defences. Nitric oxide (NO) production and associated
defences are therefore NO–

3 dependent and are compromised by NHþ4 .
� Conclusion This review demonstrates how N content and form plays an essential role in defensive primary and
secondary metabolism and NO-mediated events.
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INTRODUCTION

Plant and crop biologists considering the role of nitrogen (N)
have, quite correctly, concentrated on its key role in driving
growth, development and yield. Whilst mechanisms of N uptake
and assimilation have been the focus of many studies (for exam-
ple, Liu et al., 2015), away from NO the importance of N in
plant defence against pathogens has received limited attention.
While not ignored by plant scientists, the importance of N in
plant defence against pathogens has not, in our opinion, achieved
the prominence that it deserves. In this review, we outline how N
uptake and metabolism provide the building blocks for plant de-
fence against pathogens, or mobilizing N away from the invader
to influence virulence or symptom development. Additionally, N
drives the generation of nitric oxide (NO), an important defence
signal. Given the importance of N fertilizers in agriculture, the
effects of N arising from interplay between soil, plant genotype
and pathogen require investigation.

NITROGEN ASSIMILATION

Nitrogen is taken-up in two different ways depending on when
and whether it exists in NO–

3 or NHþ4 forms. Three families of
transporters (NRT1, NRT2 and CLC) have been linked to uptake

and translocation of nitrate in plants. Long-distance NO–
3 transport

is regulated by transporters such as AtNRT1.5 and AtNRT1.8
which, in Arabidopsis, are involved in loading and unloading into
the root stele or from the shoot vasculature (Dechorgnat et al.,
2011). NHþ4 uptake is carried out by plasma membrane-located
AMT/MEP/Rh transporters (Khademi et al., 2004).

After take-up by roots, NO–
3 is first reduced to NO–

2 by cyto-
solic nitrate reductase (cNR) where NAD(P)H is used as elec-
tron donor and further plastidal nitrite reductase reduces nitrite
to ammonium. In contrast, NHþ4 is taken up by roots and trans-
ported into plastids, then further assimilated to glutamate by
glutamine and glutamate synthase (Crawford and Forde, 2002).
NO–

3 assimilation is a more energetically demanding process
compared with NHþ4 , as reduction to NO–

2 requires one NADH
and a further three NADPH equivalents for further reduction to
NHþ4 in the plastid (Noctor and Foyer, 1998).

NHþ4 is assimilated into amino acids via the glutamate
synthase/glutamine-2-oxoglutarate aminotransferase (GOGAT)
cycle. A range of aminotransferases will transfer the amino
group from glutamate to catalyse the formation of amino acids.
A notable example is asparagine synthetase (AS) which forms
asparagine and glutamate and which, with glutamine synthetase
(GS), plays an important role in N assimilation (Lam et al.,
1996). The link with 2-oxoglutarate (2-OG) integrates N
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assimilation with the bioenergetic tricarboxylic acid (TCA) cy-
cle. Within amino acid biosynthetic pathways, 2-OG plays an
important role in providing the required carbon skeletons.

NITROGEN FERTILIZATION AND

PATHOGENICITY

The interplay for N between host and pathogen may be dramati-
cally affected by agricultural practices which depend on exten-
sive application of synthetic N fertilizer. The increase in the
application of N fertilizers over the past few decades has been a
major factor in improving crop productivity (Kant et al., 2011).
However, such fertilizer use can have conflicting effects on
plant–pathogen interactions. Although N input increases plant
defence, it also increases the availability of N compounds for ex-
ploitation by pathogens (Tavernier et al., 2007), and overappli-
cation of nitrogen fertilizers has been shown to enhance disease
development (Solomon et al., 2003). It has been suggested that
increased N supply causes greater disease susceptibility through
changes in canopy structure that can provide an environment
favourable for pathogen growth. However, in yellow rust
(caused by Puccinia striiformis), leaf N content rather than can-
opy structure was important for sustaining epidemics on winter
wheat (Neumann et al., 2004). Increased supply of N to the plant
led to higher spore production by the powdery mildew fungus
Oidium lycopersicum, and increased leaf colonization by the
bacterium Pseudomonas syringae pv tomato suggested that in-
creased leaf N caused greater susceptibility to these pathogens.
N fertilization has been shown to increase levels of powdery mil-
dew attack on cereals in the field, and experiments carried out on
seedlings of six different barley cultivars showed a positive cor-
relation between N application and powdery mildew disease se-
verity (Jensen and Munk, 1997). A further link between host and
pathogen N was noted by Robert et al. (2002) who correlated
spore production by the rust fungus Puccinia triticina in wheat
seedlings. The number of spores was 70 % less in the low N
plants but the percentage of N in the spores was higher than in
the leaves, suggesting that the pathogen is highly efficient at tak-
ing up N from the host and indeed the effectiveness of this mech-
anism(s) would be important for virulence.

NITROGEN USE BY PATHOGENS

Any consideration of the role of N in plant demand must also
assess the requirements of the pathogen. The N required by fun-
gal pathogens for growth comes entirely from plant sources
such as NO–

3, NHþ4 and amino acids, the exact combination of
which will vary depending on the part of the plant being in-
fected. Some reports suggest that N sources in the plant are lim-
iting, and that N starvation controls pathogenicity genes and
may be a cue for disease development (Thomma et al., 2006;
L�opez-Berges et al., 2010). However, other studies suggest that
there is a plentiful supply of N for fungal pathogen growth
(Solomon et al., 2003; Pageau et al., 2006; Tavernier et al.,
2007; Walters and Bingham, 2007). A large number of amino
acids have been shown to be present in the apoplast of tomato
leaves, with some of them, such as glutamine, glutamate, ala-
nine and c-aminobutyric acid (GABA) at millimolar concentra-
tions, sufficient to support pathogen growth during the early

stages of infection (Solomon and Oliver, 2001). Interestingly,
these authors observed an increase in the amino acid concentra-
tion between 7 and 14 d after infection which was correlated
with increased fungal biomass in the leaf. This may suggest a
long-term requirement for N nutrition from the host. This could
be extracted through increased protease activity, possibly due
to the induction of an extracellular serine protease P69B
(Solomon and Oliver, 2001). An additional source of host N nu-
trition is GABA produced by the irreversible conversion of glu-
tamate by glutamate decarboxylase. It is usually found in plants
at low concentrations but levels rise in response to a number of
stresses, such as low temperature, heat shock and drought
(Forde and Lea, 2007). Solomon and Oliver (2001) showed that
Cladosporium fulvum was able to utilize GABA as an N source,
with fungal growth on GABA similar to that when grown on as-
partate or glutamate, suggesting its potential as an efficient N
source for pathogen growth.

ROLE OF NITROGEN NUTRITION IN

PLANT DEFENCE

Direct contributions by N to defensive metabolites

Against the trends noted above, other studies have noted that in-
creased N resulted in increased host resistance; for example, in
the interactions of Fusarium oxysporum f. sp. lycopersici and
Botrytis cinerea with tomato plants which showed increased re-
sistance with greater N application. Such results suggest specific
and complex pathogen–N interactions (Hoffland et al., 2000).
Increased N can contribute to every level of plant defence; con-
stitutive or induced. Plants reconfigure their primary and sec-
ondary metabolism in response to pathogen infection, and these
are also influenced by N (Ward et al., 2010). The nutrition re-
gime will impact on the patterns of amino acid biosynthesis to
affect gene expression, including those of defence genes. N lev-
els have been shown to affect the production of constitutive de-
fences based on alkaloids (Stout et al., 1998) and (poly)
phenolics under different N regimes (Johnson et al., 1987).

Other studies have focused on establishing how ‘expensive’
the production of constitutive defences is or how N could be
distributed against the competing demands of growth and de-
fence (Herms and Mattson, 1992; Huot et al., 2014). Metabolite
‘hot spots’ for competition include phenylalanine-derived phe-
nolics and N-containing cyanogenic glycosides (Goodger et al.,
2007). Models suggesting how interacting plant defence hor-
mones act to establish the relative balance between the plant
growth vs. defence requirements have been recently proposed
(Huot et al., 2014). In the context of such considerations, the
role of the soil should not be ignored. Biological mineralization
of organic material can influence dynamics of N availability.
For instance, ammonification of organic forms of N and further
nitrification alter the availability of different N forms to the
plant during its growth. These dynamic changes in N status can
become extreme with changes in pH (Fu et al., 1987), soil hu-
midity and oxygen levels (Smith et al., 1998).

Beyond altered availability of N, the form of N can affect
disease development and plant resistance. For instance, symp-
toms of black root rot (Rhizoctonia solani) of sugar beets
(Afanasiev and Carlson, 1942) or Fusarium wilt on tomato
(Borrero et al., 2012) were reported to increase following NHþ4
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nutrition. In a recent metabolomic study, we have found that
NHþ4 nutrition enhances the content of apoplastic sugar and
amino acids as well as GABA, thereby increasing the availabil-
ity of nutrients to the invading pathogen; in this case P. syrin-
gae (Gupta et al., 2013). Conversely, under NO–

3 nutrition,
increased resistance to P. syringae was observed. Leaving aside
NO–

3-mediated impacts on NO generation (considered below),
other defence-associated features were also augmented. One
was the increase in polyamine levels, i.e. putrescine, spermidine
and spermine production (Gupta et al., 2013). Polyamines are
known to increase plant resistance; for example, increasing in
barley (Hordeum vulgare) during the hypersensitive response
(HR)-associated resistance response against the powdery mil-
dew fungus B. graminis f. sp. hordei (Cowley and Walters,
2002a, b). Polyamines are now well established as signal mole-
cules influencing the cell cycle, DNA and protein synthesis, as
well as programmed cell death (Tiburcio et al., 2014).
Polyamines are oxidatively deaminated by a series of amine ox-
idases to produce hydrogen peroxide (H2O2), and this has been
suggested to contribute to oxidative cross-linking of cell walls
to reduce pathogen ingress. H2O2 has been shown to be re-
quired for polysaccharide–protein cross-linking and lignifica-
tion for penetration defence. Furthermore, aminoaldehydes and
1,3-diaminopropane from polyamine oxidation are involved in
secondary metabolite synthesis and abiotic stress tolerance
(Cona et al., 2006). Polyamines are also involved in systemic
resistance. For instance, methyl jasmonate- (MJ) induced sys-
temic resistance in powdery mildew infection in barley was ac-
companied by increased production of putrescine and
spermidine along with other defence-related metabolites
(Walters et al., 2002).

Nitrogen mobilization as a defence strategy

The efficient remobilization of N from leaves during grain
filling is important to enable the plant to meet the high demands
of the growing seed, and in cereals such as barley and wheat,
flag leaf senescence correlates with grain N content. However,
N remobilization can also occur prematurely in response to
many environmental factors including pathogen attack
(Masclaux-Daubresse et al., 2010). In this context, it is relevant
that Olea and colleagues (2004) showed that during infection of
tomato by the bacterial speck pathogen P. syringae pv. tomato,
aspartate synthetase (AS) expression increased in the phloem of
the main and secondary veins of the leaf. As the product of the
AS-dependent catalysis of glutamine and aspartate is aspargine,
which is preferred for energy storage and transport in some spe-
cies due to the high C/N ratio, such vascular AS expression
would reduce the availability of important nutrients to the
pathogen.

The levels of enzymes involved in nitrogen assimilation such
as NR and glutamine synthetase 2 (GS2) decrease with leaf
age, whereas levels of glutamate dehydrogenase (GDH) and
glutamine synthetase 1 (GS1) increase. The expression and ac-
tivity of these latter two enzymes can therefore be used as se-
nescence markers. Interestingly, following infection of tobacco
leaves with viruses, and virulent and avirulent strains of the
bacterial pathogen P. syringae, the use of fungal elicitors and
application of phytohormones such as salicylic acid (SA)

showed alterations in GS1 and GDH activity similar to senes-
cence. Most notably there was an overall decrease in GS activ-
ity and an increase in GS1 and GDH expression, the exact
response varying and depending on the individual interaction
(Pageau et al., 2006). Similar effects on senescence markers
were also observed by Tavernier et al., (2007) when looking at
the compatible interaction of the hemibiotrophic pathogen
Colletotrichum lindemuthianum with Phaseolus vulgaris. It was
noted that GS1 expression was greater with infection by the
avirulent strains of P. syringae whereas GHD expression was
more associated with cell death occurring as a result of both re-
sistance responses and disease development. Taking all of these
observations together, it is possible to hypothesize that GS1
acts like a metabolic defence gene, remobilizing N away from
the infection site in a scorched-earth defence mechanism that
has been referred to as ‘slash and burn’ (Pageau et al., 2006;
Tavernier et al., 2007).

Nitric oxide in plant defence

The production of NO is a feature of microbially catalysed
oxidoreductive reactions occurring between NO–

3 and NHþ4 dur-
ing soil N cycling. Plants possess a number of distinct pathways
for production of NO, located in different cellular compart-
ments and with activation dependent on physiological, develop-
mental and stress conditions (Gupta, 2011). Cytosolic NR,
mitochondrial nitrite NO reductase, plasma membrane nitrite
NO reductase and xanthine oxido-reductase are reductive path-
ways. Nitric oxide synthase-like enzyme (NOS-like)-, poly-
amine- and hydroxylamine-mediated pathways are oxidative in
nature. Central to all of these mechanisms is a dependence on
the relative availability of N assimilation products (see below).
NO has a specific role in each compartment, possibly interact-
ing with local signal events. For example, NO has recently
been shown to modulate mitochondrial alternative oxidase and
aconitase activities, thereby helping the plant in shift from pri-
mary metabolism towards amino acid biosynthesis (Cvetkovska
and Vanlerberghe, 2012a, b; Gupta et al., 2012a, b). In the case
of peroxisomal NO production, this has been shown to inhibit
catalase and glyoxylate oxidase activity; enzymes which play
roles in b-oxidation and in the detoxification of reactive oxygen
species (ROS) (Ortega-Galisteo et al., 2012). Although a num-
ber of such enzyme activities have been linked to disease resis-
tance, further investigation is necessary (Chern et al., 2013).

Nitric oxide appears to play important roles in many facets
of plant defence. The first report came from Noritake et al.
(1996), who reported that NO plays a role in accumulation of
phytoalexin biosynthesis. Later, the role of NO in driving cell
death during the HR was defined in plants (Durner et al., 1998;
Delledonne et al., 2001, 1998). These authors and many others,
including ourselves (Mur et al., 2005), have shown that the rate
of NO production influences the kinetics of HR formation.
Mechanistically, this is likely to involve an interaction with
ROS which is also central to forming the HR (Delledonne
et al., 1998; Torres et al., 2002; Yun et al., 2011). Due to its
high diffusibility and lipophilic nature, NO can cross plant
membranes and react with superoxide O–

2, leading to the gener-
ation of peroxynitrite (ONOO–). Excess NO can also react with
O–

2, leading to accumulation of less toxic NO2, N2O3 and N2O4.
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The NO–ROS interactions are also important in downstream
signalling pathways. Nitrosylation is another mechanism where
reversible reaction of NO with the thiol groups of reduced cys-
teine residues plays a role in activation and inactivation of spe-
cific protein functions (Gupta, 2011). Due to the high content
of iron and thiols, mitochondrial NO can nitrosylate many pro-
teins in mitochondria. For example, the P. syringae-derived
elicitor harpin induced mitochondrial NO production and nitro-
sylation of the photorespiratory mitochondrial glycine decar-
boxylase complex (GDC). Since NADH is needed for redox
control, nitrosylation leads to inhibition of GDC, which can af-
fect overall redox balance and promote cell death (Palmieri
et al., 2010).

Nitric oxide also plays a role in defence responses induced
by pathogen-associated molecular patterns (PAMPs) (Zeidler
et al., 2004). As a signalling component of PAMP-triggered
immunity (PTI) and effector-triggered immunity (ETI)
(Delledonne et al., 1998), NO can be considered part of the
Zig–Zag model of plant defence (Jones and Dangle, 2006).
Additionally, recognized PAMPs located on P. syringae pv. to-
mato were demonstrated to elicit NO-mediated stomatal closure
and thereby reduce the penetration efficiency of the pathogen.
The bacterial virulence factor coronatine has been shown to
block this effect, thus allowing entry into the sub-stomatal
chamber (Melotto et al., 2006). NO has also been shown to in-
fluence the formation of papillae, which are cell wall apposi-
tions produced in response to fungal pathogens and central to
many non-host defence mechanisms (Prats et al., 2005). Taking
all of these points together, N availability, together with subse-
quent NO generation, will have a wide-ranging impact on the
ability of plants to withstand microbial attack. In terms of both
NO production elicited via PTI and ETI, one of the most impor-
tant downstream effects is the initiation of SA biosynthesis
(Durner et al., 1998). SA plays a central role in both localized
and systemic resistance to infection, and NO is now known to
be an integral component of the signalling pathway (Mur et al.,
2013). Extensive bioinformatic analysis of NO-responsive pro-
moters in arabidopsis in response to infection found that cis-ele-
ments linked to SA responsiveness were prominent (Palmieri
et al., 2008). Further, NO is known to nitrosylate key cysteines
on TGA-class transcription factors to aid in the initiation of
SA-dependent gene expression (Lindermayr and Durner, 2009;
Lindermayr et al., 2010; Gupta, 2011; Mur et al., 2013; Yu
et al., 2014). This can be countered through nitrosylation of A
NONEXPRESSOR OF PATHOGENESIS-RELATED
PROTEIN1 (NPR1) leading to oligomerization of NPR1 within
the cytoplasm to reduce TGA activation (Tada et al., 2008;
Lindermayr et al., 2010). On the other hand, Després and col-
leagues (2003) reported that TGA1 relies on the oxidation state
of cysteine residues to mediate the interaction with NPR.
Another key SA protein that is nitrosylated is the SA-binding
protein 3 (SABP3) which has carbonic anhydrase activity
(Wang et al., 2009). Silencing SABP3 gene expression sup-
pressed a HR elicited by P. syringae pv. tomato (Slaymaker
et al., 2002).

It is important not to forget the interacting pathogen, where
NO can also play a role in host invasion. NO has been shown to
be generated in the appressoria of Blumeria graminis and
Magnaporthe oryzae to aid penetration of the host (Prats et al.,
2008; Samalova et al., 2013). In the case of Phytophthora

cryptogea, the virulence factor/elicitor cryptogein aids patho-
genesis by promoting host cell death via NO generation
(Lamotte et al., 2004). Thus, not only N nutrition, but the rela-
tive availability of N to drive either host or pathogen NO gener-
ation is a relevant consideration.

Role of N nutrition in NO generation during
defence against pathogens

The NR pathway catalyses the reduction of nitrate to nitrite
using NADH as electron donor [NAD(P)H þ 3H2Oþ þ 2NO�2
! NADþ þ 2NO þ 5H2O]. It is now well established that
NO–

3 and NO–
2 play a role in increased NR activity and NO

emissions (Gupta et al., 2005; Planchet et al., 2005). In an im-
portant recent development, it was shown that S-nitrosothiol
(SNO) signalling regulates both nitrate uptake and reduction, to
fine-tune nitrate homeostasis (Frungillo et al., 2014). It is there-
fore possible that defence-associated NO could influence this
homeostatic mechanism to favour N diversion either away from
the infection site or towards defensive metabolism.

NHþ4 nutrition is also of importance, as this leads to reduced
levels of NO via suppression of NR activity (Planchet et al.,
2005; Gupta et al., 2013). The NR NO-generating mechanism
has been shown to be central to the HR in response to avirulent
Pseudomonas interactions with the host (Melotto et al., 2006;
Gupta et al., 2013; Vitor et al., 2013). Gupta and colleagues
(2013) also reported that during compatible interaction between
tobacco and P. syringie pv. tabaci the NR NO-generated mecha-
nism increased plant resistance. A similar trend of response was
observed in Verticillium dahliae infection in arabidopsis (Shi and
Li, 2008). Yamamoto-Katou et al. (2006) showed that silencing
NR leads to reduced levels of NO in response to elicitin. These
authors concluded that mitochondrial NO plays a role in defence.
Mitochondria produce NO from complex III and IV of mitochon-
drial electron transport. This process requires relatively low oxy-
gen levels (Gupta et al., 2005), a situation that could arise due to
defence responses depleting local oxygen levels within tissues.
The implication of all of these studies is that the strength of NO
generation and, thus, the efficacy of the defence response, is
strongly dependent on the relative availability of NO–

3/ NO–
2.

A parallel consideration must be NO generation during plant
defence via a NOS-like pathway (Delledonne et al., 1998;
Wendehenne et al., 2001) Despite having no homologue in
higher plants, it was shown that NOS-like activity is responsible
for NO during plant response to various pathogen infection and
resistance responses (Chaki et al., 2009; Yoshioka et al., 2009).
However, evidence for this is mainly based on the use of phar-
macological NOS inhibitors such as arginine analogues; PBITU
[S,S0-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea],
L-NAME (NG-nitro-L-arginine methyl ester), L-NMMA (NG-
monomethyl-L-arginine), L-NIL [N6-(1-iminoethyl)-L-lysine)]
or AET [2-(2-aminoethyl) isothiourea] (Gaupels et al., 2011).
This stated, direct assays of NOS-like activity have suggested
an involvement in disease resistance to the necrotrophic patho-
gen Botrytis cinerea in Nicotiana benthamiana (Asai and
Yoshioka, 2009), and cryptogein-induced cell death (Besson-
Bard et al., 2008). Whatever the exact nature of this NOS-like
activity, its dependence on arginine retains the link with N as-
similation, NO and defence.
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A similar indirect link with N is implicit in the polyamine-
mediated NO pathway (Tun et al., 2006). As in the NOS-
mediated NO pathway, in the polyamine NO pathway arginine
acts as a substrate for production of spermine and spermidine
to produce NO. Polyamine generation requires arginine to act
as a substrate for the enzyme arginine decarboxylase. Arginine
levels can be determined by modulation of arginase, leading to
altered NO production (Flores et al., 2008). Normal levels of
NO were returned by providing spermine to the plants, suggest-
ing that the polyamine synthesis from arginine is involved in
the production of NO. The mechanisms through which poly-
amines mediate NO generation are not completely known.
However, polyamines clearly play a role in plant defence
(Walters, 2003), with increased spermine in tobacco leading to
increased resistance against Pseudomonas tabaci and also the
hemibiotrophic oomycete Phytophthora parasitica var. nicoti-
ana (Moschou et al., 2009) and potentiating defence against
Pseudomonas viridiflava in arabidopsis (Gonzalez et al., 2011).
Defence mechanisms involving polyamines may include ROS
production and cell death as well as cell wall reinforcement
mechanisms (Walters, 2003).

CONCLUDING REMARKS

Far from considering N assimilation as only providing the
building blocks of primary metabolism, this review has sug-
gested that its appropriate concentration and form is essential
for effective plant defence. N influences both constitutive and
induced defences, as an element in key signal molecules such
as NO and polyamines. We have highlighted how resistance
based upon PTI, ETI or the mobilization of nutrients away from
the site of infection (‘slash and burn’) could all be compromised
under different N conditions. The potential importance of these
observations cannot be overstated, and breeding programmes
focusing on resistance need also to consider interactions under
different N regimes. Continued advances in the development of
disease-resistant crop plants requires further understanding of
how N, NO and polyamines contribute to PTI and ETI, together
with elucidation of mechanisms involved in movement of N re-
sources away from the site of infection. Understanding of how
different pathogens, with different infection strategies, respond
to N levels to influence nutrition and pathogenicity is also of
fundamental importance in this context.
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FIG. 1 Effect of NO–
3 vs. NHþ4 on plant resistance to pathogen infection. Growth on NO–

3 nutrition leads to increased levels of NO, SA, PR gene expression, induction
of the polyamine pathway, a decrease in apoplastic sugars and amino acids, and an overall increase in plant resistance in a concentration-dependent manner. Growth
on NHþ4 nutrition leads to increased levels of apoplastic sugars and amino acids, reduced levels of SA and PR gene expression, induction of GABA biosynthesis and

reduced plant defence response.
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