Skip to main content
. 2017 Apr 3;12(4):e0173516. doi: 10.1371/journal.pone.0173516

Table 13. Classification results of various methods in terms of classification accuracy, sensitivity, specificity, number of selected features and support vectors, and model parameters for Australian Credit Approval (ACA).

Criteria Methods
GAFS PSOFS TVPSOFS FOASVM CIFOA-SVM
Sensitivity 0.9429 + 0.0003 0.8289 + 0.0020 0.8152 + 0.0050 0.7552 + 0.0177 0.8376 + 0.0015
Accuracy 0.8200 + 0.0015 0.7991 + 0.0101 0.8231 + 0.0017 0.8115 + 0.0032 0.8376 + 0.0007
Specificity 0.5382 + 0.0093 0.8513 + 0.0057 0.8315 + 0.0042 0.8545 + 0.0052 0.8190 + 0.0018
N of features 8.1 + 3.69 8.3 + 6.01 6.5 + 2.35 14.0 + 0.0 6.3 + 1.29
N of SVs 540.8 402.2 399.5 384.8 403.2
Parameter C 105.1754 480.7929 439.4262 418.5625 401.1397
Parameter γ 0.5761 0.4315 0.4163 0.0399 0.5574