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Abstract

This paper proposes a new support vector machine (SVM) optimization scheme based on

an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simulta-

neously perform parameter setting turning for the SVM and feature selection. In the

improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the

expression of distance for the fruit fly to find the food source. However, the proposed muta-

tion strategy uses two distinct generative mechanisms for new food sources at the osphresis

phase, allowing the algorithm procedure to search for the optimal solution in both the whole

solution space and within the local solution space containing the fruit fly swarm location. In

an evaluation based on a group of ten benchmark problems, the proposed algorithm’s per-

formance is compared with that of other well-known algorithms, and the results support the

superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a

SVM to perform both parameter setting turning for the SVM and feature selection to solve

real-world classification problems. This method is called chaotic fruit fly optimization algo-

rithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization

method than other well-known methods, particularly in terms of solving the medical diagno-

sis problem and the credit card problem.

1. Introduction

In many real-world classification tasks, reducing the dimensionality of data is an essential step

before classifying the data. The general approach for reducing the dimensionality of data

involves feature selection techniques that aim to select the most relevant features based on cer-

tain predefined filter criteria. Based on their dimensionality-reducing characteristics, feature

selection techniques have been widely applied in many pattern recognition tasks and machine

learning fields.
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Many classification tasks require sophisticated systems or tools to sort the unlabeled sam-

ples into the correct class. Machine learning classification algorithms have thus been widely

applied to solve classification task problems because of the advantages that can be derived

from their inherent characteristics. These classification algorithms include support vector

machine (SVM) [1], Decision Trees (DT) [2], K-Nearest Neighbor (K-NN) [3], Naïve Bayes

Networks (NB) [4], and Artificial Neural Networks (ANN) [5]. One of the most popular and

frequently used classification algorithm is SVM, which is based on the structural risk minimi-

zation principle and Vapnik-Chervonenkis theory [6]. Many studies have demonstrated that

SVM has powerful generalization capability and better classification performance than other

well-known classification algorithms [7–8]. However, traditional SVM has its own weaknesses

and strengths. In recent years, to overcome the drawbacks and improve the classification per-

formance of standard SVM, several optimized models based on the original SVM have been

proposed, including V-SVM [9], least squares SVM [10], NPSVM [11], Twin SVM [12], and

nearly isotonic SVM [13]. In many classification tasks, SVM generally learns a nonlinear and

high-dimensional set of samples that contains much irrelevant attribute information and noise

data, which can lower the classification performance and computing efficiency of the SVM

classifier. Feature selection techniques have been employed to select the optimal feature subset

for the SVM model to enhance its generalization ability and to preserve the computational cost

of the SVM classifier. Moreover, parameter setting turning for the SVM model also plays an

important role in affecting the performance of the classification. Thus, many previous studies

have simultaneously addressed the parameter setting and performed feature subset selection

for the SVM classifier [14–15]. To optimize SVM’s parameter setting, the key parameters must

be optimized, such as the penalty parameter C, which controls the trade-off between model

complexity and fitting error minimization, and the hyperplane parameter γ, which is the ker-

nel bandwidth of the radial basis function (RBF), which should be properly optimized before

performing classification tasks.

To optimize SVM, several swarm intelligent algorithms have been proposed to address

the parameter settings and to select an optimal feature subset for the SVM classifier, such as

genetic algorithms (GA) [16], particle swarm optimization algorithms (PSO) algorithms [17],

artificial immune algorithms (AIA) [18], and ant colony algorithms [19]. Although these

swarm intelligent algorithms have been proposed to address parameter settings and to select a

proper feature subset for the SVM classifier, they are complicated to implement and difficult

to understand. In recent years, the fruit fly optimization algorithm (FOA), a novel member of

this group of swarm intelligent algorithms, was first proposed by Pan W et al. [20] in 2012;

FOA imitates the foraging behavior of fruit flies. The main outstanding features of FOA are

that it is easy to understand, contains a simple searching procedure, and is simple to imple-

ment. Due to its good performance and excellent properties, FOA has been widely employed

in many real-world classification tasks and in the SVM optimization field. For example, Lei

X et al. [21] used the FOA in combination with gene expression profiles to solve problems

involving the identification of dynamic protein complexes. The experimental results showed

that this method is more effective at detecting protein complexes than the other well-known

methods. To construct an optimal stand-alone hybrid photovoltaic (PV)-wind-diesel-battery

system [22], a new and improved FOA that used a multi-objective optimization method was

proposed to optimize this system. The experimental results showed the feasibility of the stand-

alone hybrid PV-wind-diesel-battery system optimized by this method for Dongao Island. A

modified FOA called novel 3D-FOA was proposed by Lin W et al. [23] that aimed to improve

the original FOA in terms of several nonlinear functions, and the results showed its superior-

ity. Mousavi S et al. [24] proposed an improved FOA, namely, CIFOA, which aims to solve the

homogeneous fuzzy series–parallel redundancy allocation problem under discount strategies.

Chaotic improved FOA and SVM for real-world problems
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To solve the hybrid flow-shop rescheduling problem with flexible processing time in steelmak-

ing casting systems [25], a hybrid method using the FOA and two decoding heuristics called

HFOA was proposed and has successfully solved flow-shop rescheduling problems. To opti-

mize continuous function problems, Wang L et al. [26] proposed an improved FOA that uses a

new mutation parameter and level probability policy. In this improved algorithm, the muta-

tion parameter and level probability policy are used to balance population stability and diver-

sity. To optimize twin support vector machine (TWSVM), at least two parameters generally

must be considered. Ding S et al. [27] used FOA for parameter setting turning of TWSVM,

and the experimental results showed that using FOA to optimize TWSVM can yield better

classification performance than SVM. To solve the medical data classification problem, [28]

used FOA to optimize SVM by determining an optimal parameter setting of the SVM model;

compared with other well-known methods, the results of the constructed experiments of

this method showed that the optimized SVM model with FOA is a powerful tool for medical

data classification. For community detection methods, which are generally based on one evo-

lutionary algorithm, a novel multi-swarm FOA was proposed by Liu Q et al. [29], namely,

CDMFOA, and the experimental results showed that this method can effectively solve the

detection community structure. For the nonlinear and non-stationary traits of rotating ma-

chinery vibration, the SVM classifier optimized by FOA has been used [30], and the experi-

mental results showed that using FOA in combination with SVM (FOA-SVM) can yield better

performance with respect to rolling bearing diagnosis. Some control systems have certain

essential parameters that require proper determination [31]. A new hybrid method using GA

in combination with FOA has been proposed to perform parameter tuning of control systems.

In this method, FOA is employed to perform parameter setting turning of the controller sys-

tem and GA is used to select the controller structure. Si L et al. [32] used an improved FOA in

combination with the least squares support vector machine (LSSVM) to solve the identifica-

tion problem of Shearer Cutting Patterns and constructed experiments to compare with PSO-

LSSVM, GA-LSSVM and FOA-LSSVM; these experiments indicated that the proposed im-

proved fruit fly optimization algorithm (IFOA)-LSSVM outperformed other methods. FOA

has also been applied in traffic flow forecasting. A method using FOA to optimize the LSSVM

has been proposed to improve the accuracy of traffic flow forecasting [33], and the experi-

mental results showed that this method outperformed the LSSVM model, the RBF neural net-

work (RBFNN), and LSSVM-PSO. To overcome the disadvantages of traditional FOA, Wu L

et al. [34] proposed a cloud mode based on FOA, namely, CMFOA, which uses an adaptive

parameter strategy to enhance the global search ability in the first stage, and performed experi-

ments using 33 benchmark functions, and the results revealed the superior performance of

this method compared with that of other FOA variations. One of the most important draw-

backs of the original FOA is that it is difficult to obtain optimal solutions in zero vicinity; thus,

an improved algorithm based on the original FOA using differential evolution has been pro-

posed [35], namely, DFOA, which modifies the representation of the smell concentration judg-

ment value and replaces the stochastic search with a differential vector. The experimental

results show the effectiveness of DFOA for finding optimal working conditions. Parameter

estimation plays an important role in bidirectional inductive power transfer (BIPT) systems.

To obtain a proper parameter setting for this system, an improved algorithm using chaotic

PSO to enhance the original FOA has been proposed [36], namely, CFOA, and the experimen-

tal results showed that the 11 parameters of this system were determined properly. In certain

real-world problems, such as joint replenishment problems (JRPs), FOA has also been applied.

Wang L et al. [37] proposed an improved and effective algorithm based on the original

FOA, namely, IFOA, which is used to solve joint replenishment problems and to optimize nu-

merical functions. To determine product specifications, the melt index (MI) is one of the most

Chaotic improved FOA and SVM for real-world problems

PLOS ONE | https://doi.org/10.1371/journal.pone.0173516 April 3, 2017 3 / 36

https://doi.org/10.1371/journal.pone.0173516


important criterion. To forecast MI, an improved FOA using an adaptive mutation, namely,

AM-FOA [38], was used to determine the punishment factor “γ” and the parameters of the

Gaussian RBF kernel, and the experimental results showed that AM-FOA optimizing LSSVM

is a functional method in MI prediction. FOA is generally suitable for optimizing continuous

variables. To solve the discrete variable optimization problem, a binary FOA has been pro-

posed to solve set covering problems (SCPs) [39]. Pan Q K et al. [40] proposed an improved

algorithm based on the original FOA, namely, IFFO, which is used to solve continuous func-

tion optimization problems. The main novelty of this algorithm is that it uses a new parameter

to control the search scope, and the experimental results showed that IFFO outperforms five

state-of-the-art harmony search algorithms. To solve the semiconductor final testing schedul-

ing problem (SFTSP), a novel algorithm based on the original FOA was proposed [41] called

nFOA; multiple fruit fly swarms are employed in the evolution process to improve FOA’s par-

allel search ability. One typical discrete optimization problem is solving three-dimensional

path planning. The IFOA has been proposed [42] for solving engineering problems. The con-

structed experiments have shown that IFOA is a powerful method that can solve discrete opti-

mization problems with greater efficiency.

As the above related works of FOA show, FOA has become a powerful tool to effectively

determine proper parameter settings for machine learning algorithms and to successfully solve

complex multidimensional problems. However, traditional FAO has several drawbacks, such

as the searching procedure becoming easily trapped in the local optimum, premature conver-

gence, and the difficulty of addressing the discrete variable optimization issues. Several studies

have proven that FOA is an efficient tool for parameter estimation of machine learning algo-

rithms, such as the GRNN and SVM. Moreover, according to the related work of SVM param-

eter optimization, most of these optimization methods using FOA perform only parameter

turning for the SVM classifier without simultaneously performing feature selection. Therefore,

the above facts motivate us to propose a novel, intelligent framework using the proposed

CIFOA and its improved mutation strategy, aiming to enhance the generalization ability and

improve the classification performance of the SVM classifier by determining a proper parame-

ter setting with an optimal feature subset simultaneously. In the proposed CIFOA, the chaotic

PSO is proposed in combination with the mutation strategy to overcome the weaknesses of the

original FOA and make the algorithm procedure reflect ergodicity, randomicity, and regular-

ity. The proposed CIFOA optimizing SVM, namely, CIFOA-SVM, is an efficient framework

that can be used to solve various real-world classification problems. The main novelty of the

proposed intelligent framework is using chaotic PSO to solve the discrete variable optimization

problem (determining an optimal feature subset). The proposed mutation strategy uses two

different searching strategies to search for the local and global optimal solutions simulta-

neously, whereas a mutation parameter is proposed to allocate the individual in both the local

searching strategy and global searching strategy. Concurrently, this study proposes a weighted

fitness function to simultaneously address the trade-off between sensitivity and specificity clas-

sification accuracy and the number of selected features to maximize the classification perfor-

mance of the proposed method. The efficiency and effectiveness of the proposed method have

been examined in terms of classification accuracy, sensitivity, specificity, running time, and

convergence curve with respect to two real-world classification problems: the medical diagno-

sis problem and the credit card problem. Five real-world datasets are introduced to evaluate

the classification performance of various methods in solving real-world problems, and these

datasets come from the UCI machine learning database repository. The experiment’s results

indicate that the proposed method can determine a more appropriate SVM model parameter

setting and obtain an optimal feature subset with much less running time than the GAFS

and other intelligent methods. The main contributions of this study are as follows: (1) it

Chaotic improved FOA and SVM for real-world problems
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develops an improved FOA based on chaotic particle optimization with a novel mutation strat-

egy, and (2) it develops an improved FOA that is successfully applied to SVM to determine

proper parameter settings with an optimal subset of features for real-world classification

problems.

The remainder of this paper is organized as follows: in section 2, we provide the necessary

background materials regarding SVM and FOA. The proposed improved FOA based on cha-

otic optimization techniques and mutation strategy is presented in section 3 in which we also

provide several groups of tests on well-known continuous functions. The detailed experiments

and in-depth comparisons of the proposed framework with other well-known methods are

presented in section 4, in which we also include a discussion. Finally, the conclusion and rec-

ommendations for future research are summarized in section 5.

2. Background materials

2.1. A brief overview of support vector machines

In this subsection, we present a brief description of SVM. SVM was originally developed by

Vapnik et al. [43] and is mainly used to solve classification problems. In subsequent years,

SVM was applied to the multi-classification problem [44–45]. The main objective of SVM is to

determine an optimal hyperplane that separates data of different classes on either side. The

optimal hyperplane is determined by maximizing the interval between the support vectors of

the closest positive and negative frontiers.

For now, we consider binary classification problems, i.e., -1 or 1, to represent one of two

classes of a sample. When the label of i item of the samples is -1, then that i item of the samples

belongs to the “positive class”; otherwise, the i item of the samples belongs to the “negative

class”. Let Di = {X1,X2.. . .,Xn,Yi),i = 1,2..n,Yi 2 {−1,1}, where Di represents i item of the samples.

Yi is the label of i item of the samples. To separate the instances into two categories, we use the

function F(X) = WTX + b, where W is a coefficient vector that is used to normalize the hyper-

plane. For the linearly separable case, an optimal separating margin can be determined by solv-

ing the following equation:

MIN
w;b;ε

1

2
WTWþ C

Xn

i¼1

εi

subject to :

YiðW
TXi þ bÞ � 1 � εi; εi � 0

ð1Þ

To solve the above equation, a dual Lagrangian equation with multipliers αi(i = 1,2,. . .n) is

introduced. The detailed Lagrangian equation can be expressed as follows:

MAX
a

LaðaÞ ¼
Xn

i¼1

ai �
1

2

Xn

i;j¼1

aiajYiYjXiXj

subject to :

0 � ai � C; i ¼ 1; 2; : . . . ; n;
Xn

i¼1

aiYi ¼0

ð2Þ

To construct the optimal hyperplane, a Lagrangian equation La(α) must be maximized with

a positive multiplier αi under the conditions of
Xn

i¼1
aiYi ¼ 0 and αi� 0. The solution αi can

be solved by addressing the parameter w
�

and b
�

of the optimal hyperplane. Thus, we can
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introduce an optimal equation for solving this case.

f ðX; a�; b�Þ ¼
Xn

i¼1

Yia
�

i < Xi;Xj >þ b�

¼
Xsv

i2sv

Yia
�

i < Xi;Xj >þ b�
ð3Þ

From the above equation, the Lagrangian multiplier αi = 0 means that its corresponding

training vector is the closest to the margin of the optimal hyperplane and is also called a sup-

port vector. The main SVM characteristic is clearly expressed, i.e., constructing the optimal

hyperplane depends on only a small subset of the training dataset without all the training

dataset.

To address the nonlinear case, the linear equation can also be modified to address the non-

linear data. For now, a general ideal is given here, i.e., we use a kernel function to map the

original input spaces into a higher-dimensional feature space. The original input data can be

linearly separated using the kernel function to calculate the inner product in the feature space.

The kernel function can be expressed as follows:

KðXi;XjÞ ¼ FðXiÞ
T
� FðXiÞ ð4Þ

By using the kernel function, the original linear generalized equation can be modified to

represent the nonlinear dual Lagrangian La(α).

LaðaÞ ¼
Xn

i¼1

ai �
1

2

Xn

i;j¼1

aiajYiYjKðXi;XjÞ

subject to :

0 � ai � C; i ¼ 1; 2; . . . ::; n;
Xn

i¼1

aiYj ¼ 0

ð5Þ

To solve the above optimization model, a method that solves the Lagrangian equation in

the separable case can also be used to solve this optimization model.

f ðX; a�; b�Þ ¼
Xn

i¼1

Yia
�

iKðXi;XjÞ þ b� ð6Þ

There are several general kernel functions, such as the radial basic function (RBF), polyno-

mial, linear kernel function and sigmoid kernel function. Table 1 displays the detailed calcula-

tion of the four kernel functions.

Where d is the polynomial order and γ is a parameter predefined by the user, which is used

to control the graph’s width of the Gaussian kernel.

Table 1. The expression of several classes of kernels.

Name Caculation

Linear K(x,y) = x × y

Polynomial K(x,y) = (ax × y + b)d

RBF K(x,y) = exp(−|x−y|2)/δ2

Sigmoid K(x,y) = 1/(1 + exp(−|x−y|))

https://doi.org/10.1371/journal.pone.0173516.t001
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2.2. A brief overview of the basic fruit fly swarm optimization algorithm

FOA was developed by Pan W T et al. [46]. The main characteristics of FOA are to search for

food source by visual sense and sensitive olfactory. The specific procedure a fruit fly swarm

employs in searching for food is shown in Fig 1. More specifically, a fruit fly can still find food

at a distance of 70 km from the food source. The main merits of FOA are that it is efficient,

simple and easy to implement. FOA is generally suitable for solving continuous variables opti-

mization problems. To solve discrete parameter optimization problems, the binary fruit fly

optimization algorithm (bFOA) was proposed by Wang L et al. [47]. In bFOA, the MKP prob-

lem was represented by a binary string and three search procedures were used to perform an

evolutionary search to obtain the local best solution and global best solution. Because of the

nature of FOA, it works better with continuous variables optimization problems. Although

Fig 1. The food searching process of a fruit fly swarm.

https://doi.org/10.1371/journal.pone.0173516.g001
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FAO has better search ability than other intelligent algorithms, there are certain drawbacks of

the original FOA that cannot effectively solve complex problems in the real world. Thus, some

improved or modified algorithms have been proposed to overcome these drawbacks. For

example, an improved algorithm using the original FOA in combination with chaotic PSO has

been proposed [48], namely, CFOA, which was compared with other intelligent algorithms to

solve ten well-known benchmark problems, and the results showed that CFOA outperforms

the other algorithms as measured by various performance criteria. A bimodal optimization

algorithm based on the original FOA and cloud model learning has been proposed [49],

namely, BCMFOA, which uses an adaptive parameter update strategy and a cloud generator to

adaptively adjust the search range of fruit flies. To solve the drawback of the original FOA in

multidimensional complicated optimization problems, a novel FOA algorithm using the

multi-swarm fruit fly concept has been proposed [50], namely, MFOA. In comparison with

the original FOA, the constructed experiments of MFO showed that MFOA obtains a signifi-

cant outcome for several benchmark functions.

The original FOA can be divided into several steps. In this section, we attempt to express

the detailed procedure of each step in FOA; then, we present the improved FOA in section 3.1.

The detailed procedure of the original FOA is described as follows:

Step 1. FOA parameter initialization: to initialize the parameter setting for FOA, several

necessary parameters must be considered. The parts of these parameters are the same as those

of other evolutionary algorithms (EAs), such as population size and the maximum iteration

number. The remaining parts of these parameters are the upper bound with the lower bound

of the random flight distance range and the initial fruit fly swarm location (Xaxis,Yaxis). The ini-

tial location (Xaxis,Yaxis) can be initialized by solving the following equations:

Xaxis ¼ 1þ randðÞ; ð7Þ

Yaxis ¼ 1þ randðÞ; ð8Þ

where rand() is used to generate a random value in the interval [0, 1].

Step 2. Initializing populations for FOA: initializing the population for FOA employs a ran-

dom strategy with the obtained initial fruit fly swarm location to generate a random location

(Xi,Yi) for each fruit fly. (Xi,Yi) represents the location of the i-th fruit fly and is obtained as fol-

lows:

Xi ¼ Xaxis � randðÞ; ð9Þ

Yi ¼ Yaxis � randðÞ; ð10Þ

Step 3. Evaluating the population for FOA: to evaluate the population and determine the

best fruit fly, the distance from each fruit fly location to the food location can be used to calcu-

late the smell concentration judgment value. Distancei represents the distance of the i-th fruit

fly to the food location, which can be calculated by solving Eq (11). The smell concentration

judgment value Si is obtained by solving Eq (12) as follows:

DistanceðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

i þ Y2
i

p
ð11Þ

Si ¼ 1=DistanceðiÞ ð12Þ

Step 4. Converting the concentration value to fitness value: from the above step, the smell

concentration judgment value of each fruit fly has been obtained. Converting the smell con-

centration judgment value to the fitness value is a convenient way to evaluate the importance
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of each fruit fly in populations.

Smelli ¼ FitnessFunctionðSiÞ ð13Þ

Step 5. Selecting the maximal smell concentration: to find the food source, the maximal

smell concentration is used as a guide for the searching procedure. bestSmellIndex represents

the corresponding index of the maximal smell concentration among the fruit fly swarm.

bestSmellIndex ¼ SelectionMaxðSmellÞ ð14Þ

Step 6. Updating the maximal smell concentration: this step updates the maximal smell

concentration value and location (Xaxis,Yaxis) based on the determination of bestSmellIndex,

which means that all fruit flies modify their own location to move toward the direction of the

maximal smell concentration.

Xaxis ¼ XðbestSmellIndexÞ ð15Þ

Yaxis ¼ YðbestSmellIndexÞ ð16Þ

Step 7. Checking the termination conditions: this step compares the current maximal smell

concentration value with the previous maximal smell concentration value. If the current maxi-

mal concentration is no longer superior to the previous one, then the termination conditions

are satisfied and the iterative procedure is stopped. Moreover, the maximum iteration number

is needed to avoid unnecessary computational costs.

3. The proposed methodology

In this section, we present a novel and efficient FOA based on mutation strategy and chaotic

PSO. The detailed mutation strategy is described in section 3.1. In section 3.2, we provide the

detailed algorithm procedure of the CIFOA and its pseudo-code.

3.1. Mutation strategy and chaos particle optimization

In a traditional intelligent algorithm, the algorithm’s performance depends on its preset

parameter setting and is easily trapped in a local optimum. To further avoid premature conver-

gence and enhance the algorithm’s search ability, the chaos concept has been introduced [48,

51, 52, 53, 54, 55]. Moreover, many algorithms based on the chaos concept were proposed to

solve the medical diagnosis problem [55], yielding excellent outcomes. Chaos is characterized

as ergodic, random, and regular [56–58]. Numerous studies have shown that random-based

optimization algorithms perform better when using non-standard distributions (i.e., Gaussian

or uniform distributions). Additionally, the properties of ergodicity and non-repetition of the

chaos technique can force an algorithm to perform overall searches at higher speeds. These are

the main reasons to employ the chaotic technique used in the proposed algorithm.

Although traditional FOA can achieve considerable results in terms of search efficiency and

running time in various fields, FOA’s searching performance depends exclusively on its fruit

fly swarm location, which can easily lead the procedure of the FOA to fall into the trap of local

optima. Thus, to address this problem and improve FOA’s searching ability, we introduce the

chaotic PSO in combination with the proposed mutation strategies to be used in FOA. The

mutation strategy is proposed to generate two different osphresis forging strategies for simulta-

neously searching for the local optimum and the global optimum. One of these strategies is the

global searching stage, which replaces the random method that fruit flies employ to find food
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sources. Instead, new food sources are generated by Eq (17), as follows:

Xij ¼ minXj þ ðmaxXj � minXjÞ � Cij; j ¼ 1; 2; ::; d;

i ¼ 1; ::; n
ð17Þ

From the above equation, Xij is a newly generated food source in the range [minXj,maxXj].

n is population size and d is the number of decision variables. Cij is the i-th column of the j-th
row of the chaos set, which is calculated as follows:

NormalizedðXijÞ ¼ ðXij � minXjÞ=ðmaxXj � minXjÞ

C0j ¼ NormalizedðXj
axisÞ; j ¼ 1; 2; . . . . . .; d

Cij ¼ LogisticðCi� 1jÞ; i ¼ 2; 3; . . . :; n

ð18Þ

From the above equation, Normalized() is employed to transform the fruit fly swarm loca-

tion in the range [0, 1]. C0j is the j-th dimension of the initial chaos vector, which is given by

NormalizedðXj
axisÞ. Logistic() is a logistic chaos mapping that is defined by Eq (19). Then, using

an iteration of the logistic chaos mapping with an initial chaos vector, a set of chaos vectors C1,

C2,.. . ... . .C1 is generated.

xiþ1 ¼ axið1 � xiÞ; a ¼ 4 ð19Þ

The second osphresis forging strategy is the local searching stage, which generates new food

sources around the fruit fly swarm. In this stage, the osphresis parameter μ is proposed to help

the algorithm control the range of newly generated food sources. The new food source Xij is

calculated as follows:

Xij ¼ Xj
axis � Cij � randðÞ � m; j ¼ 1; 2; ::; d ð20Þ

Note that the osphresis parameter μ plays an important role in the local searching ability of

CIFOA and should be set properly. According to our previous experimental results, the osphr-

esis parameter μ can be determined as follows:

m ¼ ðupper bound � lower boundÞ=population size ð21Þ

From the above equation, the upper_bound and lower_bound are used to form a domain of

the parameter.

To simultaneously perform the two stages in an iterative procedure, the mutation probabil-

ity rate mr is introduced to allow many individuals to use the global searching stage, while for

the remaining population uses the local searching stage. The mutation probability mr is gener-

ally set to 0.8; a specific procedure of the mutation probability rate mr used is described as fol-

lows:

if randðÞ � mr Then

Perform global searching stage

Else

Perform local searching stage

; ð22Þ

where rand() is a randomly generated value in the interval [0, 1].
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3.2 The procedure of CIFOA

According to the nature of the proposed CIFOA, the full procedures of the proposed algorithm

can be divided into seven steps, and each step is described in detail as follows:

Step 1. Parameters and chaos particle initialization: to gain an appropriate initial fruit fly

swarm location and to maintain the diverse population distribution, the chaotic optimization

technique is suitable for initializing the fruit fly swarm location and generating other fruit flies’

locations. Moreover, the population size, maximum number of iterations, mutation probabil-

ity mr, and osphresis parameter μ must be initialized.

(1) Provide a chaos vector C0 = {C01,C02,..,C0n}, then use the random function to generate a

random value in the range [0, 1] for each component C0i of the chaos vector.

(2) Use the initial chaos vector C0 with the iteration procedure of the logistic chaos equation

to generate a set of chaos vectors, C1,C2,C3,. . ..,Cn.

(3) To avoid the i-th item-value of the chaos vector being outside the bounds of the i-th
parameter’s range, the data normalized method is used to transfer a chaos vector, Ci, into the

parameter’s range; the detailed transformation is thus described as follows:

C0ij ¼ minXi þ ðmaxXi � minXiÞ � Cij; i ¼ 1; 2; 3; . . . :m ð23Þ

where maxXi and minXi denote the upper and lower bounds of the i-th parameter’s range,

respectively. C0ij represents the value of the j-th dimension of the i-th fruit fly that has been con-

verted into the range [minXi,maxXi].

Step 2. Determine the initial fruit fly swarm location: this step is mainly responsible for

finding an appropriate location with a maximal smell concentration value as the initial fruit fly

swarm location. First, calculate the smell concentration value of each fruit fly using a prede-

fined evaluation function; then, compare the smell concentration value of each fruit fly to

obtain an optimal fruit fly location as the initial fruit fly swarm location.

Step 3. Update the locations of fruit flies: this step employs the chaotic PSO with the initial

fruit fly swarm location Xaxis to update the location of the fruit flies. The detailed procedures

are as follows:

(1) Consider the initial chaos vector C0 = {C01,C02,..,C0n}. The fruit fly swarm location Xaxis

is transferred to a scaled location that is used as the chaos vector C0, where each component

must be converted into the range [0, 1] using the following equation:

C0
0
¼

C0i � minXi

maxXi � minXi
; i ¼ 1; 2; . . . ::m; ð24Þ

where minXi and maxXi are the lower and upper bounds of the parameter, respectively.

(2) The scaled vector C0
0

is used as a chaos seed to generate a set of chaos vectors {C1,C2,. . .

. . .,Cn} by iteration of the logistic chaos mapping.

(3) To update the location of the fruit fly, the proposed mutation parameter mr is employed

to partition the population into two groups of fruit flies: one of the groups updates their loca-

tions through the global searching Eq (17), whereas the other groups update their locations

using the local searching Eq (20).

Step 4. Calculate the smell concentration value: from the above step, the location of each

fruit fly is obtained, given a parameter Xi that represents the distance of the j-th fruit fly to

the food sources. The smell concentration value of each fruit fly is calculated by solving the
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following predefined objective function:

Smelli ¼ ObjectiveFunctionðXiÞ ð25Þ

Step 5. Determine the optimal fruit fly: this step determines the best fruit fly by selecting the

maximum smell concentration value among the fruit fly swarm.

bestSemllIndex ¼ MaxðSmellÞ ð26Þ

Xbest ¼ XðbestSmellIndexÞ ð27Þ

Step 6. Update the fruit fly swarm location: this step will keep the smell concentration value

and update the fruit fly swarm location if the current obtained best smell concentration is

superior to the previous location.

XaxisðiÞ ¼ XbestðiÞ; i ¼ 1; 2; . . . . . . :; n ð28Þ

Step 7. Check termination conditions and repeat algorithm iterative procedure:

(1) First, compare the current iterative times and the preset maximum iterative times; if the

first one reaches the second one, then the termination condition is satisfied and the algorithm’s

procedure stops; otherwise, go to the following step.

(2) If the smell concentration value of the current iteration is no longer superior to the

smell concentration value of the previous iteration and the current iterative times have reached

a predefined value, then the algorithm’s procedure stops; otherwise, go to step 8.

Step 8. Using the proposed mutation strategy to generate a new fruit fly swarm location:

from the above step, we have learned that the best smell concentration index with its corre-

sponding location was not changed from the previous generation; to avoid the iterative proce-

dure falling into the trap of a local optimum and to explore a more feasible global best optimal,

the proposed mutation strategy has been introduced to address this case. The specific proce-

dure of the mutation strategy is described as follows:

t ¼ ðdomain of dimensionÞ � randðÞ

Xt
axis ¼ minXt þ ðmaxXt � minXtÞ � randðÞ

ð29Þ

In the above equation, rand() is a randomly generated value in the interval [0, 1], and t is

employed as a variation gene in the range of dimension of the fruit fly. Most intelligent algo-

rithms generally stop the procedure if the current obtained best smell concentration value is

not superior to the previous best smell concentration value. However, the proposed mutation

strategy continues to have opportunities to find the better solution by changing the fruit fly

swarm location.

The pseudo-code of the proposed improved CIFOA is as follows:

Algorithm 1: CIFOA

1. Parameterinitialization:
2. InitializeXmin,Xmax,X,C
3. For i = 0 to d //d is the dimensionsize
4. Xaxis(i)= minX(i)+(maxX(i)−minX(i))�rand( );
5. EndFor
6. For j = 0 to d
7. C(0,j)= Normlized(Xasix(j));
8. EndFor
9. For i = 0 to n //n is populationsize
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3.3 Testing in several examples

In this subsection, to evaluate and observe the search performance of the proposed CIFOA,

this study uses several benchmark functions that are described in Table 1, and FOA, traditional

PSO, time-varying particle swarm optimization algorithm (TVPSO), and improved fruit fly

optimization algorithm (IFOA) [40] are used as competitors in this testing.

To achieve the available and objective results of the proposed algorithm compared with the

other algorithm in this testing, the population size and the maximal iteration number are set to

50 and 1000, respectively. For the parameter setting of traditional PSO, the inertia W is set to

1.0 and the acceleration coefficients C1 and C2 are set to 2.05 and 2.05, respectively [15, 28].

For the parameter setting of the TVPSO, the lower inertia weight Wmin and the upper inertia

10. For j = 0 to d
11. C(i+1,j)= Logistic(C(i,j));
12. EndFor
13. EndFor
14. For i = 0 to n
15. For j = 0 to d
16. Xaxis(i)= Xmin(i)+(Xmax(i)−Xmin(i))�C(i,j);
17. EndFor
18. EndFor
19. Calculatefitnessvalue for each fruitfly:
20. For i = 0 to n
21. parametersi = GetParameter(X(i));
22. fitness(i)= CalculateFitness(parametersi);
23. Smell(i)= fitness(i);
24. EndFor
25. bestSmellIndex= Max(Smell);
26. bestX= Select(X);
27. For i = 0 to n
28. Xaxis(i)= bestX(i);
29. EndFor
30. Iterationprocedure:
31. For iter = 0 to itermax

32. InitializeC(0);
33. Generatea set of chaosaccordingto chaos[0];
34. Updatelocationsaccordingto mutationmechanism;
35. Calculatefitnessvalue for each fruitfly;
36. bestSmellIndex= Max(Smell);
37. Checkterminationconditionsand performmutationstrategy:
38. IF current_iteration> = maximum_iterationThen
39. Stop the procedure;
40. EndIF
41. IF bestSmellcurrent < bestSmellprevious Then
42. t = (domainof dimension)�rand();
43. Xaxis(t)= Xmin(t) + (Xmax(t)−Xmin(t))�rand();
44. ElseIF
45. For i = 0 to d
46. Xaxis(i)= bestX(i);
47. EndFor
48. EndIF
49. EndFor
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weight Wmax are set to 0.5 and 0.9, respectively. The initial C1i,C1f,C2i,C2f are set to 2.5, 0.5, 0.5

and 2.5, respectively, and Vmax is set to 60% of the upper range of the parameter on each

dimension.

In this testing, we implement the proposed CIFOA and other algorithms using C sharp

(C#) language with the Visual Studio 2008 platform. To obtain an objective result, this study

uses 12 well-known functions in this testing. The dimensions of these optimization functions

are set to 30. The specific mathematical description is shown in Table 2, where lb and ub repre-

sent the lower and upper bounds of the solution X, respectively.

The global optimum of all test functions is equal to F(X
�

) = 0. The lower and upper bounds

for functions are set based on their known initial value ranges. For each iteration of the algo-

rithm procedure, the range of values is applied for each parameter Xij. Moreover, we use the

closeness criterion to evaluate the error between the searched solution of each algorithm and

the final algorithm solution. The error is evaluated using the search space of a well-known

function, which is defined as follows:

jXbest � X�j � ðupper bound � lower boundÞ ð30Þ

In the above equation, Xbest is the global best solution of the algorithm obtained by each

iteration of the algorithm procedure.

Table 2. The Benchmark functions.

Function ID Function Name Equation Function Typ Dimension f(x*) Bounds of X

F1 Sphere fðxÞ ¼
Xn

i¼1
x2

i
Unimodal 30 0 UB(100)

LB(-100)

F2 Schwefel’s problem 2.22 fðxÞ ¼
Xn

i¼1
jxij þ

Yn

i¼1
jxij Unimodal 30 0 UB(10)

LB(-10)

F3 Quartic fðxÞ ¼
Xn

i¼1
ix4

i þ randðÞ Unimodal 30 0 UB(1.28)

LB(-1.28)

F4 Sum squares fðxÞ ¼
Xn

i¼1
ix2

i
Unimodal 30 0 UB(10)

LB(-10)

F5 Sum of different power fðxÞ ¼
Xn

i¼1
jxij

iþ1 Unimodal 30 0 UB(1)

LB(-1)

F6 Rosenbrock fðxÞ ¼
Xn� 1

i¼1
ð100ðxiþ1 � x

2

i Þ
2
þ ðxi � 1Þ

2
Þ Unimodal 30 0 UB(30)

LB(30)

F7 Ackley
fðxÞ ¼ � 20exp � 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
x2

i

r !

�

exp
1

n

Xn

i¼1
cosð2pxiÞ

� �

þ 20þ e

Multimodal 30 0 UB(32)

LB(-32)

F8 Griewank
fðxÞ ¼ 1

4000

Xn� 1

i¼1
x2

i �
Yn

i¼1
cos

xiffiffi
i
p

� �

þ 1
Multimodal 30 0 UB(600)

LB(600)

F9 Alpine fðxÞ ¼
Xn

i¼1
fxisinðxiÞ þ 0:1xig Multimodal 30 0 UB(10)

LB(10)

F10 Powell
fðxÞ ¼

Xn=4

i¼1

ðx4i� 3 þ 10x4i� 2Þ
2
þ 4ðx4i� 1 þ x4iÞ

2
þ

ðx4i� 2 þ 2x4i� 1Þ
2
þ 10ðx4i� 3 þ x4iÞ

2

)(
Multimodal 30 0 UB(5)

LB(-4)

F11 Rastrigin fðxÞ ¼
Xn

i¼1
ðx2

i � 10cosð2pxiÞ þ 10Þ Multimodal 30 0 UB = 5.12

LB(-5.12)

F12 Solomon

problem fðxÞ ¼ 1 � cos 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
x2

i

q� �

þ 0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
x2

i

q Multimodal 30 0 UB(100)

LB(-100)

https://doi.org/10.1371/journal.pone.0173516.t002
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In this test, to evaluate the searching performance of five algorithms, the five most fre-

quently used statistical measures, i.e., the best, worst, median, means objective function values,

and standard deviation are used to measure the search ability of five algorithms. We use five

algorithms to perform 50 independent runs for each optimization function and obtain the sta-

tistical results, which are averaged. Moreover, we also present the detailed convergence curves

generated by the five algorithms for each optimization function.

Table 3 shows that CIFOA achieves the best results in terms of most performance criteria in

comparison with the other intelligent algorithms. In each independent test using the five algo-

rithms, CIFOA almost achieved the optimal solution of each function and obtained significant

results in terms of statistical measures. The traditional FOA obtained the worst results in most

cases overall, and it could not find the global solution in several function tests. Comparing the

CIFOA with the traditional FOA shows that traditional FOA using the proposed chaotic opti-

mization technique in combination with the proposed mutation strategy can enhance the

searching ability of both the global and local optimums.

Moreover, CIFOA showed good performance in several complex multimodal functions,

while the other four algorithms achieved worse results in terms of the median and standard

deviation. In addition, CIFOA was also shown to be an efficient and robust algorithm for solv-

ing continuous functions.

Figs 2, 3, 4, 5, 6 and 7 shows the convergence curves generated by the five intelligent algo-

rithms for solving different complex nonlinear continuous functions. To observe the conver-

gence curves generated by five algorithms, we have found that the proposed algorithm always

successfully reached the closest solution of the optimization function with a minimal number

of iterations. In particular, when solving the more complicated mathematical equations, the

proposed algorithm has better searching performance than the other intelligent algorithms.

Thus, it can also be concluded that the mutation strategy and chaotic PSO can help the algo-

rithm simultaneously search for the global and local optimums, whereas the mutation strategy

also allows the algorithm procedure to jump out of the local extremum.

Furthermore, this testing compares the proposed algorithm CIFOA with other well-known

algorithms. The testing results show that the proposed CIFOA is significantly better than other

algorithms presented for solving the complex nonlinear continuous functions.

4. Experiments and applications

In this section, we applied the proposed CIFOA to optimize the SVM, aiming to enhance

the classification performance of the SVM classifier for solving real-world classification

problems. In this proposed method, namely, CIFOA-SVM, which simultaneously performs

SVM model parameter setting turning (penalty parameter C and hyperplane parameters)

and feature selection, attempts to achieve an optimal SVM model, which has better genera-

lization ability and excellent effectiveness for real-world classification tasks. To evaluate the

classification performance of the proposed methods, this study has constructed comparative

experiments that were performed between the proposed CIFOA-SVM and other intelligent

methods, including GA-SVM, PSO-SVM, FOA-SVM, and TVPSO-SVM. Moreover, two real-

world problems have been introduced in this study: the medical diagnosis problem and the

credit card problem.

4.1 Fitness function design

A well-designed fitness function can explore a more optimal global best solution and avoid

falling into the trap of local optima. Although different performance criteria have been pro-

posed to evaluate the classification performance of a SVM classifier, the most popular and
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Table 3. The testing results of the three algorithms for the benchmark functions.

Benchmark function algorithm Best value Worst value Median Means Std Average Time

Function1 CIFOA 0 0 0 0 0 0.333530448

FOA 0.0015 0.00152954 0.0015 0.00150353 8.84E-06 0.52567952

PSO 46.9277844 81.03940203 68.43008378 66.31215476 9.35121111 0.45106818

TVPSO 2.57011182 5.2530343 3.78153176 3.78214492 0.59961592 0.44296219

IFOA 0.00076774 19864.6401877 9616.25445419 9362.67965422 5031.54002686 0.35860204

Function2 CIFOA 1.36E-06 2.24E-06 1.7E-06 1.74E-06 2E-07 0.44376986

FOA 5.24264069 5.27943571 5.24264069 5.2450921 0.00838239 0.52798553

PSO 6.65597556 10.60347546 8.3545127 8.46327962 0.82543197 0.48126274

TVPSO 2.38107103 4.56606483 2.83587925 2.86573324 0.36354308 0.43581129

IFOA 1.00025496 140.36636921 105.44044879 90.37246037 40.410495 0.38489129

Function3 CIFOA 0.00449358 0.03248204 0.01318236 0.01449095 0.00568992 0.68978405

FOA 43.30650025 46.71584693 43.30651904 43.49609982 0.66045093 0.59677812

PSO 0.00321914 0.01473364 0.00747975 0.00815546 0.00279545 0.52370546

TVPSO 0.01473127 0.08926477 0.04285198 0.04482646 0.01604868 0.5350807

IFOA 2.40641005 23.99233763 6.74487223 8.03879967 4.12276149 0.41276481

Function4 CIFOA 0 0 0 0 0 0.57697321

FOA 2.325 2.39218054 2.325 2.33120108 0.01761902 0.5846384

PSO 7.05952412 23.0391778 10.76372186 11.10410763 2.66095101 0.54813436

TVPSO 0.44603836 1.45367321 0.74444863 0.79692551 0.22996596 0.42469803

IFOA 1E-08 4098.6359684 1838.34544005 1659.55963896 1133.78585088 0.42638859

Function5 CIFOA 0 1E-08 1E-08 1E-08 0 0.55225223

FOA 2.41413989 3394.56423246 2.41413989 70.26851999 474.89938952 0.59365665

PSO 1.575E-05 0.00015636 6.267E-05 6.729E-05 3.338E-05 0.54133758

TVPSO 4.2E-06 6.882E-05 2.244E-05 2.244E-05 1.43E-05 0.34650514

IFOA 4.8E-06 0.51766163 0.08901473 0.14419936 0.16207673 0.42880364

Function6 CIFOA 27.77849226 224.36102113 28.88771013 59.65823219 56.14181148 0.71561607

FOA 28.93055914 29.20904117 29.18509567 29.17464782 0.03776031 0.65413263

PSO 535.21563267 2092.59725654 857.02902308 935.18812368 310.56775915 0.61079594

TVPSO 50.0915007 260.09250574 68.0914448 100.19315468 53.63689523 0.4791295

IFOA 802.05974855 45938931.0951 727748.6591 5352910.575355 7140960.545249 0.51228287

Function7 CIFOA 6.4E-07 1.08E-06 9E-07 8.9E-07 8E-08 0.57037173

FOA 0.11422539 0.11543086 0.11422539 0.11429541 0.00025334 0.62419126

PSO 3.08891225 3.62000336 3.40850015 3.40552595 0.11909537 0.46736982

TVPSO 0.76043029 1.20173887 1.05696236 1.03287373 0.10292351 0.46470978

IFOA 1.17177655 19.9050933 15.82120214 15.23704712 3.30422523 0.35988503

Function8 CIFOA 0 0.44987534 0 0.03734983 0.10842514 0.57705417

FOA 2.78E-06 3.2E-06 2.78E-06 2.81E-06 8E-08 0.4975661

PSO 1.39171802 1.75384585 1.59891445 1.59947527 0.07868131 0.53438732

TVPSO 1.01901183 1.04766821 1.03285273 1.03320413 0.00631144 0.36616112

IFOA 0 236.66796911 81.29755439 79.95490768 45.98983574 0.42762164

Function9 CIFOA 0.01096023 0.02905256 0.01921427 0.01997557 0.00384017 0.63945682

FOA 0.36200707 0.36648511 0.36200707 0.36251395 0.00127768 0.41726704

PSO 0.5555723 6.23583619 1.28688615 1.57415173 0.92606614 0.50687815

TVPSO 0.04691413 1.54387105 0.37571847 0.44654829 0.33720773 0.35788392

IFOA 2.60785268 36.26263065 14.15463627 14.38035363 6.59076109 0.42133829

(Continued )
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frequently used of these performance criteria are sensitivity and specificity. To explain the

effect of sensitivity and specificity in the performance metrics, we introduce the confusion

matrix that is displayed in Table 4.

From the above the confusion matrix, true positive (TP) means samples correctly labeled as

a positive class and true negative (TN) means samples correctly labeled as a negative class.

False positive (FP) means that samples are incorrectly classified as a negative class and false

negative (FN) means that the negative samples are incorrectly classified as a positive class. A

well-performing classifier should have a high true positive (TP) and a low false positive (FP).

Moreover, the number of selected features and support vectors also play an important role in

the classification performance of the SVM classifier. The main reasons are clear that a small

feature space can reduce the complexity of the procedure of training and prediction, and a

small number of support vectors can avoid over-fitting and improve the classification accuracy

Table 3. (Continued)

Benchmark function algorithm Best value Worst value Median Means Std Average Time

Function10 CIFOA 0.03284302 0.37756413 0.12941583 0.13837669 0.06016914 0.6612283

FOA 16.9428 16.9428 16.9428 16.9428 0 0.4228202

PSO 11.64524961 48.61811606 22.3435454 24.03177247 7.51416269 0.53200057

TVPSO 0.42406271 1.10909011 0.81222728 0.83037475 0.15005306 0.38975869

IFOA 6.78668492 4598.52176616 1397.19974052 1501.61570182 813.57738831 0.44357287

Function11 CIFOA 0 3.98897514 1.01794575 1.68499896 1.11403793 0.5554832

FOA 104.06037467 107.96149003 106.60893982 106.58501952 0.40733199 0.41106256

PSO 46.34092901 106.83098785 63.68310374 64.51160886 11.54041507 0.51115152

TVPSO 24.52376268 167.32843182 57.97808999 61.63611782 27.60762214 0.52063316

IFOA 47.37883985 266.00413696 122.01030039 140.14453027 49.05889799 0.43695702

Function12 CIFOA 0.09987335 0.59987336 0.29987335 0.28595637 0.1020944 0.40908259

FOA 0.03333597 0.03396079 0.03333597 0.03336861 0.00013189 0.39189368

PSO 0.80004655 1.09991055 0.92589667 0.94091837 0.05730999 0.42242791

TVPSO 0.29987827 0.40146745 0.39987345 0.35680167 0.04630805 0.41691559

IFOA 7.63407942 23.40037258 12.72564107 13.46440787 3.27607954 0.32941129

https://doi.org/10.1371/journal.pone.0173516.t003

Fig 2. The fitness value of various algorithms for Sphere and Schwefel’s problem 2.22 during increasing iterative

times.

https://doi.org/10.1371/journal.pone.0173516.g002
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for the SVM classifier. Thus, the four performance criteria are understood to design a weighted

objective function that simultaneously considers the trade-off between sensitivity and specific-

ity, maximizing the true positive rate and minimizing (1 –the false positive rate), along with

the number of selected features and support vectors. The detailed proposed fitness function is

depicted as follows:

FitnessFunctionðXÞ ¼Wsen �
TP

TPþ FN

� �

þW1� spe � 1 �
FP

FPþ TN

� �

þWF � 1 �

XNf

i¼1
Fi

Nf

0

@

1

AþWs � 1 �

XSf

i¼1
Si

Sf

0

@

1

A

ð31Þ

Considering that any of these four components of the fitness function have different effects

on the classification performance of the SVM classifier, we designed the fitness function using

Fig 3. The fitness value of various algorithms for Quartic and Sum squares during increasing iterative times.

https://doi.org/10.1371/journal.pone.0173516.g003

Fig 4. The fitness value of various algorithms for Rosenbrock and Sum of different power during increasing iterative

times.

https://doi.org/10.1371/journal.pone.0173516.g004
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multiple performance criteria to convert a single weighted criterion, i.e., the sensitivity, speci-

ficity, and the number of selected features and support vectors are converted into one by com-

bining their weight values Wsen,W1−spe,WF,WS. In the above equation, Fi represents the value

of the i-th feature mask, with a value of “1” meaning that it is selected as one part of the input

feature space; otherwise, it is ignored during the training phase. Nf refers to the number of

total features.

4.2 Data representation

To implement the proposed CIFOA-SVM, the radial basis function (RBF) is employed as the

kernel function of the SVM classifier because it can effectively address high-dimensional data,

and only one parameter is required to be optimized. The selected feature subset and model

parameter setting are generally represented by a binary string or other representation. In the

GA, one of the most frequently used of these representations is the binary string, which can

easily map the selection state of features to a feature mask. By contrast, in FOA, the sigmoid

Fig 5. The fitness value of various algorithms for Ackley and Griewank during increasing iterative times.

https://doi.org/10.1371/journal.pone.0173516.g005

Fig 6. The fitness value of various algorithms for Alpine and Powell during increasing iterative times.

https://doi.org/10.1371/journal.pone.0173516.g006

Chaotic improved FOA and SVM for real-world problems

PLOS ONE | https://doi.org/10.1371/journal.pone.0173516 April 3, 2017 19 / 36

https://doi.org/10.1371/journal.pone.0173516.g005
https://doi.org/10.1371/journal.pone.0173516.g006
https://doi.org/10.1371/journal.pone.0173516


function and random strategy are used to convert the distance X into a feature mask (“1”

means that the feature is selected as the input feature, and “0” means that the feature is

ignored). The specific equation is described as follows:

SigFunðXijÞ ¼
1

1þ eð� XijÞ
; j ¼ 1; 2; . . .;m

Fij ¼

(
1; if randðÞ < SigFunðXijÞ

0; if randðÞ � SigFunðXijÞ
; j ¼ 1; 2; ::;m

ð32Þ

where rand() is a randomly generated value in the range [0, 1].

4.3 The proposed CIFOA-SVM framework

This section describes the detailed procedure of the proposed CIFOA-SVM framework. Based

on the nature of the proposed framework, its procedure mainly consists of two stages. One of

these stages is the algorithm computing processing layer, which is used to implement CIFOA

operations, such as population initialization, fruit fly swarm location update, and maintaining

the maximum smell concentration and its corresponding location. Another of these stages is

the microcosmic computing layer, which is also called the control layer in this paper. This

stage is mainly responsible for the calculation of the smell concentration value of each individ-

ual using SVM and the proposed evaluation function. The detailed basic procedure of the pro-

posed framework is shown in Fig 8.

To give a more detailed description of how an optimal SVM model is achieved, we provide

a pseudo-code of the proposed CIFOA-SVM framework as follows:

Fig 7. The fitness value of various algorithms for Rastrigin and the Solomon problem during increasing iterative

times.

https://doi.org/10.1371/journal.pone.0173516.g007

Table 4. Confusion matrix.

Classification classified

Testing Result Positive Testing Result Negative

Actual Positive Samples True Positive (TP) False Negative (FN)

Actual Negative Samples False Positive (FP) True Negative (TN)

https://doi.org/10.1371/journal.pone.0173516.t004
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Algorithm 2: CIFOA-SVM

1. Parameterinitialization:
2. InitializeXmin,Xmax,X,C
3. For i = 0 to d //d is the dimensionsize
4. Xaxis(i)= minX(i)+(maxX(i)−minX(i))�rand( );
5. EndFor
6. For j = 0 to d
7. C(0,j)= Normalized(Xasix(j));
8. EndFor
9. For i = 0 to n //n is populationsize
10. For j = 0 to d
11. C(i+1,j)= Logistic(C(i,j));
12. EndFor
13. EndFor
14. For i = 0 to n
15. For j = 0 to d
16. Xaxis(i)= Xmin(i)+(Xmax(i)−Xmin(i))�C(i,j);
17. EndFor
18. EndFor
19. Calculatefitnessvalue for each fruitfly:
20. For i = 0 to n
21. model_parameters= GetParameter(X(i));
22. feature_mask= GetFeatures(X(i));
23. TrainSVM by using modelparametersand selectedfeatures;
24. Make a predictionby usingthis model;
25. Smell(i)= FitnessFunction(features,results);
26. EndFor
27. bestSmellIndex= Max(Smell);
28. bestX= Select(X);
29. For i = 0 to n
30. Xaxis(i)= bestX(i);
31. EndFor
32. Iterationprocedure:
33. For iter = 0 to itermax

34. InitializeC(0);
35. Generatea set of chaosaccordingto C(0);
36. Updatelocationsaccordingto mutationmechanism;
37. Calculatefitnessvalue for each fruitfly;
38. bestSmellIndex= Max(Smell);
39. Checkterminationconditionsand performmutationstrategy:
40. IF current_iteration> = maximum_iterationThen
41. Stop the procedure;
42. EndIF
43. IF bestSmellcurrent > = bestSmellprevious Then
44. For i = 0 to d
45. Xaxis(i)= bestX(i);
46. EndFor
47. ElseIF
48. t = (domainof dimension)�rand();
49. Xaxis(t)= Xmin(t)+(Xmax(t)−Xmin(t))�rand();
50. EndIf
51. EndFor
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4.4 Parameter setting and datasets

In this section, we describe the parameter setting of various methods and the property of

datasets in detail. To evaluate the classification performance of the proposed framework com-

pared with that of the other methods in the classification tasks, GA, FOASVM, PSOFS, and

Fig 8. The basic process of the proposed framework.

https://doi.org/10.1371/journal.pone.0173516.g008
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TVPSOFS have been introduced to be used as the competitors in these experiments. GAFS

means that the genetic algorithm (GA) is used to simultaneously turn the model parameter set-

ting and select the feature subset. FOASVM means that the FOA is used to turn the parameter

setting of the SVM classifier without selecting the feature subset. PSOFS means that the tradi-

tional PSO algorithm is used to adjust the model parameter setting and to select the feature

subset simultaneously. TVPSOFS means that the traditional PSO uses a time-varying tech-

nique to dynamically adjust its inertia weight and coefficients based on iterative times. To

achieve an objective comparison in various methods, the same population size and maximum

iteration number are applied for all methods. For the parameter setting of the GAFS, the cross-

over probability rate and mutation probability rate are set to 0.75 and 0.15, respectively. The

binary string is used to represent the individual, and the penalty parameter C and hyper-

parameters are represented by two binary strings, with each binary string being composed of

20 bit (220), which means that the searching precision of two parameters depends exclusively

on the length of the binary string. The roulette wheel selection and elite selection strategy are

used to generate new individuals that merge with the best individual into the new population

of the next generation. For the parameter setting of FOA, the lower and upper bounds of the

flight range are set to -10 and 10, respectively. The location of each fruit fly is limited to the

range of [–10, 10]. For the parameter setting of the traditional PSO algorithm, the acceleration

coefficients C1,C2 are set to 2.05 and 2.05 [15, 18]. The inertia weight W is set to 0.729 [59].

The lower and upper bounds of particle velocity are set to 0 and 1, respectively, for the feature

mask, and set to 60% of the range of the parameter on each dimension for model parameters.

For the parameter setting of the time-varying particle swarm optimization algorithm (TVPSO),

the initial acceleration coefficients C1i,C1f,C2i,C2f are set to 2.5, 0.5, 0.5, and 2.5, respectively.

The initial inertia weights Wmin,Wmax are set to 0.4 and 0.9, respectively. The lower and upper

bounds of penalty parameter C are set to 0 and 1000, respectively. The lower and upper bounds

of the hyperplane parameter are set to 0 and 10, respectively.

To achieve a feasible result and avoid overtraining, we introduce the k-fold crossover-vali-

dation technique in this experiment. The k-fold crossover-validation technique is the most

popular and frequently used method in myriad classification experiments. The main idea

behind this technique is to divide the original training dataset into several subsets; each subset

is completely independent and is constituted by the same number of samples. In each run of

the k-fold crossover-validation, each subset has the same chance to be used as the testing data-

set, and the remaining k-1 subsets are used as the training dataset. In this study, we set k = 10

for k-fold crossover-validation, i.e., we divide the original training dataset into ten parts; and

each part can be used as the testing dataset and the remaining 9 parts are used as the training

dataset. Finally, the training subset, SVM model parameters, and selected feature subset are fed

into the SVM to generate an SVM model; then, the testing subset is used with the SVM model

to make a prediction, and the fitness value is calculated based on the obtained classification

accuracy and other performance criteria. This study uses five methods to perform ten itera-

tions of 10-fold crossover-validation on the various datasets, and the obtained results are aver-

aged. To generate enough classification performance for comparison, this study repeatedly

performs 10 iterations for the 10-fold crossover-validation procedure instead of a single repeti-

tion of the 10-fold crossover-validation procedure.

4.5 Datasets and data preprocessing

Many datasets contain several dissimilar properties. To avoid the feature value spanning over

great numerical ranges and dominating the other features in smaller numerical ranges–and to

address numerical other difficulties in the calculation–the data normalized method has been
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introduced to scale all the input variables of the datasets into the range [0, 1] or [–1, 1]. The

main advantage of scaling variables is that it can help improve the classification performance

of the SVM classifier and reduce the running time of training and prediction. The specific data

normalized method is described as follows:

V 0

ij ¼
Vij � minðViÞ

maxðViÞ � minðViÞ
; j ¼ 1; 2 . . . ::; d: ð33Þ

In the above equation, Vij is the feature value of the j-th item of the i-th row recorded. The

function min() is used to find the smallest feature value among all the features of the i-th row

recorded, and the function max() is used to select the greatest feature value among all the fea-

tures of the i-th row recorded. V 0

ij is the transformed feature whose value is restricted in the

[0, 1] range.

4.6 The medical diagnosis problem

To investigate the classification performance of various methods in terms of solving the medi-

cal diagnosis problem, three datasets have been employed as the experimental dataset, all from

the UCI machine learning database repository. These datasets include the Wisconsin Diagnos-

tic Breast Cancer (WDBC-1995), Pima Indians Diabetes (PID), and the Parkinson’s disease

dataset (PDD). The WDBC-1995 contains 569 samples (212 malignant and 357 benign sam-

ples) represented by 30 continuous features [60]. This breast cancer database was established

by Dr. William H. Wolberg from the University of Wisconsin Hospitals and donated in

November 1995. Ten real-valued features are computed for each cell nucleus. The details of

the 32 attributes of the (WBC-1995) dataset are presented in Table 5. The PID [61] consists of

758 samples (500 normal samples and 268 diabetes samples), represented by 8 attributes. The

PID was constructed by collecting donative diabetes cases in which all patients were females at

least 12 years old of Pima Indian heritage. The detailed attributes and categories of this dataset

are shown in Table 6. The PDD [62] was created and collected by Max Little of the University

of Oxford, in collaboration with the National Centre for Voice and Speech, Denver. This data-

set contains 195 samples (147 non-disease samples and 48 disease samples) represented by 23

attributes. These attributes are various biomedical voice measurements for 23 patients with

Parkinson’s disease and 8 healthy individuals. The primary purpose of this dataset is to dis-

criminate healthy people from those with Parkinson’s disease. The detailed 23 attributes of the

dataset are shown in Table 7.

There are several performance metrics to evaluate the classification performance of the pro-

posed approach, including the classification accuracy, sensitivity, specificity, the number of

selected features and support vectors, and the running time of the training and prediction pro-

cedure that have been employed to construct a comprehensive comparative experiment. In

each run of various datasets of this experiment, we undertake the five methods and perform 10

iterations of 10-fold crossover-validations, and the obtained experimental results are averaged.

The detailed classification results of the five methods in terms of the average classification

accuracy, sensitivity, specificity, and number of selected features and support vectors on the

Table 5. Wisconsin Diagnostic Breast Cancer (WDBC-1995).

Feature ID Feature Name Domain

1 Sample code number ID_number

2 Diagnosis 1–32

3–32 Cell information 1–32

https://doi.org/10.1371/journal.pone.0173516.t005
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Wisconsin Diagnostic Breast Cancer (WDBC-1995) database are presented in Table 8. We

first compare the classification accuracy, sensitivity, and specificity. As shown in this table, the

proposed CIFOA-SVM has achieved average results of 98.21% classification accuracy, 99.51%

sensitivity, and 96.11% specificity. These obtained statistic results show that the proposed

CIFOA-SVM outperforms other methods in terms of classification accuracy and in the trade-

off between sensitivity and specificity. Moreover, this table also shows that not only did the

proposed CIFOA-SVM achieve the best results in terms of classification accuracy but also the

standard deviation produced by the CIFOA-SVM was also much smaller in terms of classifica-

tion accuracy, sensitivity and specificity than that of other methods. This result indicates that

the proposed CIFOA-SVM can obtain considerably more consistent and smooth prediction

Table 6. Pima Indians Diabetes (PID).

Feature ID Feature Name Domain

1 Number of times pregnant 1–8

2 Plasma glucose concentration at 2 hours in an oral glucose tolerance test 1–8

3 Diastolic blood pressure (mm Hg) 1–8

4 Triceps skin fold thickness (mm) 1–8

5 2-hour serum insulin (mu U/ml) 1–8

6 Body mass index (weight in kg/(height in m)^2) 1–8

7 Diabetes pedigree function 1–8

8 Age 1–8

9 Class variable

https://doi.org/10.1371/journal.pone.0173516.t006

Table 7. The attributes of Parkinson’s disease dataset (PDD).

Feature ID Feature Name Description

1 Name ASCII subject name and recording number

2 MDVP:Fo(Hz) Average vocal fundamental frequency

3 MDVP:Fhi(Hz) Maximum vocal fundamental frequency

4 MDVP:Flo(Hz) Minimum vocal fundamental frequency

5 MDVP:Jitter(%) Several measures of variation in fundamental frequency

6 MDVP:Jitter(Abs)

7 MDVP:RAP

8 MDVP:PPQ

9 Jitter:DDP

10 MDVP:Shimmer Several measures of variation in amplitude

11 MDVP:Shimmer(dB)

12 Shimmer:APQ3

14 MDVP:APQ

15 Shimmer:DDA

16 NHR

17 HNR

18 status

19 RPDE Two measures of ratio of noise to tonal components in the voice

20 DFA Signal fractal scaling exponent

21 spread1 Three nonlinear measures of fundamental frequency variation

22 spread2

23 D2

24 PPE

https://doi.org/10.1371/journal.pone.0173516.t007
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results than other methods for different fold runs of 10-fold crossover-validation. To compare

the number of selected features of the optimal SVM model using various outcomes, the pro-

posed CIFOA-SVM almost requires the least features to construct an optimal SVM model

among the FOA-SVM, PSOFS, and TVPSO. Table 8 also shows that feature methods have

better classification accuracy than FOASVM, which indicates that feature selection actively

improves the accuracy of the SVM classifier for solving medical diagnosis problems. For the

number of support vectors of the optimal SVM model constructed using a variety of methods,

the best SVM model with the fewest support vectors was achieved by the proposed

CIFOA-SVM. Moreover, the same results are shown in Tables 9 and 10.

Fig 9 displays the classification accuracy obtained by various methods for each fold run of

10-fold crossover-validation on the WDBC-1995 datasets. This figure shows that in most of

the fold runs of 10-fold crossover-validation on the WDBC-1995 dataset, CIFOA-SVM

obtained significantly better results than other methods in terms of classification accuracy.

To investigate the effects of the number of selected features on the classification accuracy of

the proposed framework compared with other methods in solving medical diagnosis prob-

lems, we perform one iteration of 10-fold cross-validation using the five methods on the

WDBC-1995 dataset. The detailed results are displayed in Fig 10. This graph shows that the

feature selection methods, including GAFS, CIFOA-SVM, PSOFS and TVPSOFS, can improve

classification accuracy better than the ordinary parameter tuning FOASVM in different fold

runs of 10-fold crossover-validation. The main reason for these results is that some medical

data contain redundancies and useless features, including noise or irrelevant feature infor-

mation, which might affect the quality and efficiency of adjusting parameters for the SVM

classifier. Thus, simultaneous feature selection and parameter optimization can enhance the

classification accuracy for classifying medical data. Furthermore, CIFOA-SVM almost requires

Table 8. Classification results of various methods in terms of classification accuracy, sensitivity, specificity, number of selected features and sup-

port vectors, and model parameters for the WBC-1995.

Criteria Methods

GAFS PSOFS TVPSOFS FOASVM CIFOA-SVM

Sensitivity 0.9948 + 0.0001 0.9889 + 0.0003 0.9903 + 0.0002 0.9666 + 0.0007 0.9951 + 0.0002

Accuracy 0.9803 + 0.0004 0.9553 + 0.0004 0.9642 + 0.0007 0.9196 + 0.0006 0.9821 + 0.0001

Specificity 0.9662 + 0.0013 0.8964 + 0.0039 0.9326 + 0.0020 0.8366 + 0.0045 0.9611 + 0.0014

N of features 11.5 + 4.05 17.2 + 10.25 15.9 + 9.09 30 + 0.0 15.4 + 1.24

N of SVs 188.8 189.4 189.7 199.8 157.6

Parameter C 464.4346 503.2890 516.4186 418.5625 392.5621

Parameter γ 0.3340 0.6081 0.0100 0.0399 0.0548

https://doi.org/10.1371/journal.pone.0173516.t008

Table 9. Classification results of various methods in terms of classification accuracy, sensitivity, specificity, number of selected features and sup-

port vectors, and model parameters for Pima Indians Diabetes (PID).

Criteria Methods

GAFS PSOFS TVPSOFS FOASVM CIFOA-SVM

Sensitivity 0.4658 + 0.0026 0.8739 + 0.0011 0.9208 + 0.0024 0.8921 + 0.0029 0.9174 + 0.0023

Accuracy 0.7473 + 0.0026 0.7474 + 0.0010 0.7552 + 0.0011 0.7460 + 0.0017 0.7592 + 0.0005

Specificity 0.9001 + 0.0039 0.5012 + 0.0316 0.4434 + 0.0207 0.4733 + 0.0095 0.4689 + 0.0097

N of features 5.3 + 1.41 5.8 + 1.36 4.3 + 1.41 8.0 + 0.0 5.7 + 0.81

N of SVs 450.2 410.1 490.1 524.5 489.1

Parameter C 337.58 482.10 300.20 741.60 236.35

Parameter γ 0.3340 0.5708 0.5253 0.0232 0.4517

https://doi.org/10.1371/journal.pone.0173516.t009
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fewer selected features to construct an optimal SVM model than the PSOFS and TVPSO at

each fold run of 10-fold cross-validation for the (WBC-1995) dataset, which indicates that

CIFOA-SVM filters out most of the irrelevant features from the SVM classifier, reducing its

complexity and improving its classification performance.

To investigate the computational time of the five methods required to implement the train-

ing and prediction procedure, we recorded the five methods’ running time for each fold run of

10-fold crossover-validation using the WDBC-1995 database. Fig 11 displays the computa-

tional time in seconds under the five methods to perform a one-fold run of the 10-fold cross-

over-validation. This figure shows that the proposed CIFOA-SVM requires an average of

almost 150 s to implement the training of an optimal SVM model and to make a prediction in

each fold for WDBC-1995. Compared with the proposed CIFOA-SVM and GAFS, the compu-

tational time was reduced by 4 seconds using CIFOA-SVM. Compared with the proposed

CIFOA-SVM and PSOFS, the computational time in seconds was reduced by 43 seconds by

CIFOA-SVM. Compared with the proposed CIFOA-SVM and TVPSO, the computational

time was reduced by 9 seconds using CIFOA-SVM. Compared with the proposed FOASVM

and the four other methods based on the feature selection technique, FOASVM achieves an

optimal SVM model with the required minimal computational resources. Moreover, tradi-

tional PSO requires the most running time to implement an optimal SVM model. The above

results show that our proposed CIFOA-SVM algorithm is an efficient framework among the

feature selection methods for the medical data classification tasks.

Fig 12 presents the convergence curves generated by the five methods for different numbers

of iterations for the fold #3 run of the 10-fold crossover-validation using the WDBC-1995

Table 10. Classification results of various methods in terms of classification accuracy, sensitivity, specificity, number of selected features and

support vectors, and model parameters for Parkinson’s disease dataset (PDD).

Criteria Methods

GAFS PSOFS TVPSOFS FOASVM CIFOA-SVM

Sensitivity 0.9890 + 0.0017 0.9703 + 0.0019 0.6533 + 0.0016 0.9790 + 0.0029 0.9810 + 0.0013

Accuracy 0.9621 + 0.0022 0.9157 + 0.0024 0.9473 + 0.0011 0.9615 + 0.0017 0.9631 + 0.0006

Specificity 0.9352 + 0.0069 0.8333 + 0.0187 0.8666 + 0.0433 0.9440 + 0.0025 0.9452 + 0.0027

N of features 10.2 + 6.92 15.3 + 3.61 12.5 + 8.45 22.0 + 0.0 12.1 + 1.59

N of SVs 78.1 82.6 81.2 129.8 75.4

Parameter C 594.1864 449.5192 562.3227 543.8755 472.205

Parameter γ 0.4939 0.5348 0.3189 0.3495 0.4518

https://doi.org/10.1371/journal.pone.0173516.t010

Fig 9. The classification accuracy achieved for each fold run by various methods for the WDBC-1995.

https://doi.org/10.1371/journal.pone.0173516.g009
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database. These curves show that not only did the proposed CIFOA-SVM obtain better classifi-

cation accuracy during the different numbers of iterations but also the convergence procedure

of CIFOA-SVM determined the final optimal SVM model and reached the stopping criteria

much more quickly than PSOFS, TVPSO, FOASVM, and GAFS. This result indicates that the

proposed CIFOA-SVM has excellent searching ability for determining an optimal feature sub-

set and a proper parameter setting for the SVM classifier.

Fig 10. The results of the five methods in terms of the number of selected features for the WDBC-1995.

https://doi.org/10.1371/journal.pone.0173516.g010

Fig 11. The running time required for each run by the five methods for the WDBC-1995.

https://doi.org/10.1371/journal.pone.0173516.g011
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4.7 Credit card problem

To evaluate the classification performance of the five methods for solving the credit card prob-

lem, we selected two datasets, both of which come from the UCI machine learning database

repository. One of these datasets is the German Credit Data (GCD) [63], which contains 1000

records (300 bad credit risk records and 700 good credit records) represented by 20 numeric

and non-numeric features. The information regarding these features is illustrated in Table 11.

To convert the original non-numeric features to numeric features that SVM recognizes, we

adopt a real number to represent non-numeric values of the discrete feature. The GCD is used

to evaluate credit card risks, which are either good or bad credit risks. The other dataset is the

Australian Credit Approval (ACA) [64], which consists of 690 samples (307 positive samples

Fig 12. The convergence curves generated for the fold #3 run by the five methods for the WDBC-1995.

https://doi.org/10.1371/journal.pone.0173516.g012

Table 11. The detailed attributes of German Credit Data (GCD).

Feature ID Feature Name Data Type

1 Qualitative non-numeric

2 Duration in months numerical

3 Credit history non-numeric

4 Purpose non-numeric

5 Credit amount Numerical

6 Savings account/bonds non-numeric

7 Diabetes pedigree function non-numeric

8 Installment rate in percentage of disposable income non-numeric

9 Personal status and sex non-numeric

10 Other debtors / guarantors non-numeric

11 Present residence since numerical

12 Property non-numeric

13 Age in years numerical

14 Other installment plans non-numeric

15 Housing non-numeric

16 Number of existing credits at this bank numerical

17 Job non-numeric

18 Number of people being liable to provide maintenance for non-numeric

19 Telephone non-numeric

20 Foreign worker non-numeric

https://doi.org/10.1371/journal.pone.0173516.t011
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and 383 negative samples) represented by 14 attributes. The main purpose of ACA is to con-

sider credit card applications.

To evaluate the classification performance of the proposed method in solving the credit

card problem, experiments using the five methods for each fold run of the 10-fold crossover-

validation on the GCD and ACA datasets have been performed. All the results obtained,

including classification accuracy, sensitivity, specificity, and number of selected features and

support vectors, were averaged. Tables 12 and 13 display the detailed classification results

achieved by the five methods for 10 runs of 10-fold crossover-validation. Table 13 shows that

the proposed CIFOA-SVM has achieved average results of 81.70% classification accuracy,

95.03% sensitivity, 51.04% specificity, 16.1 selected features, and 504.3 support vectors. To

compare the CIFOA-SVM with other methods in terms of the GCD, not only did the CIFOA-

SVM obtain the best results with respect to most of the performance criteria but also the stan-

dard deviation generated by CIFOA-SVM is much smaller in terms of classification accuracy

and the number of selected features than that of other methods. Table 12 presents the same

phenomenon. Moreover, Fig 13 shows the classification accuracy achieved by the five methods

for each fold run of the 10-fold crossover-validation on the GCD. This graph shows that the

proposed CIFOA-SVM almost achieves better results than the other methods in terms of clas-

sification accuracy in each fold for the GCD datasets. The results achieved above by the five

methods for the two datasets indicate that the proposed method has better classification per-

formance in solving credit card problems.

Feature selection is one of the important effect factors for the classification accuracy of the

SVM classifier. According to Table 12 and Fig 14, feature selection methods have better classi-

fication accuracy than the parameter adjustment methods, although FOA has better searching

ability for the optimal SVM parameters among these parameter adjustment methods. Fig 14

Table 12. Classification results of various methods in terms of classification accuracy, sensitivity, specificity, number of selected features and

support vectors, and model parameters for German Credit Data (GCD).

Criteria Methods

GAFS PSOFS TVPSOFS FOASVM CIFOA-SVM

Sensitivity 0.9213 + 0.0026 0.9246 + 0.0006 0.9359 + 0.0008 0.9282 + 0.0006 0.9503 + 0.0007

Accuracy 0.8150 + 0.0014 0.7980 + 0.0013 0.8060 + 0.0016 0.8160 + 0.0019 0.8170 + 0.0006

Specificity 0.5524 + 0.0009 0.5027 + 0.0105 0.5059 + 0.0018 0.5548 + 0.0015 0.5104 + 0.0008

N of features 17.1 + 6.49 15.3 + 28.1 16.4 + 23.4 24.0 + 0.0 16.1 + 3.09

N of SVs 540.965 557.9 527.6 518.1 504.3

Parameter C 161.4932 166.4563 146.5901 747.4506 166.3319

Parameter γ 0.3754 0.6177 0.5136 0.0287 0.6666

https://doi.org/10.1371/journal.pone.0173516.t012

Table 13. Classification results of various methods in terms of classification accuracy, sensitivity, specificity, number of selected features and

support vectors, and model parameters for Australian Credit Approval (ACA).

Criteria Methods

GAFS PSOFS TVPSOFS FOASVM CIFOA-SVM

Sensitivity 0.9429 + 0.0003 0.8289 + 0.0020 0.8152 + 0.0050 0.7552 + 0.0177 0.8376 + 0.0015

Accuracy 0.8200 + 0.0015 0.7991 + 0.0101 0.8231 + 0.0017 0.8115 + 0.0032 0.8376 + 0.0007

Specificity 0.5382 + 0.0093 0.8513 + 0.0057 0.8315 + 0.0042 0.8545 + 0.0052 0.8190 + 0.0018

N of features 8.1 + 3.69 8.3 + 6.01 6.5 + 2.35 14.0 + 0.0 6.3 + 1.29

N of SVs 540.8 402.2 399.5 384.8 403.2

Parameter C 105.1754 480.7929 439.4262 418.5625 401.1397

Parameter γ 0.5761 0.4315 0.4163 0.0399 0.5574

https://doi.org/10.1371/journal.pone.0173516.t013
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shows the number of selected features of the five methods for 10 runs of 10-fold crossover-vali-

dation for the GCD. As shown, the proposed CIFOA-SVM almost requires the least number

of selected features to implement an optimal SVM model compared with the PSOFS and

TVPSO at each fold run of 10-fold cross-validation for the GCD dataset.

To investigate the required computational overhead of the five methods to complete an

optimal SVM model, we have recorded the computational time in seconds of using the five

methods to implement the training and prediction procedure in the fold #4 run of the GCD

dataset, and these results are presented in Fig 15. This graph shows that the proposed CIFOA-

SVM requires an average of almost 800 seconds to implement the training and prediction pro-

cedure in the fold #4 run for the GCD dataset. Compared with CIFOA-SVM and GAFS on the

GCD dataset, the required running time was reduced by 40 seconds by CIFOA-SVM. Com-

pared with the PSOFS and CIFOA-SVM, the required running time was reduced by 215 sec-

onds by CIFOA-SVM. Compared with CIFOA-SVM and TVPSOFS, the running time was

reduced by 35 seconds by CIFOA-SVM. Moreover, the same phenomenon has been observed

in Fig 15. PSOFS requires the most time consumption for implementing the entire optimiza-

tion process.

To compare the searching capability of using various intelligent algorithms to determine

the optimal parameter setting of the SVM model and to select a proper feature subset, this

experiment recorded the best classification accuracy achieved by the five methods in each

Fig 13. The classification accuracy achieved for each fold run by various methods for German Credit

Data (GCD).

https://doi.org/10.1371/journal.pone.0173516.g013

Fig 14. The results of the five methods in terms of the number of selected features for German Credit

Data (GCD).

https://doi.org/10.1371/journal.pone.0173516.g014
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iteration for fold #4 of the GCD dataset. Fig 16 shows the convergence curve generated by the

five methods with increasing iterative times for the GCD dataset. This curve shows that did the

proposed CIFOA-SVM not only almost achieve the best classification accuracy of all the meth-

ods for different iterations but also determined the superior solution and met the termination

criteria far more rapidly.

5. Conclusion and future work

In this work, feature selection and parameter estimation for the SVM are transformed into a

complex multidimensional optimization problem. To solve this problem and obtain an opti-

mal SVM model, this study proposed an improved FOA based on the chaotic PSO–in combi-

nation with the mutation strategy. In the proposed method, the proposed improved algorithm,

CIFOA, has been successfully applied to determine the optimal parameter setting of the SVM

classifier and to provide a more appropriate feature subset. To prevent the searching procedure

from becoming trapped in a local optimum and to have an efficient classifier with better global

searching ability, a mutation strategy was proposed to maintain population diversity. In this

study, we first perform several groups of tests to evaluate the searching ability of the proposed

CIFOA in solving the complex nonlinear continuous functions. The empirical results show

Fig 15. The required running time in seconds for each run by the five methods for German Credit Data

(GCD).

https://doi.org/10.1371/journal.pone.0173516.g015

Fig 16. The convergence curves generated for fold #5 run by the five methods for German Credit Data

(GCD).

https://doi.org/10.1371/journal.pone.0173516.g016
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that CIFOA not only achieves a significant result with respect to parameter estimation of the

optimization function but also has a faster convergence rate. Finally, to evaluate the effective-

ness of parameter estimation of the proposed improved algorithm and the classification per-

formance of the proposed intelligent framework, CIFOA-SVM, we performed several groups

of experiments using various well-known methods for solving the credit card problem and the

medical diagnosis problem. The experimental results reveal that the proposed intelligent

framework is a powerful tool for parameter optimization and feature selection for SVM.

There are several notable directions for our future work. First, it would be interesting to

combine the proposed intelligent framework with a different classifier–such as a Naïve Bayes

and an Artificial Neural Network–to solve classification problems in wider areas. Second, we

would like to extend the proposed intelligent framework to solve multi-class problems in the

real world. Finally, it would be fruitful to employ heterogeneous evolution algorithms with the

swarm optimization technique to construct several groups of experiments for classification

tasks.
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