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Permanently installed guided wave monitoring
systems are attractive for monitoring large structures.
By frequently interrogating the test structure over a
long period of time, such systems have the potential
to detect defects much earlier than with conventional
one-off inspection, and reduce the time and labour
cost involved. However, for the systems to be
accepted under real operational conditions, their
damage detection performance needs to be evaluated
in these practical settings. The receiver operating
characteristic (ROC) is an established performance
metric for one-off inspections, but the generation
of the ROC requires many test structures with
realistic damage growth at different locations and
different environmental conditions, and this is often
impractical. In this paper, we propose an evaluation
framework using experimental data collected over
multiple environmental cycles on an undamaged
structure with synthetic damage signatures added
by superposition. Recent advances in computation
power enable examples covering a wide range of
practical scenarios to be generated, and for multiple
cases of each scenario to be tested so that the statistics
of the performance can be evaluated. The proposed
methodology has been demonstrated using data
collected from a laboratory pipe specimen over
many temperature cycles, superposed with damage
signatures predicted for a flat-bottom hole growing
at different rates at various locations. Three damage
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detection schemes, conventional baseline subtraction, singular value decomposition (SVD)
and independent component analysis (ICA), have been evaluated. It has been shown that
in all cases, the component methods perform significantly better than the residual method,
with ICA generally the better of the two. The results have been validated using experimental
data monitoring a pipe in which a flat-bottom hole was drilled and enlarged over successive
temperature cycles. The methodology can be used to evaluate the performance of an installed
monitoring system and to show whether it is capable of detecting particular damage growth
at any given location. It will enable monitoring results to be evaluated rigorously and will be
valuable in the development of safety cases.

1. Introduction

Guided wave testing has been widely used to detect damage in structures, mainly due to its ability
to cover relatively large areas of the structure and provide good defect localization capability with
a reduced number of sensors [1]. Recent advances in sensing and computation technology [2]
make it attractive to use permanently installed transducers to monitor the integrity of structures,
which can potentially improve the reliability and reduce the operating cost associated with
regular inspections [3-5]. In structural health monitoring (SHM), we often seek to detect the
progression of damage that develops over an extended period of time, such as a corrosion patch
or a fatigue crack. In principle, the SHM approach enables smaller defects to be found than
is possible in a one-off inspection, and for defects to be found more reliably in the vicinity of
structural features. However, although extensive research has been done on inspection reliability,
there is not yet a robust and efficient methodology for the evaluation of the performance of an
SHM system in its real, practical implementation.

In long-term monitoring, damage is usually detected by comparing measurements with
baseline records and seeking changes that represent defect signatures. The comparison can be
done by subtracting the baseline from the current measurement [3], by calculating the cross-
correlation between the current measurements and the baseline [6], or by more advanced
data-driven methods such as wavelet transform [7] or component analysis [8,9]. If damage were
the sole source of change in the duration of the monitoring, such a comparison would accurately
reveal the progression of damage. However, guided wave records in long-term monitoring are
often affected by various environmental and operational conditions (EOCs), which degrade the
performance of the damage detection [10,11]. Therefore, it is critical to predict the performance
of damage detection schemes under practical EOCs if the method is to find widespread use, and
this paper presents a methodology for achieving this.

Conventional evaluation methods, such as a probability of detection (POD) analysis [12-14],
require data from laboratory experiments under varying EOCs and physically growing defects
on realistic structures. To evaluate an inspection scheme, we can first create damage on structures
and then measure the structures under varying EOCs. However, in SHM, the performance may
change with different histories of the EOC variations and also over the damage progression.
Therefore, the two effects are coupled and need to be sampled simultaneously in order for us
to assess the performance. To achieve this, we need to create damage on many structures, which
is often not practical, or at least very inefficient, because we are usually interested in monitoring
large areas. Hence, we need an alternative way to assess the performance of detecting damage
progression using an SHM system in its practical setting. The new approach has to be robust to
practical EOC variations, and capable of dealing with different damage evolution cases.

Modern computational resources mean that whereas when long range guided wave inspection
was in its infancy it was only possible to do two-dimensional simulations [15], in the last
few years full three-dimensional simulations of realistic corrosion patches has become feasible
[16]. The three-dimensional simulations are now very efficient with the advent of graphics card
processing schemes [2]. However, reliable prediction of signal changes due to environmental and
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other variability is much more difficult, because of the complexity of these effects [10,11,17]. On
the other hand, obtaining experimental data with environmental variation from an undamaged
structure is easy. Therefore, we propose a methodology of measuring data over multiple
environmental cycles on an undamaged structure and synthetically adding damage to the signals.

This hybrid approach enables us to add damage at different locations with different growth
patterns, and to easily investigate the effects of other practical parameters such as the degree of
EOCs, damage severity and location, frequency of readings, etc. Also, by repetitively randomly
selecting from the records that are collected in specific EOC ranges, we can gather sufficient data
to statistically evaluate the performance of different damage detection schemes in these practical
settings. The statistical measure we use to assess the damage detection is the receiver operating
characteristic (ROC) curve, which is used in statistics to illustrate the performance of a binary
classifier [18], and has also been widely adopted in non-destructive evaluation/SHM [19,20]. We
will use the proposed framework to assess the performance of damage growth tracking using the
baseline subtraction method, as well as the more advanced component analysis methods, singular
value decomposition (SVD) and independent component analysis (ICA).

The methodology can be applied to any guided wave inspection system but in order to make
the processing involved clearer, it is presented in the context of a controlled trial of a permanently
installed monitoring system on a length of 8 inch diameter pipe that is subject to temperature
cycling, as described in §2. In §3, we present the new ROC generation scheme and numerically
validate the superposition involved using finite-element analysis. Section 4 reviews three damage
detection schemes for SHM, namely baseline subtraction residual, SVD and ICA. These are
compared using the proposed evaluation framework in §5 and an experimental validation is
presented in §6.

2. Tests on a pipe monitoring system

The biggest commercial application of guided ultrasonic wave testing is for the periodic
inspection of pipelines in the petrochemical industry and the power sector [1], where pipes
are often buried, submerged or too high for access without scaffolding, making it difficult
and expensive to gain access to even a single location along them. The main advantage of
the method is its ability to periodically screen many metres of pipe from a remote location,
resulting in substantial time and cost savings. Standard guided ultrasonic wave inspection works
by transmitting a single guided wave mode (usually the torsional mode) and identifying the
reflections from any discontinuities in the pipe. This approach assumes that each echo in
the recorded signal is distinct from all others and is free from interference and coherent noise;
in the case of pipelines, it is typically very effective due to the one-dimensional nature of
these structures and their relatively low feature density. However, the ability to detect damage
occurring at a feature such as a weld is limited because an echo is obtained even from a good
weld, so damage is only seen if the signal can be identified as abnormal. In complex lines with
multiple features such as tees, diameter changes, bends etc., the echoes from different features
may overlap and interfere with each other, making reliable detection more difficult. Furthermore,
the sensitivity of ultrasonic guided wave inspection to small discontinuities is limited, as it is
necessary for a discontinuity to reflect a wave packet of greater magnitude than the underlying
noise floor for it to be detectable. In this section, we demonstrate our experimental set-up to
collect commercial quality guided wave signals from a length of plain pipe experiencing realistic
variations in environmental condition.

Figure 1a shows a schematic drawing of the experimental set-up on a 6m long, 8 inch
schedule 40 carbon steel pipe (wall thickness 8.2 mm). A resistive heating element was inserted
and suspended in the centre of the pipe to uniformly cycle the temperature of the pipe. A
commercial guided wave sensor (gPIMs unit manufactured by Guided Ultrasonics Ltd) was
installed on the outside of the pipe, 2m from one end; this sends and receives the torsional
(T(0, 1)) mode in the pipe. The whole set-up was then wrapped in an insulating material. We
use the experimental setup to investigate the effect of temperature variations, which is one of the
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Figure 1. (a) Experimental set-up on a 6m 8 inch schedule 40 steel pipe instrumented with a Guided Ultrasonics, Ltd.

permanently installed monitoring system (PIMS). (b) A typical T(0, 1) mode, forward-direction A-scan of the pipe including
reverberations. (Online version in colour.)

main contributors to signal changes in guided wave monitoring, on commercial quality guided
wave monitoring signals.

In each temperature cycle, the pipe was heated to 90°C, held to allow the temperature to
equalize throughout the pipe and then allowed to naturally cool to 30°C in about 10h. Guided
wave measurements were taken every 15 min, resulting in about 40 measurements per cycle,
covering a range of temperatures. Over 1100 experimental signals were measured over 26
temperature cycles. The excitation used in this analysis was an eight-cycle Hanning-windowed
toneburst with a centre frequency of 23.5kHz. The data used in this paper were the same as that
in [21] that looked at a different signal processing method.

Figure 1b shows the envelope of a typical forward-direction (defined in figure 1a) T(0, 1) mode
A-scan; distance is measured from the sensor, which is located at 0 m. Note that the distance axis is
computed by multiplying the wave velocity by half the arrival time because the wave travels from
the transmitter to the feature and back. The signal is plotted on a decibel scale, and is normalized
such that the amplitude of the first cut end reflection, seen at 4m, is 0 dB. Note that we consider
even those parts of the signal which indicate a distance further than 4 m. These are not caused
by physical features beyond the end of the pipe, but arise due to reverberations between the pipe
ends and interactions with the transducer ring. These signal components serve as a useful model
for a longer pipe with multiple features, such as welds, supports or bends.

3. Evaluation framework for structural health monitoring system

(a) Generic scheme

We propose an evaluation framework using experimental data over multiple environmental
cycles on an undamaged structure and synthetic damage signatures. Figure 2 shows the flow
diagram of the proposed methodology. We first collect experimental data on an undamaged
structure while varying environmental and operational conditions (EOCs) that are likely to occur
in its operation. Such data collection can be completed in a relatively short time by physically
applying EOC variations that may occur more slowly in industrial operation, and setting the
monitoring interval accordingly. The experimental data then serves as the undamaged monitoring
signals that would be seen in the absence of damage growth.
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Figure 2. Schematic of the proposed evaluation framework with dashed boxes indicating parameters, dark-shaded boxes
indicating raw/processed data and white boxes indicating data operations. Synthetic datasets are generated using undamaged
experimental signals and predicted damage signals. The ROC curve is then generated after damage detection is performed on
the synthetic datasets.

We then specify the EOCs of interest and randomly select from experimental records collected
under such conditions. For each test scenario, we repeat the randomization process multiple times
to generate multiple synthetic datasets in order to sample from the possible histories of EOCs. We
then superpose artificial damage signals to each of the undamaged datasets to create the synthetic
datasets, with the damage following a specified growth pattern. These datasets then enable the
mean and variability of the ROC to be determined.

The generated synthetic datasets are first compensated for any temperature variations, using
a stretch-based temperature compensation algorithm [22], then processed to extract any damage
features. Three damage feature extraction methods, namely, baseline subtraction residual, SVD
and ICA, are implemented and compared in this study, as detailed in §4. We create synthetic
datasets at different EOC and damage conditions, and compute the ROC curves for the different
methods under different degrees of EOC variation and at different levels of damage growth.

Section 3b illustrates the process to predict damage signals and superpose them at the locations
of interest. In order to show that the synthetic dataset can reliably represent the signals from
guided wave interaction with real damage on a pipe, §3c compares the superposition of localized
damage on noisy signals generated from generally corroded pipe with full finite-element analysis
of the same localized damage plus the general corrosion.

(b) Prediction of artificial damage signal and superposition onto undamaged signals

Unlike conventional one-off inspection, in SHM we process a large set of monitoring records
collected over time, and seek to identify a progressive trend of damage growth, even if the
absolute damage amplitude is small. In our evaluation framework, we create synthetic datasets
to mimic this process. In this paper, we represent growing corrosion by the constant growth rate
of the cross-sectional area loss (CSAL) due to flat bottom holes of increasing cross-sectional area
loss with a constant diameter-to-depth ratio of two. We linearly increase CSAL from zero to 3%,
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Table 1. Test parameters used to generate synthetic data.

test parameter value unit

temperature range over which undamaged signals are selected 2,10,30, 60 °C
o ge (C SAL) ST oframp ............................................................................ 03 o 0710 T W
o berofreadmgsoverwh | chdamagegrows ........................................................ 1030 50 70100 .................................. e
damage location (away from features) 23753 om
. gelocat|0n(ne S feature) .......................................................................... . 2 o

in order to simulate damage growth, and compute the diameters and depths of the flat-bottom
holes during the progression accordingly.

We predict the damage signature by first generating reflection coefficients of flat bottom holes
of growing size on a homogeneous plate using the analytical model developed in [23], modified to
compensate for the curvature of the pipe geometry [16]. Then at each time step during the damage
progression, we multiply the reflection coefficients from the hole by the Hanning-windowed
inspection toneburst in the frequency domain; this frequency domain signal is then transformed
into the time-domain by applying an inverse Fourier transform to obtain the reflection signals
from the hole at that particular time. Note that although the CSAL increases linearly with time,
the amplitude of the damage reflection increases nonlinearly and is frequency dependent [23].

To simulate damage at a location of interest, we compute the arrival time of the damage
reflection knowing the damage location and then superpose the damage reflection onto the
undamaged signals collected in the experimental set-up in §2. The undamaged signals are
randomly selected from experimental signals collected over a range of EOCs, to mimic the
monitoring records affected by temperature variations that could occur in the real world. The
arrival time of damage is computed as a proportion of that of a significant structural feature,
e.g. the second end reflection; this ensures that the damage reflection is inserted at the same
spatial location in each record obtained at different temperatures. The damage reflections are then
delayed and superposed on the undamaged experimental signals to create a synthetic dataset.

Table 1 summarizes the test parameters used to generate the synthetic datasets. Each synthetic
dataset is generated with one value for each parameter. For example, a combination of 10°C
temperature variation, 1% damage amplitude, 50 readings and 10.1 m means we generate a
synthetic dataset that consists of 50 signals, where the undamaged signals are randomly selected
from experimental records collected over a 10°C range; the 50 damage signals linearly increasing
from 0 to 1% CSAL are predicted and added to the undamaged experimental signals at 10.1m,
slightly after the second cut end reflection.

For each combination of test parameters, we repeat this synthetic data generation process
500 times. The resulting 500 synthetic datasets mimic the same damage progression but under
different temperature histories, which enables us to statistically assess the damage detection
performance in different practical settings. In total, about four million synthetic records are
generated for 136 test scenarios with combinations of the test parameters shown in table 1.

Note that the temperature difference causes a significant change in the measured signals
and the similarity between two signals collected at different temperatures drops quickly as the
temperature difference between the two measurements increases. In our case when comparing
two measurements with a 10°C temperature difference the correlation coefficient is about 0.4.
Randomly ordering the randomly chosen measurements further decreases the correlation, in
the same way that changing the order of components in a vector can produce a vector that is
orthogonal to the original. Hence, by using measurements collected at different temperatures and
by randomly ordering them in a dataset, we obtain datasets that are sufficiently different.

To ensure the independence of these synthetic datasets, we calculated the distance correlation
coefficients [24] and the two-dimensional mutual information [25] between each pair of synthetic
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datasets generated for one test scenario. The distance correlation coefficient is similar to the
Pearson correlation coefficient but is zero if and only if statistical independence is satisfied. The
mutual information of two random variables X and Y measures the information they share, and
can be expressed as I(X;Y)=H(X,Y) — H(X|Y) — H(Y | X), where H(X|Y) and H(Y| X) are the
conditional entropies, and H(X, Y) is the joint entropy of X and Y. Both the distance correlation
coefficients and the ratio of mutual information over joint entropy (I(X;Y)/H(X,Y)) are scalars
in (0, 1), where zero means they are independent, and unity means one completely determines
the other.

Both measures show weak dependence between datasets when the number of measurements
in a dataset is greater than 10. For example, for 500 datasets each containing 50 measurements
randomly drawn from a 30°C range, the 95% upper bound of the two independence measures
were, respectively, 0.30 and 0.12. For all datasets having at least 30 measurements, the
two independence measures are all below 0.4 and 0.14, respectively. When the number of
measurements decreases to 10, the dependence between different datasets becomes much
stronger, and the independence assumption no longer holds. Therefore, in the later sections, we
only analyse the results using synthetic datasets with more than 10 measurements, which allows
us to evaluate not only the mean but also the variance of the damage detection performance.

() Finite-element validation of the superposition model

The framework described above relies on the superposition of predicted damage reflections
onto measured signals from the undamaged structure. To validate this approach, a comparison
was made between the signals generated using superposition and signals generated from a
full finite-element model. Such a comparison can be used to confirm that the superposition
is a suitable alternative to full experimental or modelling work. A comparison was made
for three representative cases that approximate a range of potential inspection scenarios.
The first comparison is for a plain section of pipe with a growing flat bottom hole defect.
The second comparison is also for a plain section of pipe with a growing defect but with
additional temperature variations as the defect grows, followed by processing of the data using
a temperature compensation procedure. The final comparison is for a defect growing in a weld
cap, again with significant temperature variations and temperature compensation.

The finite-element modelling was based on the pipe specimen described in §2 with the
dimensions of a 6 inch schedule 40 pipe (outer diameter 168 mm and wall thickness 7 mm). For
efficiency, we modelled a smaller-diameter pipe and did not model the whole length of the
pipe; instead, this cylinder was 2.4m long and was discretized with 2mm characteristic length
tetrahedral elements. The resulting elements were given the properties of mild steel, with these
properties modelled as temperature dependent according to [26]. Superposition would not be
required on a plain pipe giving no reflected signal in the absence of a defect because it would only
be necessary to predict the defect reflection. However, in practice there is coherent noise on the
signals and defects can occur at pre-existing reflectors such as welds. It is therefore necessary to
check the validity of superposition in these cases. In order to create a model with coherent noise
the inner surface of the pipe was perturbed to give a Gaussian profile, generated and applied
to the model in the same way as in [27]. This rough surface had a mean depth of 2mm and a
correlation length of 50 mm and scattered the incoming wave, so generating the required coherent
noise. The coherent noise produced had a maximum level typically around 2.0% of the inspection
wave amplitude, which is consistent with coherent noise levels seen in commercial inspections. It
should be stressed that there are many sources of coherent noise in practice; a rough surface was
used here as a convenient means of generating it in simulations. The pipe was then set up with
absorbing regions following Pettit et al. [28], a ring of source and monitoring nodes 0.4 m from the
pipe end and a defect introduced in certain models. This defect was modelled as a flat bottom hole
in the pipe outer wall, 1.0m from the guided wave source. The cross-section of this hole varied
from 0.2% to 2.0% of the pipe cross-section but had a constant diameter to depth ratio of 2:1. In
some cases, a weld was also included and in such cases was modelled as a thickness increase
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Figure 3. The model used in the validation showing (a) the model set-up, (b) detail of the weld structure and (c) a typical time
trace from the model, with main signal features identified. (Online version in colour.)

with a ramp—flat-ramp profile, a total length of 10 mm and a height of 2 mm starting at a distance
of 0.995m from the source of guided waves. In models with both a weld and a hole this means
the hole was removing material from the weld cap. An example model of a plain pipe with a flat
bottom hole is shown in figure 3a and the weld geometry is shown in figure 3b. These models
were then solved using POGO [2], a GPU based finite-element solver and where temperature
compensation was employed the procedure was the same as used elsewhere in this paper.

Data for the first comparison were generated from two models. The first model was for a pipe
with a hole in the outer surface, initially with a cross-section of 0.2% while the second model was
for a plain pipe. A rough surface was generated and the same surface applied to both models,
which were then solved. Figure 3¢ shows an example time history for the model containing a
hole which shows that the defect reflection is much smaller than surrounding coherent noise.
Superposition was then used to add a defect signal to the time history for the undamaged pipe,
with the superposed signal added at the same location as the modelled hole. A comparison
was then made of the maximum amplitude in the time window 0.55-0.6 ms, in which the defect
reflection appears. Maximum amplitude was used rather than other metrics because it is directly
used in the damage detection algorithm. This process was then repeated for 10 different hole
sizes, with 10 different rough surfaces used for each hole size to give a total of 100 data points.
The results of this comparison are shown in figure 4a.

The modelling procedure for the second comparison was the same except the models were
adjusted for temperature variations. For each pair of models a temperature was chosen at random
from within the range 10-40°C and the material properties updated accordingly. Care was taken
when performing superposition to insert the defect signal at the correct time; as temperature
variations change the time of flight of ultrasonic waves the defect needed to be inserted at such a
time as to ensure that the defect was in the same location. Before the comparison of amplitudes
was done, the signals were stretched to 25°C using the temperature compensation procedure
outlined in §4a; the results are given in figure 4b. The final comparison was exactly the same as
the second except the model included a weld, which produced a reflection amplitude of around
20%, the results for this case are given in figure 4c.

The results show overall very good agreement between the superposition approach and full
modelling. Perfect agreement would not be expected as the reflection from a hole of a given size
is not strictly independent of the cross-section profile onto which it is placed; however, the trends
of the full and superposition model results are similar so the superposition gives a satisfactory
representation of the growth of the reflection with increasing cross-section loss. This agreement
is largely independent of defect size and is not significantly affected by temperature changes and
subsequent temperature compensation. The superposition approach also works as well at pipe
features as it does in plain sections of pipe. Note that in figure 4c larger holes lead to a reduced
signal amplitude because the hole is removing material from the weld (which is an increase in
the cross-section). The net effect is to reduce the cross-sectional change in that region and hence
the reflection.
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(d) Receiver operating characteristic

In statistics, ROC curves show the true positive rate (TPR = ) True Positive/)  Positive) against
the false positive rate (FPR =) False Positive/}_ Positive), at various threshold values. In the
field of NDE/SHM, ROC curves are also often used to illustrate the performance of damage
detection, in which the two axes are termed the POD and the probability of false alarm (PFA),
both in the range (0, 1).

A representative baseline subtracted residual signal obtained as discussed in §4a below is used
here to illustrate the generation of ROC curves. We first randomly select 100 undamaged signals
from the experimental data in §2, covering 10°C of temperature variation. Damage signatures
of a linearly growing flat-bottom hole with maximum size of 1% are then predicted and added
to the undamaged signals at 7.5 m, following the procedure of §3b. The temperature differences
are first compensated using stretch-based scale-transform temperature compensation [22]; all 100
records are stretched or compressed to the baseline signal collected at the median temperature.
The residual signals are then obtained using the procedure described in §4a.

Figure 5a plots the residual signal as a solid line, with its maximum amplitude normalized
to unity; the dashed line shows the true damage location. As the excitation signal used in
guided wave monitoring is typically a Hanning-windowed toneburst, we expect a reflection from
features in the pipe to extend over at least this length in time; therefore, when we convert the time
axis of the received signal to a length scale, the signals from features occur over a finite length of
the pipe. Assuming a reflector has small axial extent compared with the wavelength, the reflected
signal length will be approximately that of the input toneburst so we would expect to see a signal
over this distance; the damage location on figure 5a is therefore shown as a finite length of pipe
that is much larger than the true damage extent. To calculate the ROC, we sweep the threshold
(dot-dashed line) from 0 to 1, and classify all the values above the threshold as positives. The
positives that fall within the region expected for the true damage are labelled as true positives or
detection (solid circles), and the positives elsewhere are labelled as false alarms (hollow circles).
Note that our definition of positive is different from the classic binary (hit/miss) definition in
that the location of the positives also matters. This is to be consistent with the real world practice
where only detecting a feature at the damage location is considered a true detection; detecting
features at wrong locations should be considered false alarms. At every threshold, we calculate
the POD and false alarm rate, which becomes one point on the ROC curve. The collection of the
points becomes the ROC curve for this test scenario.

In guided wave monitoring, damage can be masked by large residuals caused by EOC
variations, even after compensation; this problem is most severe where there is a large signal
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Figure 5. (a) Example residual signal obtained from a set of 100 measurements under temperature variation of 10°C, over
which damage grows from zero to 1% of the cross-sectional area. (b) Receiver operating characteristic curves computed from
the residual in (a) with different tolerance level.

in the undamaged structure, i.e. at structural features. In guided wave inspection practice, the
inspector assesses the whole test length for defects and the POD and false call rates are defined
over the whole length. Here, we are interested in monitoring the growth of damage as multiple
readings will be obtained as it develops, but we retain the concept of assessing the whole pipe
with one criterion. This is a harsh measure for feature-free areas because many more false calls
are generated at the locations of features; it would be possible to segment the pipe and compare
performance in similar regions. However, as the purpose of this paper is to set out the general
methodology and to compare different feature extraction methods, this extra sophistication was
not considered.

Since the excitation signal is a Hanning-windowed toneburst, the amplitude approaches zero
at its beginning and end. Therefore, if we require detection over the whole theoretical length
shown as the damage location in figure 53, we will incur a high false call rate at the tails. We
therefore say that we expect a defect to give a reflection above the ‘call level’ over the spatial
region where the signal is above a specified fraction (tolerance level) of the peak signal. We express
this fraction in decibels so a —6 dB tolerance level corresponds to requiring the defect signal to be
above the threshold at all points either side of the peak where the envelope of the input toneburst
is above half its peak amplitude. If this criterion is met then the POD is unity; a lower tolerance
level means we require more points above the threshold for unity POD. Thus, if the tolerance
level is increased, the width of the dashed rectangle showing the ‘true” damage location in figure 5
is reduced.

The ROC curve is an indicator of detection performance. The perfect detector yields a curve
that goes through point (0, 1), indicating no false alarms and perfect detection (100% POD).
A random guess yields a ROC curve following the 45° diagonal line, where the POD and PFA
are equal. Figure 5b shows the ROC curves corresponding to different tolerance levels from —1
to —40dB. As the tolerance level goes down, the less tolerant we are to noise, and the more false
alarms we have at any given POD level. Here, we use a —6dB tolerance level (corresponding
to the ROC curve with a thicker dashed line) to be consistent with common industrial practice.
It should be noted that the tolerance level defined here refers to the tolerance to noise seen in
practical cases, which is different from the threshold that is swept from zero to unity to calculate
POD and PFA.

4. Damage detection methodology for structural health monitoring

Using the proposed framework, we evaluate and compare three damage detection methods for
guided-wave SHM. We first review the conventional baseline subtracted residual method in §4a,
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and two advanced data-driven methods, SVD and ICA, in §4b. Section 4c discusses the use of the
Mann-Kendall test to identify a monotonic trend in the data.

These methods were chosen because they have been proposed previously and appeared
promising. The framework proposed in this paper is designed to allow the evaluation of the
performance of different damage detection methods in a SHM system in practical settings; we do
not suggest that the methods applied here are the only possibilities. We simply seek to compare
different possible processing methods, rather than attempting to define theoretical performance
bounds. Finding a theoretical bound of performance may be possible for specific cases with
many assumptions that may not always satisfactorily represent the real world environment; the
biggest advantage of the proposed framework is that by using the undamaged signals collected
from installed monitoring systems that are affected by the real-world EOCs, we can estimate the
reliability of detecting a particular defect at a potential location.

(a) Temperature compensation and baseline subtraction

One common method to enhance signal-to-noise ratio (SNR) for damage detection is baseline
subtraction. By subtracting a baseline signal that is collected in a known undamaged state, the
residual signal should in principle resemble the signature created by the defect, if one exists.
Signals are often pre-processed before the subtraction to eliminate any difference between the
current measurement and the baseline due to temperature change. Two groups of temperature
compensation methods are commonly used in guided-wave testing, namely, optimal baseline
selection [29] and optimal signal stretch [3,6,17]. In this paper, we implemented a stretch-based
temperature compensation method [22], as these techniques allow comparison of all the measured
signals with a single reference signal.

The stretch-based temperature compensation methods approximate the temperature change as
a stretch or compression in time, and reverse the effect by first finding the optimal stretching factor
that makes the measurement and the baseline most alike, and then stretching or compressing one
to the other. Although the stretch approximation is usually valid when the temperature difference
is small, the stretching can introduce frequency distortion when the temperature difference is
large [30]. To minimize the distortion, we stretch measurements to a baseline collected at the
median temperature to minimize the maximum temperature difference to be compensated. This
can be achieved even without temperature measurements, because the estimated stretching
factors are effectively a measure of the temperature.

In our processing of a synthetic dataset, we first stretch/compress all the measurements to
the measurement at the median temperature in the particular dataset. Residual signals are then
obtained by subtracting the first signal in the dataset from all the temperature compensated
signals. As the reflection from small defects roughly replicates the inspection toneburst, we cross-
correlate the obtained residual signals with the eight-cycle, Hanning-windowed toneburst to
enhance the signal-to-noise ratio.

In conventional one-off inspection, the obtained residual signals are processed and assessed
separately until a damage feature larger than a threshold is detected. However, in long-term
monitoring we obtain many records over which the damage grows progressively, which can
be used to improve sensitivity. Specifically, the residual at the damage location would change
monotonically, while values elsewhere would not be due to random changes. If we can detect
such a monotonic trend, we are more likely to identify the presence of damage at an earlier stage
than in one-off inspection. In this paper, we consider the case where damage grows linearly from
the start of monitoring. This is used to illustrate the method; it is not limited to this case.

The residual at location x can be written as a linear regression model of variable time ¢,

Tyi = Bxo + Bx1ti + €, 4.1)

where 1 is the rate of change at location x over time f, By is the intercept corresponding to the
residual at time zero, and ¢ is the error term which we assume follows the same distribution at
all locations. The error consists of not only random system noise but also residual noise caused
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by imperfect compensation of the temperature differences, which follows a generalized Gaussian
distribution if the monitoring period is sufficiently long and the temperatures at which readings
are taken are randomly distributed.

We estimate the parameters fyo and By1 using least-squares linear regression. At locations
where damage grows progressively, the slope f,1 represents the growth rate of damage over
time; elsewhere, no systematic trend should exist so we expect 1 to be close to zero. On the
other hand, Byo might not be zero because of imperfect baseline removal, but this is not connected
to the progression of damage. Therefore, we can characterize the damage progression solely using
the slope By1, i.e. we use the values of S, at all locations along the pipe to represent the presence
of damage and its progression if it is present.

The variance of the estimated damage growth rate g, is given by

o2
Zf\i1 (tz’ - E)2 '
where the numerator is the variance of the noise term ¢, and the denominator is the variance of
the time at which all the measurements are taken. Therefore, we are more confident about the
estimated slope if more observations are taken, or measurements are taken over longer period of
time, making this suitable for processing long-term monitoring data.

In conventional SHM practice, the residual is calculated by subtracting one-off measurements,
which are subject to environmental variations. Here, we use least-square estimation (LSE) to
estimate the growth rate so that the change caused by the environmental variations, being
random in nature, can be cancelled out. This makes a fairer comparison of the residual method
to the component analysis methods when many continuous measurements are available. Our
results show that using the least-squares estimation gives better results than are obtained with
conventional baseline subtraction.

Var(By1) = (4.2)

(b) Damage detection based on matrix decomposition

A recently developed group of methods is based on component analysis, which decomposes
the data matrix into different components to represent variations produced by different sources.
The damage reflections and the signals caused by other EOC variations vary with position and
have different varying patterns over time, and will be separated into different components. By
identifying the components related to damage, we effectively eliminate the variations from other
sources and significantly improve the damage detection performance.

The general form of decomposition of long-term monitoring records is

X=WAT, (4.3)

where X, W and A are matrices that contain the measurements over time, the weights, and
the components, respectively. X is the N x D data matrix that samples the structural status
both spatially and temporally, where N is the number of signals measured over the monitoring
period, and D is the number of sample points in each signal. The two dimensions correspond
to two different sampling frequencies—the frequency at which measurements are acquired
from the monitoring system (temporal sampling interval Af), and the sampling frequency of
the A/D converter. The time axis of each measurement is converted to a distance scale by
dividing the group velocity of the guided wave used by the sampling frequency to give a
spatial sampling interval Ad. Then, each column of X represents one record collected at time ¢
from [0, At, ..., (N — 1)At], and each row represents the wave reflected from a certain location d
from [0, Ad, ..., (D — 1)Ad]. The decomposition of X yields two matrices WNXR and AP*R each
decomposing the variations along one dimension into R components, with R < N, D representing
the reduced dimensionality. Weight matrix W separates the variations over time, where each
column wV*! represents the trend over time corresponding to one source. Component matrix
A separates the variations in space, where each column aR*!
along the distance axis.

represents the signal components
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Figure 6. Decomposition of 100 synthetic records collected in a 10°C temperature range, over which damage grows linearly
from 0 to 1% CSAL at 7.5 m. Six components from (a) SVD and (d) ICA are ordered by their absolute amplitudes shown in (b)
and (e). The corresponding normalized weights over time (c) and (f) show the progressive trend over time. The MK test scores
Zy (detailed in §4c) are labelled to the right of each set of weights. (Online version in colour.)

The decomposition can be achieved in different ways. We implemented and compared two
related decomposition methods, SVD and ICA [31]. The two methods are widely used in fields
such as face recognition [32] and speech separation [33], and their application in SHM has been
illustrated in [8] and [9]. The major difference between the two methods is the criteria by which the
components are separated: SVD enforces the orthonormal of both the component and the weight
matrices, while ICA maximizes the statistical independence only between the components.

Figure 6 shows example results of applying SVD and ICA on the same synthetic dataset
processed with the baseline subtraction residual method in §3d. The dataset contains 100
measurements with undamaged experimental signals over a temperature range of 10°C,
superposed with artificial damage progressing to 1% CSAL at its maximum extent, and was
pre-processed with the same temperature compensation procedure as in §3d and §4a. Both SVD
and ICA decomposed the records into multiple components. We show in figure 6 the first six
components and corresponding weights, as well as their absolute amplitudes at the end of the
monitoring period.

Figure 6a—c shows the decomposition results using SVD, where figure 6a shows the first
six normalized components plotted against distance from the sensor, ordered by their absolute
amplitudes, which is shown in figure 6b on a logarithmic scale, and figure 6c shows their
zero-centred and normalized weights over the 100 measurements. Figure 6d—f shows the
corresponding results obtained using ICA.

The first components shown in figure 6a,d both resemble the undamaged A-scan of the pipe,
with absolute amplitudes close to 100%. The corresponding weights in figure 6¢,f vary randomly
around the average amplitude. It should be stressed that the amplitudes of the weights shown
in figure 6¢,f are normalized to their individual maxima so that their trends can be seen; their
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relative magnitudes can be seen in figure 6b,e. The fourth SVD component in figure 62 and
sixth ICA component in figure 6d are clearly related to damage, each showing a dominant
peak at around 7.5m where damage is added. The corresponding final amplitude of the two
components, as shown in figure 6b,e, are 0.85% and 0.84%, which are consistent with the predicted
reflection coefficient from the 1% CSAL defect at the end of the damage growth. Moreover, their
corresponding weights over the 100 measurements in figure 6c,f clearly follow a monotonically
increasing trend, with an increasing growth rate as CSAL progresses. This is consistent with our
analytical model of a growing flat-bottom hole which predicts a nonlinear relation between the
reflection coefficient and the CSAL [16,23].

Note that even with an increasing damage amplitude, the decomposed weights can decrease
with time, in which case the phase of the corresponding component will shift by 180°. This
is because wiaiT is equivalent to (—wi)(—aiT), and both are valid results of the decomposition.
Therefore, we can only identify the damage-related component by its monotonicity, not by
its directionality. In §4c, we demonstrate the Mann-Kendall test, which we used to determine
whether a monotonic trend (either increasing or decreasing) exists in the data.

The other components in figure 6a,d capture features at different locations, and have various
amplitudes. They represent other sources of variation that exist in the data that are either
orthogonal to (in the case of SVD) or statistically independent of (in the cases of ICA) the
undamaged experimental signal and the damage signature. Note that the amplitudes of some
other components are larger than that of the damage-related components. Nevertheless, the
monotonic damage signatures are clearly distinguishable from the other components whose
variation is either due to noise or related to the random temperature variation.

(c) Identifying monotonic trend using Mann—Kendall trend test

The Mann-Kendall (MK) trend test [34,35] is a hypothesis test to determine whether a monotonic
trend exists in the data. A monotonic trend means that the variable consistently increases or
decreases through time, but the trend may or may not be linear. The MK test is a simple, non-
parametric test that only requires the data to be distributed similarly over time, and does not
depend on the magnitude of data or its exact distribution. The test and its variant forms are
extensively used in the fields of geological and environmental studies [36]. Some variants of
the test also take seasonal effects into consideration [37], which could potentially benefit SHM
applications because the EOC affecting applications are often seasonal or cyclic.

The MK test assesses whether to reject the null hypothesis (Hp: no monotonic trend) and accept
the alternative hypothesis (H,;: monotonic trend is present), where

Hp : Prob[x; > x¢] = 0.5
Vj> k. 4.4
and Hg : Prob[xj > x¢] # 0.5

To evaluate the test, we first determine sign(x; — x) for all n(n — 1)/2 pairs of j, k where j > k, and
compute S by,

n—-1 n
S=>" Y sign(xj —x). (4.5)

k=1 j=k+1

S essentially calculates the difference between the number of increases and the number of
decreases. A positive S means the observations obtained later in time tend to be larger than
observations made earlier. To determine whether the difference is statistically significant, we
compute the MK test statistic Zyk,

ZMK = M (4.6)

JVar(S) '
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where the variation of S [38] is computed as

n(n —1)(2n +5)
18 '

The p-value of the test statistic is then compared with the significance level «, which is the
probability of wrongly rejecting the null hypothesis given that it is true (type I error). With
a =0.05, the test is significant if |Zyk| > Z1_4/2 =1.96, in which case we can reject the null
hypothesis Hy and conclude that there is a monotonic trend over time. Otherwise, we accept
the null hypothesis and conclude that no monotonic trend exists in the data. As an example, we
use this methodology to test the weights obtained using SVD and ICA in §4b, each representing
the trend of one component over the 100 measurements. The MK test statistics Zyik are computed
and labelled to the right of the weights in figure 6c,f. The Zyx of the sixth component of ICA
and the fourth component of SVD are, respectively, 11.81 and 12.55, corresponding to p-values
close to zero. This suggests that we should accept the alternative hypothesis and conclude that
a monotonic trend exists in the data. Note that after decomposition, the monotonic trend is
represented by a single component, while the other components, including but not limited to
those shown in figure 6c,f, all have Zyk that are smaller than Z;_q/» =1.96 with a significance
level of 0.05, marking the absence of a monotonic trend. This example shows that SVD and ICA
clearly separate the damage-related component from those corresponding to other variations, and
that we can identify the damage-related component by using the MK test.

Var(S) = (47)

5. Results

We apply the three damage detection schemes described in §4 to the synthetic datasets generated
with different test parameters listed in table 1, and then process the results using the evaluation
framework illustrated in §3. We first compare the performance of the three methods on one
synthetic scenario in §5a, and introduce the area under curve (AUC) to compare the ROC curves
across different test scenarios in §2b, and comprehensively compare the three methods in §5c over
test scenarios listed in table 1. The more difficult case where damage is added near a structural
feature is discussed in §5d.

(a) Evaluation of different methods in a single scenario

We compare the damage detection results of residual processing, SVD and ICA side-by-side on
the same test scenario previously discussed in §§3d and 4b. Here, instead of processing a single
dataset generated from that test scenario, we process 500 synthetic datasets with the same test
parameters, where each dataset contains 100 undamaged measurements randomly selected over
a temperature range of 10°C, superposed with damage growing linearly from 0 to 1% CSAL.
Figure 7 shows the extracted damage signatures, their amplitudes over time, and the ROC curves.

Figure 7a shows the baseline subtracted residuals, obtained using the procedure described
in §4a on the 500 datasets. The same datasets are also processed with SVD and ICA with the
decomposition in §4b and then the MK trend test in §4c, and the resulting damage-related
components are shown in figure 7d,g.

Figure 7a,d,g all show a clear peak at 7.5m, where the damage is introduced. However, the
damage signature in the residual signal in figure 7a is sometimes masked by the large residual
noise, especially at structural features at 4m and 10m. The components obtained from SVD
figure 7d and ICA figure 7¢ both clearly show damage features that are much larger than the
ambient noise; the SNR in the ICA damage component (figure 7g) is on average 30 dB higher than
that of the residual (figure 7a), and is roughly 10 dB higher than that of SVD (figure 7d), indicating
that the performance is best with the ICA method.

Figure 7b shows the residual amplitude over time at the damage location. For the baseline
subtraction method, the damage amplitude is usually represented by the maximum or the root
mean square (RMS) of the residual signal; provided the baseline is perfectly removed, those
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Figure 7. (a—c) Damage detection results using residual, (d—f) SVD and (g—/) ICA on 500 synthetic datasets containing 100
measurements collected over a 10°C temperature range, while damage grew linearly from 0 to 1% CSAL at 7.5 m. (a) Five
hundred baseline subtracted residuals, each from one synthetic dataset. (d,g) Five hundred damage-related components from
SVD and ICA, each from the decomposition of one synthetic dataset. (b) Amplitudes of baseline-subtracted residual at damage
location over time (blue) and true damage amplitude (black). (e,h) Weights from SVD and ICA (blue), along with true damage
amplitude (black). (c,f,i) ROC curves (solid) and the one-sided 95% lower one-sided prediction bound (dashed), that estimated
the POD in 95% of the cases. (Online version in colour.)

measures will accurately track the damage growth. However, in the presence of EOC variations,
these approaches are prone to errors resulting from imperfect baseline removal. Therefore, we
process the residual amplitudes at each location separately using the MK trend test, then plot
the residual amplitudes at the location associated with the highest Zyx as the representation of
damage growth. The error bars show the standard deviations of the amplitudes. The true damage
amplitude is also shown in figure 7b as black crosses for comparison. The residual amplitude is
initially masked by the noise floor but approximates the true damage amplitude (black crosses) as
damage grows and produces a reflection larger than the noise. Note the error bars in figure 7b,e,h
are the results of processing the whole 100 measurements, not of processing the observations up
to that particular time step. Therefore, it shows how the history of damage growth would be seen
after the 100 measurements over the growth to 1% CSAL. The detectability of different levels
of damage and the effect of changing the number of readings are considered in §5c. Figure 7¢,h
shows the weights obtained from SVD and ICA, respectively, both of which show clear monotonic
increasing trends with time. The weights of SVD in figure 7e follow a similar growth pattern as
the true damage progression, but the growth rate is underestimated by about 15%. The weights

9509107 “£Lp ¥ 705y 201 BioBuysiqndiraposieforredsy



of ICA in figure 7h closely follow the true damage amplitudes, and show the smallest variation of
the three, providing better tracking of the damage growth.

We then obtain the ROC curves by processing the extracted damage signatures with the
procedure described in §3d. Figure 7cf,i shows the ROC curves for, respectively, residual
processing, SVD and ICA. The ROC curves of the 500 synthetic datasets are ‘vertically” averaged
(giving the averaged POD at a given PFA) [18] and plotted as a solid line, while the dashed line
shows the lower one-sided 95% prediction bound of POD, indicating that with a 95% probability
future observations will fall above this value. The ROC curves demonstrate the performance in the
case of linear damage growth (giving nonlinear growth in reflection amplitude) to a maximum
1% CSAL with 100 readings over a 10°C temperature range. The baseline-subtracted residual
successfully indicates the presence of damage most of the time, with some false alarms caused by
the residual noise that often masks the damage signature. The wide gap between the average
performance and the lower 95% prediction bound suggests that it is also less robust to the
temperature variations. As an example, along the dashed curve in figure 7c that represents the
95% one-sided lower prediction bound, if a POD of 90% is required, then the corresponding PFA
is 13%. By contrast, with SVD and ICA a lower 95% prediction bound POD of 99% is obtained at
PFA of 1.8% and 0.12%, respectively.

(b) Comparison of ROC curves across different scenarios

Section 5a demonstrates the operation of our proposed evaluation framework when comparing
the three different damage detection methods in a single damage growth—EOC variation case
(1% linear CSAL growth and 10°C temperature range). However, ROC curves are a two-
dimensional depiction of classifier performance, and are difficult to compare across multiple
scenarios. Therefore, we use the area under the ROC curve (AUC) [39] as a scalar metric to
facilitate the comparison of the performance of the different methods across multiple scenarios.
AUC is a single scalar metric whose value lies between 0 and 1, representing the proportion of the
area of the unit square. An AUC of unity corresponds to a perfect detector and 0.5 corresponds to
a random guess.

Here, we demonstrate AUC on the results of residual processing on four synthetic datasets
generated with different damage severities, including the one processed in §5a. For each of the
four scenarios, 500 synthetic datasets were generated, each containing 100 randomly selected
experimental signals collected over a 10°C temperature range. Figure 8 shows the four cases with
different colours where damage grows linearly from zero to, 0.3%, 0.5%, 0.7% and 1.0%.

Figure 8a shows the mean ROC curves on a linear PFA scale as solid lines and their 95% lower
one-sided prediction bounds as dashed lines. Unsurprisingly, the larger the damage growth rate
is, the more the ROC curve approaches the top left hand corner of the plot, and the smaller is the
variance. Figure 8b shows four box plots of AUCs corresponding to the ROC curves in figure 84,
where the box, the horizontal line, and the vertical whisker indicate, respectively, the interquartile,
the median, and the 90% two-sided prediction interval of the 500 AUCs. Two-sided prediction
interval is used here such that the lower bound, which is of most interest in the evaluation of the
performance, is consistent with the one-sided 95% bound shown in figure 8a. The AUC box plots
clearly show the performance improves as damage severity increases, with the boxes moving
up the AUC axis, corresponding to higher POD and lower PFA, and their smaller extent along
the AUC axis corresponding to smaller variance. Note that in the case of 0.3% damage growth
(blue), some of the AUCs drop below 0.5, corresponding to ROC curves below the diagonal line,
indicting that the performance is worse than a random guess. This happens when the extracted
damage feature is similar in amplitude to the ambient noise and is much smaller than the residual
noise at structural features.

Figure 8c shows the MK test statistic Zyk indicating the presence of a monotonic trend. The
indications from Zygx are consistent with those from the ROC curves and AUCs. As the damage
growth over the 100 readings increases, the Zyk test statistic increases, and at damage of 0.5%
or higher CSAL after 100 readings, in over 95% of the 500 cases Zyk exceeds the 1.96 threshold
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Figure 8. Comparison of damage detection using baseline subtracted residual across different scenarios; different colours
represent synthetic datasets generated with different damage growth rates over 100 records over a 10°C temperature range.
The purple curves are results of the same case shown in figure 7c. (a) ROC curves (solid lines) and lower one-sided 95%
prediction bound (dashed lines), (b) box plots of area under curve with boxes indicating interquartile and whiskers indicating
90% two-sided prediction interval and (c) box plots of Zyy of the weights. (Online version in colour.)

associated with a significance level of 0.05, as marked as a dashed line in figure 8c. As the trend
of Zyik is consistent with that of AUC, in the next section, we primarily use AUC to summarize
the results and compare performance across different scenarios.

(c) Evaluation of different methods across different scenarios

We now extend the analysis to compare the three methods across scenarios with different
combinations of test parameters from table 1. Figure 9 shows AUC box plots for each test scenario,
where the three colours correspond to the results of residual processing (blue), SVD (red) and ICA
(yellow). The four rows correspond to different numbers of readings taken during the damage
growth, and the four columns correspond to different temperature ranges. Within each plot, the
horizontal axis indicates the nominal CSAL at the end of the linear damage growth, where the
stripes mark the results of the three methods on the same test scenario.

Unsurprisingly, with all other parameters equal, the methods achieve better performance
(higher AUCs) when damage is larger, or when temperature variation is smaller. The performance
also improves with increasing number of measurements taken during the damage growth.
Comparing the three methods, SVD and ICA produce much better results than the conventional
residual processing in all test scenarios, especially when the temperature variation is large. ICA
generally outperforms SVD except in cases where damage is small (0.3% CSAL).

We can use figure 9 to assess the damage detection performance as a function of any of the three
varying parameters, while keeping the other two unchanged. For example, figure 9(cc) shows
the performance of detecting different levels of damage growth across 70 measurements under
30°C temperature variations. Assuming we are satisfied with a detector if its AUC exceeds 0.95,
which roughly corresponds to 90% POD with 2% PFA (this level of PFA may not be practically
acceptable, but is used here only to compare the methods), then at a 95% prediction level we can
use SVD and ICA to detect the damage before it grows to 0.5% CSAL. On the other hand, although
the residual performance improves as damage severity increases, it does not perform sufficiently
well until damage grows to 3%. Similarly, comparing figure 9(ad, bd, cd, dd), we see that detecting
0.5% CSAL growth with a 95% prediction bound AUC of 0.9 requires at least 70 measurements
for SVD, or at least 50 for ICA.

To successfully implement these methods, it is critically important and of most interest to
estimate the lower prediction limit of the damage detection performance in the practical settings
of the SHM system, which bounds the worst-case performance of a future test. The results of
figure 9 show that the SHM system performance improves with damage size and degrades with
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Figure 9. Box plots of AUCs on synthetic datasets generated with different test parameters. The boxes indicate the inter-
quartiles (25% to 75%) and the whiskers extend to the 5% and 95% marks. Rows: different numbers of readings. Columns:
different temperature ranges. Horizontal axis: nominal CSAL at the end of the linear damage growth. The blue, red and yellow
boxes in each stripe represent results of, respectively, residual processing, SVD and ICA. (Online version in colour.)

degree of temperature variation. It is therefore interesting to plot performance versus the SNR,
which is defined as the reflection coefficient of the damage at the end of the measurement period
divided by the maximum amplitude of the coherent noise resulting from the temperature range.
The SNR indicates how difficult it is to detect damage in this scenario—a small SNR corresponds
to the growth of small damage over a large temperature range, and a large ratio corresponds to the
growth of large damage over a small temperature range. Figure 10 plots the 95% one-sided lower
prediction bound of AUC against the SNR. The three colours correspond to the three damage
detection methods, and solid and dashed lines represent the results from synthetic datasets of,
respectively, 50 and 100 measurements. Note that different combinations of damage amplitude
and temperature range may result in similar SNR. For example, three test cases with SNR of
around —20dB correspond to, respectively, 0.3% CSAL over 10°C (SNR = —18.8dB), 0.7% CSAL
over 30°C (SNR = —19.5dB) and 1.0% CSAL over 60°C (SNR = —20.1 dB).

We can separate damage detection applications into three regimes by the SNR: with SNR larger
than 0dB, we generally obtain good detection results with any of the methods; with SNR in
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between 0 and —18 dB, we gain from sophisticated processing, such as SVD and ICA; with SNR
smaller than —18 dB, we cannot obtain satisfactory results with any of the methods.

The anomalies in figure 10 at —4.1dB and —18.8dB correspond to a damage level of 0.3%
over different temperature ranges, which suggests that there is a small source of coherent noise
that is not suppressed by temperature compensation and this affects the detectability of small
defects. This requires further investigation, but it should be stressed that 0.3% cross-section loss
is more than an order of magnitude smaller than the wall loss typically detected in guided wave
inspection [5]. Comparing SVD (red circles) and ICA (yellow crosses), SVD seems to be more
robust to this effect.

The dashed lines and the solid lines represent results with, respectively, 50 and 100 readings
over the damage growth. For a year of monitoring, 50 readings roughly corresponds to
observations made weekly, while 100 readings corresponds to 2 measurements per week.
Comparing the two sets of results, we can conclude that more robust damage detection can be
achieved with more measurements.

(d) Evaluation of different methods with the damage near to structural features

In previous sections, we evaluated and compared damage detection performance of the three
methods on different scenarios where damage was added at 7.5m, in a plain section of the pipe.
Here, we further process synthetic datasets with damage added at other locations including ones
close to structural features.

Figure 11 shows four pairs of AUC (figure 1la—d) and Zyk (figure 1le-h) of the three
methods detecting 1% damage growth over 100 measurements. The four stripes in each plot
mark temperature ranges of 2, 10, 30 and 60°C, respectively. Figure 11a,e,b,f shows results when
damage is added at, respectively, 2.3 m and 11.3m, both in plain sections of the pipe. As with
the results shown in figure 9(da—dd) where damage was added at 7.5m, here the SVD and the
ICA both yield AUCs close to unity, indicating successful detection of damage with few false
alarms. The residual processing also achieves AUCs close to unity when the temperature range is
small (2 or 10°C), but its performance quickly degrades with increasing temperature range. The
corresponding Zyk displays the same trend as the AUC, as in figure 8.

Figure 11c,g,dh shows the cases where damage is added at locations close to structural
features. In these cases, the AUC in itself cannot represent the detection performance, and needs
to be interpreted together with the Zyk. The two cases display similar behaviour, so we only
discuss figure 114,k for conciseness. Figure 11d,h corresponds to the cases where damage is added
at 10.1m, slightly after the second end reflection. Recall that we are using reverberating signals
to represent a longer pipe in which the end reflections would be large features. In all four cases
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Figure 11. Box plots of AUC and Zyy of detecting 1% damage growth over 100 measurements over different temperature
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added at, respectively, 2.3 m and 11.3 m, away from structural features. Plots (¢,g) and (d,h) show results when damage is added
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over different temperature ranges in figure 114, the AUCs of SVD and ICA are close to unity, and
the AUCs of residual processing are also over 0.9. The AUC with the residual method appears
high because features tend to generate relatively large residuals; at a feature the residual is the
difference between two large reflections in the baseline and current, temperature compensated
signal, whereas away from features the signals are smaller so it is easier to obtain a small residual.
By contrast, the Zyk in figure 11/ suggests that when the temperature range exceeds 10°C, the
residual processing fails the MK trend test. In this case, we should conclude that no damage
is detected along the pipe at any location, and should not calculate the ROC. We should also
extend this interpretation to SVD and ICA, where we use the MK test to automatically determine
the damage-related component: when the Zyk of all the components are below the threshold, it
should be concluded that no single component represents the damage, and that damage is not
present in the dataset being processed.

As an example, figure 12 plots results of the three methods on synthetic datasets corresponding
to the third stripes in figure 114,h. Each synthetic dataset contains 100 measurements collected
over a 30°C range, while damage grew linearly from 0 to 1% CSAL at 10.1 m (slightly after second
end reflection). The residuals in figure 122 are dominated by the large residual errors at structural
features that mask the damage signature. The weights shown in figure 12b display a 15% s.d., and
no monotonic trend can be identified by the MK test. Figure 12c shows the 95% lower prediction
bound of ROC curve with large PFAs even for small PODs.

Figure 12d,e,f shows the results of SVD, which successfully extracts the damage signature
and suppresses the benign features. Although the components shown in figure 124 are still
noisy, we can nevertheless easily identify the damage signature at 10.1 m, which is at least 6 dB
larger than the noise elsewhere. Correspondingly, the ROC curve in figure 12f shows that a 95%
lower prediction bound POD of 90% corresponds to a PFA of 3.3%. The weights in figure 12e
significantly underestimate the damage growth rate, but its trend is qualitatively consistent with
the true damage growth.

The ICA components in figure 12¢ show very clear damage signatures in most cases. However,
on four of the 500 datasets (e.g. the purple line in figure 12¢ with peaks at 3.5m and 9.5m), ICA
fails to extract the damage component and yields components corresponding to noise from other
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Figure 12. (a—c) Damage detection results using residual, (d—f) SVD and (g—i) ICA on synthetic datasets each containing 100
measurements collected over a 30°C temperature range, while damage grew linearly from 0 to 1% CSAL at 10.1 m (slightly after
second end reflection). (a) Baseline subtracted residuals. (d,g) Damage-related components from SVD and ICA. (b) Amplitudes
of baseline-subtracted residual at damage location over time (blue) and true damage amplitude (black). (e,h) Weights from
SVD and ICA (blue), along with true damage amplitude (black). (c,f,i) ROC curves calculated from the damage signatures in
(a,d,g) and the 95% lower one-sided prediction bound. (Online version in colour.)

random variations. These outlier cases produce the large variations in the weights as shown
in figure 12k, and the large drop in the 95% prediction bound of POD in figure 12i from its
mean. When the temperature range increases from 30°C to 60°C, the proportion of the outlier
cases increases from 1% to 20%, producing a significant degradation of Zyk as can be seen in
figure 11h. As a consequence, we obtain better results using SVD than using ICA when damage
was added close to a structural feature under large temperature variations. A probable cause of
the outliers is that ICA is essentially an optimization process to find a set of components that
minimize the mutual information, and is therefore prone to local minima. As the temperature
range increases, the damage signature becomes a smaller portion of all the variations in the data,
so the optimization is more likely to get stuck in local minima.

6. Experimental validation

We now validate the evaluation framework on experimental data monitoring actual damage
growth. A flat-bottom hole was drilled on the same pipe specimen shown in figure 1a at 2.3 m
to the right of the PIMS transducer ring. The hole was 4 mm deep and was extended from 1 mm
to 7mm diameter in 1 mm steps, simulating progressively growing damage from 0 to roughly
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0.5% CSAL. At each damage step, the pipe was heated to 90°C and naturally cooled to 30°C, and
data were collected over the temperature cycle as described in §2. Data from the last temperature
cycle prior to introducing the hole, together with that from the cycles after each damage set
was used, giving a total of 338 measurements over the damage growth. This gave a reasonable
approximation to linear damage growth from 0 to 0.5% CSAL.

As with the synthetic datasets, we assess the performance of damage detection over different
monitoring records under different levels of temperature variation. For temperature ranges
from 10 to 60°C in 10°C steps, we randomly selected 7 signals from each of the eight cycles,
forming datasets of 8n monitoring records over the 0.5% damage growth, where n =1, 4, 6 and
9 correspond to 8, 32, 48 and 72 records, respectively. Note that here we retain the chronological
order of the selected measurements from different damage steps, but the measurements from
the same damage step are randomly ordered, such that the temperature associated with the
measurements varies randomly. This random selection process was repeated 50 times for each
combination of test parameters (temperature range and number of records) to generate statistics.

Figure 13 shows the results of residual processing (blue), SVD (red) and ICA (yellow) on
different numbers of experimental records over different temperature ranges. Figure 13a—d
corresponds to the results using, respectively, 8, 32, 48 and 72 measurements, while the horizontal
axis in each plot indicates the temperature range over which those measurements are selected.

The baseline-subtracted residual performs poorly when detecting the 0.5% damage, with
AUCs mostly lower than 0.9, and shows only small improvement when more experimental
records are processed. In comparison, both SVD and ICA perform reasonably well using 32
records, and better with more records; the performance generally degrades as the temperature
range increases. Overall, ICA outperforms SVD, especially when many monitoring records are
available.

Comparing figure 13 with the results using synthetic data in figure 9, the performance is
qualitatively consistent. As with the synthetic data, the component methods perform significantly
better than the residual method, with ICA generally the better of the two, indicating that
the proposed framework of using experimental data on an undamaged system coupled with
predicted damage signals is effective. The performance on experimental data is slightly better
than previous results with synthetic datasets as shown in §5c, especially at large temperature
ranges. This is probably partly because we only processed the data up to and including the first
end reflection, as would be done in practice; this reduces the number of large, benign reflectors in
the signal, and hence the likelihood of false calls.

7. Conclusion

We have proposed an evaluation framework to assess the damage detection performance of
guided wave SHM systems under varying EOCs. By synthetically superposing damage reflection
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signals from a growing defect onto experimental signals from an undamaged structure measured
under practical environmental variations, we can evaluate the performance of an SHM system
under various scenarios of interest. This enables the effect of temperature range over which
measurements are taken, damage location, damage amplitude, the number of observations over
the monitoring period, etc., to be studied. Moreover, by generating multiple datasets with
randomly selected experimental records, we can statistically evaluate the performance in these
practical settings. The superposition methodology has been validated in test cases with different
degrees of complexity and has been shown to be sufficiently accurate. We have demonstrated the
framework using undamaged data taken on an 8 inch schedule 40 pipe in the laboratory under
up to 60°C temperature variations.

The damage detection performance was assessed by generating the ROC curve, which
plots the POD against the probability of false alarm (PFA). Three damage detection methods,
conventional baseline-subtracted residual processing, SVD and ICA, were evaluated. Under
all investigated circumstances, the component methods performed significantly better than the
residual method, with ICA generally better than SVD except for a small number of outliers. For
all three methods, the performance improves with larger damage size and more observations,
and degrades with larger range of temperature variations. We then validated the results using
experimental data monitoring a flat-bottom hole with growing diameter, the results being
consistent with the synthetic data.

The results show that we can use undamaged data from any installed monitoring system to
predict its damage detection performance. This makes it possible, for example, to assess whether
a defect of a given size at a particular location would be detected reliably at a given data
collection frequency. This enables the system to be tuned to meet particular requirements and
the performance demonstration will be valuable in building safety cases.
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