Skip to main content
. 2017 Apr 3;12(4):e0173516. doi: 10.1371/journal.pone.0173516

Table 2. The Benchmark functions.

Function ID Function Name Equation Function Typ Dimension f(x*) Bounds of X
F1 Sphere f(x)=i=1nxi2 Unimodal 30 0 UB(100)
LB(-100)
F2 Schwefel’s problem 2.22 f(x)=i=1n|xi|+i=1n|xi| Unimodal 30 0 UB(10)
LB(-10)
F3 Quartic f(x)=i=1nixi4+rand() Unimodal 30 0 UB(1.28)
LB(-1.28)
F4 Sum squares f(x)=i=1nixi2 Unimodal 30 0 UB(10)
LB(-10)
F5 Sum of different power f(x)=i=1n|xi|i+1 Unimodal 30 0 UB(1)
LB(-1)
F6 Rosenbrock f(x)=i=1n1(100(xi+1xi2)2+(xi1)2) Unimodal 30 0 UB(30)
LB(30)
F7 Ackley f(x)=20exp(0.21ni=1nxi2)exp(1ni=1ncos(2πxi))+20+e Multimodal 30 0 UB(32)
LB(-32)
F8 Griewank f(x)=14000i=1n1xi2i=1ncos(xii)+1 Multimodal 30 0 UB(600)
LB(600)
F9 Alpine f(x)=i=1n{xisin(xi)+0.1xi} Multimodal 30 0 UB(10)
LB(10)
F10 Powell f(x)=i=1n/4{(x4i3+10x4i2)2+4(x4i1+x4i)2+(x4i2+2x4i1)2+10(x4i3+x4i)2} Multimodal 30 0 UB(5)
LB(-4)
F11 Rastrigin f(x)=i=1n(xi210cos(2πxi)+10) Multimodal 30 0 UB = 5.12
LB(-5.12)
F12 Solomon
problem
f(x)=1cos(2πi=1nxi2)+0.1i=1nxi2 Multimodal 30 0 UB(100)
LB(-100)