Skip to main content
. 2017 Apr 3;12(4):e0173516. doi: 10.1371/journal.pone.0173516

Table 10. Classification results of various methods in terms of classification accuracy, sensitivity, specificity, number of selected features and support vectors, and model parameters for Parkinson’s disease dataset (PDD).

Criteria Methods
GAFS PSOFS TVPSOFS FOASVM CIFOA-SVM
Sensitivity 0.9890 + 0.0017 0.9703 + 0.0019 0.6533 + 0.0016 0.9790 + 0.0029 0.9810 + 0.0013
Accuracy 0.9621 + 0.0022 0.9157 + 0.0024 0.9473 + 0.0011 0.9615 + 0.0017 0.9631 + 0.0006
Specificity 0.9352 + 0.0069 0.8333 + 0.0187 0.8666 + 0.0433 0.9440 + 0.0025 0.9452 + 0.0027
N of features 10.2 + 6.92 15.3 + 3.61 12.5 + 8.45 22.0 + 0.0 12.1 + 1.59
N of SVs 78.1 82.6 81.2 129.8 75.4
Parameter C 594.1864 449.5192 562.3227 543.8755 472.205
Parameter γ 0.4939 0.5348 0.3189 0.3495 0.4518