Skip to main content
. 2017 Apr 3;12(4):e0173516. doi: 10.1371/journal.pone.0173516

Table 12. Classification results of various methods in terms of classification accuracy, sensitivity, specificity, number of selected features and support vectors, and model parameters for German Credit Data (GCD).

Criteria Methods
GAFS PSOFS TVPSOFS FOASVM CIFOA-SVM
Sensitivity 0.9213 + 0.0026 0.9246 + 0.0006 0.9359 + 0.0008 0.9282 + 0.0006 0.9503 + 0.0007
Accuracy 0.8150 + 0.0014 0.7980 + 0.0013 0.8060 + 0.0016 0.8160 + 0.0019 0.8170 + 0.0006
Specificity 0.5524 + 0.0009 0.5027 + 0.0105 0.5059 + 0.0018 0.5548 + 0.0015 0.5104 + 0.0008
N of features 17.1 + 6.49 15.3 + 28.1 16.4 + 23.4 24.0 + 0.0 16.1 + 3.09
N of SVs 540.965 557.9 527.6 518.1 504.3
Parameter C 161.4932 166.4563 146.5901 747.4506 166.3319
Parameter γ 0.3754 0.6177 0.5136 0.0287 0.6666