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Abstract

Background—Air pollution cohort studies are frequently analyzed in two stages, first modeling 

exposure then using predicted exposures to estimate health effects in a second regression model. 

The difference between predicted and unobserved true exposures introduces a form of 

measurement error in the second stage health model. Recent methods for spatial data correct for 

measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, 

i.e., monitor and subject locations are drawn from the same spatial distribution. These methods 

have not previously been applied to spatiotemporal exposure data.

Methods—We analyzed the association between fine particulate matter (PM2.5) and birth weight 

in the U.S. state of Georgia using records with estimated date of conception during 2002–2005 

(n=403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal 

exposure model. To improve spatial compatibility, we restricted to mothers residing in counties 

with a PM2.5 monitor (n=180,440). We accounted for additional measurement error via a non-

parametric bootstrap.

Results—Third-trimester PM2.5 exposure was associated with lower birth weight in the 

uncorrected (−2.4g per 1 μg/m3 difference in exposure; 95% Confidence Interval [CI]: −3.9, −0.8) 

and bootstrap-corrected (−2.5g, 95% CI: −4.2, −0.8) analyses. Results for the unrestricted analysis 

were attenuated (−0.66g, 95% CI: −1.7, 0.35).

Conclusions—This study presents a novel application of measurement error correction for 

spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial 
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compatibility between monitor and subject locations and provide evidence of the association 

between air pollution exposure and birth weight.
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air pollution; bootstrap; low birth weight; measurement error; particulate matter; spatiotemporal 
modeling

Introduction

Air pollution epidemiology studies of ambient outdoor pollution frequently make use of 

predicted exposures through a two-stage procedure. First, a spatial or spatiotemporal model 

is developed using monitoring data from regulatory networks to predict exposures. Next, 

health outcomes are regressed on the predicted exposure and confounder variables in a 

second model. The use of predicted exposures in the health model can introduce 

measurement error in coefficient estimates.1–8

Traditional measurement error is classified into classical error, in which the measured value 

is an error-prone version of true exposure, and Berkson error, in which the measured value is 

a smoothed version of true exposure.9 For predicted spatial exposures in air pollution 

epidemiology, two similar types of measurement error arise. Reduced variability in exposure 

predictions, due to smoothing in the exposure regression model, induces Berkson-like error 

that can underinflate standard errors and, for some exposure models, induce bias in the point 

estimate.2,5,8 Classical-like error arises from having a finite number of monitors for building 

an exposure model, which results in variability in the exposure model parameter estimates 

and can induce bias and impact standard errors.2

Regression calibration9 is a standard approach to measurement error correction, which uses 

validation data to estimate the relationship between the true exposure and the error-prone 

measurement and then corrects bias in regression coefficients estimated from the primary 

data. Although mathematically one can view the two-stage exposure and health modeling 

paradigm as a specific form of regression calibration, with the monitor data used as external 

validation data for calibrating geographic covariates,10 the spatial or spatiotemporal nature 

of the data and practical sample size considerations imply that further correction is needed 

for the residual classical-like and Berkson-like error.11

The paradigm for modeling the exposure surface determines the appropriate method for 

accounting for the induced measurement error. If the exposure surface is assumed to be 

random with fixed monitor and cohort locations, such as in the classical formulation of 

kriging problems,12 then a parametric bootstrap, or a similar approximate procedure, can be 

used to correctly remove bias and adjust standard errors.2 A second approach to 

measurement error correction under this paradigm is the spatial simulation extrapolation 

method developed by Alexeeff et al.,7 which introduces additional measurement error into 

simulated datasets and then calculates a back-transformed value that corresponds to no 

measurement error.
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An alternative paradigm considers the exposure surface as fixed, with the locations of 

monitors and subjects providing the sampling variability.5,8 In studies with long-term 

exposures, the fixed surface paradigm better reflects the frequentist sampling nature of the 

study, in that replicate experiments would involve different subjects at different locations, 

and possibly different monitor locations, but not a different long-term pollution 

concentration surface. Szpiro and Paciorek outlined the conditions necessary for consistent 

estimation of a health association using predicted exposures under the fixed surface 

paradigm with unlimited monitoring data.5 An important criterion is spatial compatibility, 

which means that the monitor and cohort locations are samples from identical, or at least 

very similar, spatial distributions. This presents a challenge to air pollution epidemiology 

studies in which monitoring data are limited by regulatory siting procedures while cohort 

data are collected independently. Szpiro and Paciorek suggest excluding exposure or 

outcome data as one way to improve spatial compatibility.5

Improving spatial compatibility reduces bias from Berkson-like error, but bias may still exist 

from classical-like error with finite monitoring data. For both types of error, corrections 

must still be made for incorrect estimates of the standard error.5 Under the fixed surface 

paradigm, a non-parametric bootstrap that resamples monitors and subjects provides an 

appropriate method to estimate bias and corrected standard errors.5

While these measurement error correction methods are well developed for long-term spatial 

exposures, they have not been applied to spatiotemporal exposures that vary across space 

and in time. In the spatiotemporal setting, the fixed surface paradigm extends to a setting in 

which the three-dimensional exposure ‘surface’ is fixed, meaning that pollutant 

concentrations do not change in repeat experiments, but the location, time, and duration of 

observations may change due to monitor placement in space and time.

In this paper, we extend these measurement error correction methods to an analysis of 

ambient fine particulate matter (PM2.5; particles less than 2.5 μm in aerodynamic diameter) 

and birth weight in a cohort from the U.S. state of Georgia. Exposure to ambient PM2.5 

during pregnancy has been associated with low birth weight in many studies, although the 

estimates reported in the literature are heterogeneous.13–16 In birth outcome studies, 

estimates of time-varying exposures are needed for specific pregnancy windows using 

reported gestational age and birth date. Other than the work of Alexeeff et al.,7 who applied 

spatial simulation extrapolation to spatial exposure models to correct for measurement error 

in a Massachusetts birth cohort, published studies of birth weight and PM2.5 have not 

accounted for exposure measurement error. Here, we extend bootstrap-based measurement 

error correction methods to spatiotemporal exposures at the trimester scale and compare the 

results obtained from applying different correction approaches.

Methods

Study Population

We obtained vital record data for births from the Office of Health Information and Policy 

(OHIP), Georgia Division of Public Health. The study cohort included all singleton, full-

term (gestational age ≥37 weeks) births without major structural congenital birth defects and 
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with conception date between January 1, 2002 and December 31, 2005 to mothers ages 15 to 

44 (n=442,436). Gestational age was defined according to date of last menstrual period, and 

date of conception was estimated by adding 14 days to the date of last menstrual period. We 

limited the study cohort to births to non-Hispanic white, non-Hispanic black, and Hispanic 

mothers. Each record was geocoded to one of the 4,788 Census 2000 block groups in 

Georgia by OHIP using maternal residential address at delivery. After removing records with 

incomplete covariate information, 403,881 birth records were available for analysis (see 

Figure 1). This study was approved by the Institutional Review Board of Emory University.

Exposure Prediction

To predict trimester-specific ambient PM2.5 exposures for each maternal record, we fit a 

spatiotemporal model for PM2.5 with 2-week temporal and 1 km grid-cell spatial resolution. 

The PM2.5 modeling region included all of Georgia and portions of surrounding states (see 

Figure 2). We divided the monitoring domain into 598,320 1km grid cells to accommodate 

gridded covariate information.

We obtained daily 24-hour average PM2.5 concentrations from the EPA Air Quality System 

(http://www.epa.gov/ttn/airs/airsaqs/) for 74 Federal Reference Method monitors (see Figure 

2). We aggregated the daily measurements to two-week average concentrations, dropping 

two-week averages derived from fewer than four measurements. For modeling, monitor 

values were assigned to the center of the grid cell containing the monitor. We obtained 

measurements of average elevation within each grid cell from the national elevation database 

(http://ned.usgs.gov). We computed the average percent forest cover using data from the 

National Land Cover Database (http://www.epa.gov.mrlc/nlcd-2001) and the total road 

length within each grid cell from ESRI Streetmap road data (Environmental Systems 

Research Institute Inc., Redland, CA). We calculated the distance to emissions point sources 

using data from the 2002 National Emissions Inventory report. Two-week average values of 

temperature, wind speed, and relative humidity were calculated at each grid cell for the 

entire study period, as described by Hu et al.17

The hierarchical spatiotemporal model for outdoor ambient PM2.5 can be written as

where β0(s) is a long-term spatial mean, β1(s)f(t) is a time trend with spatially-varying 

coefficients, Mk(s,t) are spatiotemporal covariates, and ν(s,t) is a space-time residual 

term.18–21 This model is implemented in the SpatioTemporal package in R.22 The long-term 

mean component included percent forest cover and distance to emissions sources as 

covariates and a spatially correlated error structure, parameterized as an exponential 

covariance with range and sill. The time trend was estimated from observations at the Air 

Quality System monitors.21,23 The trend coefficients had a mean depending upon elevation, 

forest cover, local and highway road length and a spatially correlated error structure.

We evaluated the predictive accuracy of the model using leave-one-out cross validation, a 

procedure that involves leaving out one monitor location at a time and refitting the model 
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using all remaining monitors. We quantified cross-validation performance via mean-squared 

error-based R2,18,19 root mean-squared error, and mean absolute error. We computed these 

measures with two-week values, which incorporate spatial and temporal variability, and with 

non-overlapping twelve-week averages, to better reflect the trimester exposures of interest.

We predicted two-week average concentrations of ambient PM2.5 at grid cell locations 

across the modeling domain for the period January 1, 2002 to December 31, 2006. Ambient 

concentrations at each census block group were assigned based upon the value of the grid 

cell containing the block group, and so each birth record linked to a single block group had 

the same exposure. Trimester average exposures were computed for each record by 

assigning trimester start and end dates to nearest two-week modeling period and averaging 

predicted exposures for the corresponding block group between these dates.

Epidemiologic Analysis

The spatial distribution of births (Figure 1) encompasses a much broader area of the state 

than is covered by the PM2.5 monitors (Figure 2), although most monitors are in counties 

with high birth counts. The siting guidelines for PM2.5 monitors favor areas of high 

population density,24 but also include criteria addressing areas of high pollution levels and 

locations near important sources. Therefore, we do not regard the spatial distributions of 

monitor and subject locations as equivalent. To improve spatial compatibility between the 

distributions of monitor locations and maternal residences, we restricted our primary 

analysis to births to mothers residing in a county with a monitor, which left 180,440 records 

for analysis. As a sensitivity analysis, we also fit the health model using records from all 

counties, which we expect to suffer from measurement error due to spatial incompatibility 

between the subjects and the monitors.

We modeled birth weight as a continuous outcome in a linear regression model with 

trimester PM2.5 exposure as the covariate of interest. Following the work of Darrow et al.,25 

we included indicators for maternal education (less than 9th grade, 9th through 12th grade, 

high school diploma or equivalent, some college or higher), maternal race, reported tobacco 

and alcohol use during pregnancy, and county as potential confounders. We included natural 

cubic splines for the potential confounders census block group percent below poverty (3 

degrees of freedom [df]), conception date (16 df), and maternal age (3 df) and its interaction 

with maternal race. Due to their strong relationship with birth weight, we included indicators 

for infant sex, gestational week, and being firstborn.

We conducted a sensitivity analysis that varied the extent of temporal adjustment in the birth 

weight model by increasing the degrees of freedom in the spline for conception date. We 

explored possible non-linearity in the association between PM2.5 and birth weight by 

representing PM2.5 via a spline term in the birth weight model.

Non-Parametric Bootstrap

The restriction of the study cohort to subjects residing in a county with a monitor provides 

one correction for measurement error, by approximately matching the distribution of subject 

and monitor locations to improve spatial compatibility. To address remaining measurement 
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error, we implemented a non-parametric bootstrap that extends the method of Szpiro and 

Paciorek to spatiotemporal data.5

The non-parametric bootstrap resamples monitor locations to reflect variation in the 

predicted exposure surface derived from different monitor locations and resamples birth 

records to capture sampling variability in the epidemiologic analysis arising from different 

subjects. The procedure can be outlined as:

1. Resample 74 PM2.5 monitors, together with their observations, with replacement.

2. Estimate spatiotemporal exposure model parameters using the sampled monitors.

3. Make new predictions of two-week average PM2.5 concentrations at each grid 

cell center.

4. Resample 180,440 birth records with replacement, and compute the average 

trimester exposure for each record.

5. Fit a regression model using the sampled birth records and their new predicted 

exposures.

This procedure was repeated 5,000 times. If a monitor was selected more than once, we 

jittered its location by up to 300 meters to avoid model-fitting problems arising from exact 

colocation. eAppendix 1 provides code demonstrating this procedure.

We used the average PM2.5 coefficient from the bootstrap datasets to estimate bias in the 

association estimate from the primary model.26 The empirical standard error of the bootstrap 

point estimates was used to estimate the standard error of the bias-corrected estimate.

Parameter Bootstrap

We conducted a sensitivity analysis to examine an alternative measurement error correction 

method that assumes a random spatiotemporal surface paradigm for PM2.5 concentrations. 

For this analysis we implemented the parameter bootstrap, which is a computational 

approximation to the parametric bootstrap.2 The parameter bootstrap holds locations and 

birth records fixed and simulates new exposures and monitor observations. This procedure 

can be outlined as:

1. Simulate new monitor observations and ‘true’ grid cell concentrations using the 

spatiotemporal exposure model with parameter estimates from the original data.

2. Estimate the spatiotemporal exposure model parameters using the simulated 

monitor observations.

3. Make new predictions of two-week average PM2.5 concentrations at each grid 

cell center.

4. Simulate a new birth weight for each record from the ‘true’ exposure at the 

corresponding grid cell and all other covariates, using the coefficients from the 

original health model fit.

5. Fit a regression model using the simulated birth weights and all covariates as in 

the original analysis.
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The bootstrap point estimates are used to bias-correct the original estimate and estimate its 

standard error in the same manner as the non-parametric bootstrap.

Results

Mean birth weight for infants in the restricted cohort was 3,355 g (standard deviation [SD] 

of 465 g), compared to 3,368 g (SD: 466 g) in the statewide cohort. Mothers in the restricted 

cohort had a higher prevalence of self-reported tobacco use during pregnancy and were more 

likely to be non-Hispanic black than mothers in the statewide cohort (see Table 1).

The number of two-week observations at PM2.5 monitoring sites during the study period 

ranged from 5 to 156, with a median of 89 observations. The mean of the two-week 

concentrations at each monitoring site ranged from 10.0 μg/m3 to 18.1 μg/m3, with an 

average concentration of 14.2 μg/m3 (SD: 1.4 μg/m3). The estimated PM2.5 time trend 

showed regular seasonal variability across the study period, with slightly higher amplitude in 

later years (see eFigure 1). The estimated range parameters for the long-term mean, time 

trend coefficients, and residual term were 65km, 191km, and 659km, respectively, indicating 

a large amount of spatial smoothing in all model components. Full model coefficients are 

provided in eTable 1. Cross-validated model performance was excellent at the two-week 

scale (CV R2 = 0.81, RMSE = 1.9 μg/m3, MAE = 1.4 μg/m3) and at the twelve-week scale 

(CV R2 = 0.82, RMSE = 1.4 μg/m3, MAE = 1.0 μg/m3). eFigure 2 shows a scatterplot of 

predicted and observed two-week values at monitor locations.

Predicted PM2.5 exposure was highest during the third trimester for the restricted cohort 

(mean of 14.6 μg/m3), since births were most frequent in the summer months, when PM2.5 

concentrations were also highest. In all trimesters, the mean exposure was higher for the 

restricted cohort than for the statewide cohort (see Table 2). Correlations between exposures 

in consecutive trimesters, without controlling for seasonality, were small (0.26 to 0.39), 

while exposures in the first and third trimester were negatively correlated. Differences in 

predicted exposure across space can be seen in Figure 3, which shows the long-term average 

prediction at each block group.

In births to mothers living in a county with a PM2.5 monitor, a difference of 1 μg/m3 in 

ambient PM2.5 during the first, second, and third trimesters was associated with differences 

in birth weight of −1.5 g (95% Confidence Interval [CI]: −3.1, 0.1), −1.6 g (95% CI: −3.2, 

0.1), and −2.4 g (95% CI: −3.9, −0.8), respectively, when no bootstrap correction was made 

(Table 3). The non-parametric bootstrap corrected estimates for each trimester were −1.5 g 

(95% CI: −3.2, 0.1), −1.6 g (95% CI: −3.3, 0.0), and −2.5 g (95% CI: −4.2, −0.8), 

respectively. The bootstrap-corrected standard error for the third trimester was 0.85 g, 

compared to 0.78 g in the uncorrected analysis. In contrast to the non-parametric bootstrap, 

the parameter bootstrap results showed little bias in the point estimates but much larger 

underinflation in the standard errors. For the third trimester, the parameter bootstrap 

corrected estimate was −2.4 g with a standard error of 0.92 g.

In the sensitivity analysis that included births from all counties, the estimated associations 

for all trimesters were attenuated. The estimates for second and third trimester exposure 
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were similar (−0.62 [95% CI: −1.7, 0.45] and −0.66 [95% CI: −1.7, 0.35] g per 1 μg/m3, 

respectively), and the association for the first trimester was weaker and had opposite sign 

(0.28 g per 1 μg/m3). The standard errors for these estimates were much smaller (0.51 to 

0.55) than those from the analysis of the restricted cohort. As a further sensitivity analysis, 

we applied the bootstrap correction methods to the statewide dataset. The results, provided 

in eTable 2, are similar to the uncorrected statewide estimates.

Sensitivity analyses for increased temporal adjustment did not yield substantively different 

estimates for the association of interest (see eTable 3). There was no evidence that the 

PM2.5—birth weight association was nonlinear.

Discussion

We have presented an approach for correcting for measurement error induced by using 

predicted spatiotemporal pollutant exposures in regression models. Using Georgia birth 

records, we demonstrated these methods in an analysis of the association between birth 

weight and ambient fine particulate matter. To improve spatial compatibility between the 

monitor and subject location distributions, we restricted the analysis to births to mothers 

residing in a county with a monitor. We observed a strong association between third 

trimester exposure and reduced birth weight. This association was robust to further 

correction for measurement error from a non-parametric bootstrap.

The large difference in point estimates between the primary analysis of the restricted cohort 

and the sensitivity analysis of the statewide cohort highlights the importance of accounting 

for spatial compatibility in air pollution epidemiology studies. However, the small number of 

monitors makes it difficult to be certain of the true extent of spatial incompatibility and our 

success in correcting it by restricting the cohort. Theoretical results of Szpiro and Paciorek5 

established the importance of spatial compatibility when using unpenalized spatial splines, 

but this work suggests it is an important condition for spatiotemporal, kriging models as 

well.

Within the restricted cohort analysis, the non-parametric bootstrap showed different amounts 

of measurement error between trimesters. The slight bias in the first trimester estimate is 

within the range of simulation error expected for the number of bootstrap replications. 

Although the magnitudes of the absolute bias in the second and third trimester estimates 

differed (0.08 g and 0.14 g, respectively), their relative biases were quite similar (5.1% and 

5.9%, respectively). Bias due to classical-like measurement error has been shown to be 

multiplicative for unpenalized spatial spline exposure models under the fixed-surface 

paradigm,5 and these results suggest this may also hold for spatiotemporal kriging models.

The contrasting results from the parameter bootstrap and non-parametric bootstrap 

corrections demonstrate the importance of the assumed underlying framework for the 

exposure surface across space. The trimester-length averaging period is long enough that we 

believe long-term geographical and commercial features and seasonal meteorology 

determine the average concentrations and therefore the fixed spatiotemporal surface 

paradigm is appropriate. Under this paradigm, we do not assume that the statistical model 
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can fully represent the underlying spatiotemporal surface. Resampling of the monitor 

locations and times leads to spatially- and temporally-varying bias, but the finite variability 

in the underlying surface limits variation between predicted exposures derived from different 

monitor locations and times. Thus, we expect the non-parametric bootstrap to partition 

measurement error into both bias and increased variability of the point estimate. In contrast, 

the random surface paradigm assumes a correctly specified exposure model that varies 

across studies due to different realizations of a spatiotemporal process. We expect that the 

parameter bootstrap, which simulates new observations from the model, to identify 

additional variability in the point estimate but little bias.

The birth weight results of this analysis are consistent with previously reported findings that 

corrected for exposure measurement error. In an analysis of a Massachusetts birth cohort 

from 2008, Alexeeff et al. found that a 1 μg/m3 difference in ambient PM2.5 exposure during 

the third trimester was associated with 3.5 g lower birth weight.7 This difference increased 

in magnitude to 4.9 g lower birth weight when they applied their spatial simulation 

extrapolation measurement error correction method. Unlike our approach, they corrected 

exposures estimated from averages of independent monthly spatial exposure models instead 

of correcting predictions from a spatiotemporal model.

Although our correction methods address measurement error introduced from the use of 

predicted exposures, they do not account for all sources of measurement error, particularly 

factors that influence the relationship between ambient level and personal exposure. For 

example, maternal residential mobility may introduce measurement error when exposures 

are assigned based upon address at delivery, 27,28 although a recent study suggests this 

impact may be limited.29 For mothers who do not move during pregnancy, the assignment of 

each birth record to a location at the resolution of census block group potentially introduces 

exposure misclassification because this location may not well reflect the daily activity 

pattern of the mother. Although the spatiotemporal modeling framework provides more 

spatially refined estimates of exposure than using assignment to values at a central site, the 

1km grid cannot capture fine-scale gradients below this resolution. However, particulate 

matter concentrations (PM2.5 and coarser fractions) tend to be more spatially homogeneous 

than primary pollutants such as NO2, so this may not substantively impact inference.30–32 

Less daily mobility in the final weeks prior to birth may reduce this source of measurement 

error in the third trimester analysis. In general, these sources of measurement error could 

affect both point estimates and standard errors, and are difficult to correct for without further 

individual-level information.

We believe we have adequately accounted for residual temporal confounding, as the results 

did not change substantively when additional degrees of freedom were added to the temporal 

adjustment; however, some residual within-county spatial confounding might be present. 

The regression model for birth weight does not include several potentially confounding 

maternal factors for which information was not available, including illicit drug use, stress, 

and socioeconomic differences beyond education level and census tract-level poverty 

measures.33 We controlled for gestational age in the analyses because preterm birth is a 

complex disease with multiple causes that exhibits strong socioeconomic and spatial 

patterning at the population level.34 As reduced birth weight shares many of these same 
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causes, we hope to have limited the potential for bias from spatial confounding by 

controlling for gestational age. Furthermore, gestational age is very strongly correlated with 

birth weight, and controlling for gestational age greatly improves the precision of the 

association estimates. The restriction of the cohort to full-term, live births without structural 

defects could potentially introduce some collider stratification bias in an estimate of the 

association between particulate matter and birth weight. However, most of the variability in 

gestational age is caused by factors other than ambient particulate matter concentrations, so 

the magnitude of this potential collider bias would likely be small.

While the restriction to births to mothers residing in counties with a monitor reduces 

measurement error by improving spatial compatibility, it also results in the analysis being 

performed on a subset of the population. Regulatory monitors tend to be sited near urban 

areas, and the restricted cohort differed from the statewide cohort in racial composition and 

tobacco use. As such, the effect estimates from the restricted cohort analysis likely better 

represent the associations in urban areas than for Georgia as a whole. Methods exist for 

generalizing these results to the full state population,35,36 but they rely on strong 

assumptions about the relationships between PM2.5, birth weight, and measured covariates 

that we do not make here. The tradeoff between reducing measurement error and analyzing 

only a subset of the larger population is an important challenge facing birth cohort studies. 

Supplemental air quality monitoring provides one approach to mitigating this challenge,37 

but can be prohibitively difficult for large cohorts. Satellite-based measurements of surrogate 

exposure are becoming more widely used in areas with limited monitoring, but do not 

directly solve the problem of limited monitoring data since satellite measurements require 

ground-based monitoring data for calibration.17,38 Furthermore, other sources of 

measurement error discussed above, such as variability in daily activity patterns, would 

remain.

In summary, we extended bootstrap correction methods to spatiotemporal exposures to 

further reduce measurement error and improve inference about health effects of 

environmental exposures. We analyzed a restricted cohort to reduce measurement error, and 

we demonstrated the importance of spatial compatibility between subject and monitor 

locations. Our results support an association between third-trimester ambient fine particulate 

matter exposure and reduced birth weight.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Total births by county, for estimated conception dates between 2002 and 2005.
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Figure 2. 
Locations of Air Quality System monitors used for the exposure prediction model.
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Figure 3. 
Predicted Long-term PM2.5 concentrations at block groups in Georgia. Black lines outline 

the counties that contain a monitor.
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Table 1

Maternal and infant characteristics [n(%)] for full-term births to mothers residing in a Georgia county with a 

PM2.5 monitor and in all Georgia counties, January 1, 2002 to December 31, 2005.

Characteristic Counties with Monitor (n=180,440) All Counties (n=403,881)

Birthweight (g)

 <2,500 5,448 (3) 11,429 (3)

 2,500–3,000 32,791 (18) 70,960 (18)

 3,000–3,500 76,709 (43) 170,279 (42)

 ≥3,500 65,492 (36) 151,213 (37)

Female Sex 88,670 (49) 198,463 (49)

Firstborn 73,485 (41) 160,659 (40)

Maternal Race

 Non-Hispanic White 71,707 (40) 212,231 (53)

 Non-Hispanic Black 78,201 (43) 128,795 (32)

 Hispanic 30,532 (17) 62,855 (16)

Maternal Education

 Less than 9th Grade 13,536 (8) 28,697 (7)

 9th through 12th Grade 28,604 (16) 70,124 (17)

 High School Degree 52,613 (29) 125,112 (31)

 Some college or higher 85,687 (47) 179,948 (45)

Maternal Age (years)

 <20 19,512 (11) 46,811 (12)

 20–34 137,571 (76) 310,806 (77)

 ≥35 23,357 (13) 46,264 (11)

Married 99,951 (55) 243,110 (60)

Reported Use during pregnancy

 Tobacco 8,443 (5) 31,090 (8)

 Alcohol 1,359 (1) 2,4667 (1)

Census Tract Level Poverty (% residents below poverty level)

 <5% 47,626 (26) 106,339 (26)

 5%–10% 43,255 (24) 99,089 (25)

 10%–20% 49,036 (27) 116,471 (29)

 ≥20% 40,523 (22) 81,982 (20)
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