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Abstract

Cancers are often initiated by genetic events that activate proto-oncogenes or inactivate tumor 

suppressor genes. These events are also critical for sustained tumor cell proliferation and survival, 

a phenomenon described as oncogene addiction. In addition to this cell intrinsic role, recent 

evidence indicates that oncogenes also directly regulate immune responses, leading to 

immunosuppression. Expression of many oncogenes, or loss of tumor suppressors, indeed induces 

the expression of immune checkpoints including PD-L1, which regulate the immune response. 

Here, we discuss how oncogenes, and in particular MYC, suppress immune surveillance and how 

oncogene-targeted therapies may restore the immune response against tumors.

Oncogenic MYC Addiction and the Immune System

Proto-oncogenes physiologically regulate normal cell proliferation, growth, differentiation, 

and apoptosis [1]. The activation, amplification, or mutation of oncogenes combined with 

the mutation or loss of expression of tumor suppressor genes cooperate to initiate 

tumorigenesis [1]. The c-MYC (MYC, see Abbreviations) oncogene is a transcription factor 

that normally regulates the expression of up to thousands of genes that in turn regulate 

proliferation, growth, differentiation, stemness, and metabolism [2–5]. MYC is genetically 

activated and/or overexpressed in most types of human cancer, thereby driving autonomous 

proliferation, growth and self-renewal [6–10], blocking differentiation [11,12], and inducing 

genomic destabilization [13]. Thus, MYC is thought to be a central driver of normal and 

malignant cellular growth and proliferation.

Oncogenes are not only critical in the process of the initiation of tumorigenesis; their 

sustained activation is required for the maintenance of a neoplastic state. The inactivation of 

a single driver oncogene can often result in dramatic regression of a cancer, a phenomenon 

that is referred to as “oncogene addiction.” Oncogene addiction has been most studied in 

experimental transgenic mouse models whereby oncogenes, such as MYC, can be 

conditionally expressed, using the Tet System. Using such model systems, it has been shown 

by many investigators that cancers induced by MYC [6,7,14,15], the GTPase RAS [16,17], 
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BCR-ABL (breakpoint cluster region – Abelson kinase fusion) [18], the human epidermal 

growth factor receptor HER2/neu [19,20], the tyrosine kinase receptor MET [21] as well as 

many other oncogenes [22–24] undergo rapid and sustained regression upon oncogene 

inactivation.

Until recently, it was thought that oncogenes, including MYC, contributed to normal and 

pathological cellular proliferation and growth only through tumor cell specific, host-

independent mechanisms. However, when examined in conditional transgenic mouse 

models, immune cells were found to be critical for the regression that occurs upon oncogene 

withdrawal, suggesting that oncogenes play an important role through the regulation of host 

immune-mediated mechanisms in models of lymphoma [25]. Similarly, it was found that 

host immune mechanisms regulate angiogenesis and tumor growth in pancreatic islet tumors 

[26]. In agreement with this hypothesis, MYC regulates the expression of immune 

checkpoints, including Cluster of Differentiation 47 (CD47, also known as Integrin 

Associated Protein, which allows cells to avoid phagocytosis [27]) and programmed death 

ligand 1 (PD-L1, also known as CD274 and B7-H1) [28]. Collectively, these findings 

indicate that oncogenes cause cancer not just through influencing cell growth and death 

pathways in the tumor cells, but also through their influence on immune evasion and 

immunosuppression.

During the evolution of a tumor, it is thought that cancer cells go through a process termed 

immune editing, allowing tumor cells to bypass immune surveillance mechanisms, either 

through the establishment of an immunosuppressive environment and/or through avoidance 

of recognition by immune cells [29]. Some tumor cells are immuno-stimulatory and are 

eliminated, whereas others avoid detection and continue to grow, forming the remaining, 

edited tumor. Furthermore, tumor micro-environments are often generally 

immunosuppressive, and although many mechanisms contribute to this phenomenon, 

changes in the expression of immune checkpoints in cancers appear to play an important role 

[30]. With recent advances in checkpoint blockade therapies, it is now clear that even 

“edited” tumors can be targeted by the immune system in a clinically effective manner 

through the alteration of the immunosuppression induced by tumor cells and their 

environment.

Here, we will discuss how oncogenes regulate key immune checkpoints. This could have 

significant implications for understanding the mechanisms by which oncogenes cause cancer 

and subsequently for therapy of cancer. We will suggest how and why oncogenes 

physiologically regulate the immune response and how and why abnormal oncogene 

activation can disrupt the immune response and contribute to tumorigenesis.

Oncogenes Regulate the Immune Response

Many studies report that oncogenes regulate components of the immune response, 

suggesting that more generally this is a mechanism of tumorigenesis. In some cases, these 

other oncogenes may work via MYC. The immune checkpoint regulators are key 

components of the immune response that can be regulated by oncogenic pathways [31], as 

has been seen particularly in MYC-driven tumors and lymphomas. PD-L1 is an immune 
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checkpoint that suppresses the immune system so that PD-L1 binding to its receptor sends T 

cells a signal to disengage [32,33]. PD-L1 has a role in the malignant progression of many 

types of cancer including lymphoma [34]. There are multiple oncogenic signaling pathways 

used to dampen the immune response and encourage immune privilege within the tumor 

[30]. In the next section, we focus on what is understood about how oncogenes regulate PD-

L1.

Several Oncogenes and Tumor Suppressors Regulate PD-L1 Expression

The gain of expression of oncogenes or the loss of expression of tumor suppressors has been 

shown to regulate immune checkpoints [35–38]. The upregulation of PD-L1 and related 

immunosuppressive pathways in mouse models of epidermal growth factor receptor 

(EGFR)-driven lung cancer was accompanied by decreases in cytotoxic tumor infiltrating 

lymphocytes (CTLs) and increases in T cell exhaustion [36]. The expression of mutant 

EGFR induced PD-L1, whereas EGFR inhibitors reduced PD-L1 expression [36]. 

Additionally, PD-L1 is upregulated by oncogenic signaling pathways associated with the 

resistance to the serine/threonine-protein kinase BRAF inhibitor vemurafenib [37]. Thus, 

multiple signaling pathways regulate the expression of PD-L1.

The WNT pathway and phosphinositide-3 kinase (PI3K) pathway regulate immune 

checkpoints. In autochthonous mouse melanoma models, WNT and CTNNB1 (encoding the 

β-catenin protein) signaling suppresses T cells, conferring resistance to anti-PD-L1/anti-

CTLA-4 therapy [39]. The activation of WNT/β-catenin is associated with the absence of a 

T cell signature and T cell infiltration in the tumor. Cyclin-dependent kinase 5 (CDK5) 

disruption reduces PD-L1 in a mouse model of medulloblastoma, increasing anti-tumor 

immunity via CD4+ T cell-mediated tumor rejection [40]. The transformation of T 

lymphocytes through the expression of the oncogenic tyrosine kinase NPM-ALK (fusion of 

nucleophosmin – anaplastic lymphoma kinase) led to upregulation of signal transducer and 

activator of transcription 3 (STAT3) and mechanistic target of rapamycin (mTORC1) along 

with cell surface expression of PD-L1 [38], suggesting that upregulation of PD-L1 is an 

early step in carcinogenesis. The AKT/mTOR pathway activates PD-L1 in vitro and in vivo 
in human lung cancer [41]. Both oncogenic and IFNγ-inducible expression of PD-L1 

depended on mTOR, and in human lung adenocarcinomas and squamous cell carcinoma, 

cell surface expression of PD-L1 was correlated with mTOR activation. The same study 

found that in mouse models of lung cancer, combination of an mTOR inhibitor with an anti-

PD1 antibody elevated levels of infiltrating lymphocytes and reduced regulatory T cell 

levels. Thus, both the WNT and PI3K pathways are important regulators of PD-L1.

Loss of tumor suppressors such as phosphatase and tensin homolog (PTEN), a key regulator 

of the PI3K pathway, and p53, a regulator of apoptosis, has been associated with increased 

expression of PD-L1. The loss of PTEN increased PD-L1 expression, eliciting immuno-

resistance in glioma [35]. The loss of PTEN also elevated PD-L1 in melanoma alongside 

secretion of immunosuppressive factors [42] in short-term culture of patient-derived 

melanoma cells [42]. In human lung tumors, PD-L1 expression was significantly associated 

with aberrant p53 expression, which in turn associated with reduced infiltrating immune 

cells [43]. In hepatocellular carcinoma, PD-L1 expression was negatively correlated to p53 
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expression [44]. In human lung adenocarcinoma, genetic events in p53 correlated with 

higher PD-L1 [45]. Thus, dysregulation of tumor suppressors correlates with changes in PD-

L1 expression.

From the studies discussed here, it is clear that PD-L1 is regulated by many oncogenes and 

tumor suppressors, suggesting that the onset and maintenance of tumorigenesis is directly 

linked with increased levels of PD-L1 expression

Oncogene Inactivation Restores the Immune Response

Cancers are often “addicted” to driver oncogenes, such that inactivation of a driver oncogene 

can result in dramatic tumor regression [6]. Oncogene addiction was largely thought to occur 

based on tumor cell-intrinsic pathways. However, recent observations indicate that the 

immune system plays a role in tumor regression following oncogene inactivation [46,47]. 

Experimentally, inactivation of the MYC or BCR-ABL oncogenes in genetically engineered 

conditional mouse hematopoietic tumors failed to induce sustained tumor regression in the 

absence of an intact host immune system [25]. CD4+ helper T cells were found to be 

required to remodel the tumor microenvironment and reduce the numbers of malignant cells 

left following treatment, a parameter called minimal residual disease (MRD). In the absence 

of CD4+ T cells, oncogene inactivation failed to shut down angiogenesis in the host or elicit 

cellular senescence in tumor cells [25]. Thus, oncogene addiction occurs both through 

tumor-intrinsic mechanisms, such as induction of apoptosis and inhibition of proliferation, 

and host immune-dependent mechanisms.

In this context, the role of MYC in the regulation of immune checkpoints was critical for the 

observed phenotype. Indeed, preventing MYC inactivation from suppressing CD47 or PD-

L1 via constitutive expression of these checkpoints in mouse tumor cells blocked sustained 

tumor regression [27]. For both genes, MYC inactivation decreased mRNA and surface 

protein expression, although other immune receptors were unaffected. Mechanistically, 

MYC was shown to bind to the promoters of CD47 and PD-L1 as measured by chromatin 

immune-precipitation followed by sequencing (ChIP-Seq) [27]. MYC binding was generally 

seen only at relatively high levels of MYC expression, suggesting that this may represent 

promoter “invasion.” Notably, MYC only modestly induced these immunomodulatory 

targets on its own but knocking down expression of CD47 or PD-L1 prevented MYC-

induced tumors from establishing in immunocompetent hosts [27]. In terms of immune 

response, MYC’s regulation of PD-L1 and CD47 was shown to be casually involved in the 

recruitment of T cells and macrophages. This recruitment modified the tumor 

microenvironment, ultimately influencing both angiogenesis and induction of cellular 

senescence [25,28].

To date, no drugs have been identified to directly target MYC. Bromodomain and 

extraterminal protein (BET) inhibitors can block MYC transcriptional function and can 

reduce MYC expression [48,49]. However, these inhibitors do not only work through MYC 

[48–50]. The BET inhibitor JQ1 [48,51] decreased expression of PD-L1 and CD47 but not 

of other immune receptors [28,52] and was associated with the recruitment of T cells [52]. 

Thus, drugs that target MYC associated pathways may be useful to alter the expression of 

immune checkpoints.
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General Mechanistic and Therapeutic Implications

MYC’s regulation of the expression of the immune checkpoints CD47 and PD-L1 suggests a 

direct role in coordinating the immune response (Figure 1). Several questions arise: First, is 

MYC a general regulator the immune response? This remains to be shown since there are a 

multitude of immune checkpoints, chemokines, and host immune effector mechanisms that 

MYC regulates. Other oncogenes can regulate the immune response against tumors, as 

described above, including BRAF and β-catenin [39,53,54]. These could work through 

MYC, or they could work through parallel pathways. The inactivation of several different 

oncogenes has been shown to restore an immune response, including the inactivation of 

HER2 [55], BRAF [53,56,57], sonic hedgehog (SHH) [58], β-catenin, [59], EGFR [60] and 

the zinc finger protein SNAI1 (Snail) [61]. Thus, it is likely that many oncogenes coordinate 

to regulate the immune response. Since oncogene inactivation often induces tumor cell death 

[6], it is of great interest to determine whether cell death following oncogene withdrawal 

may also, albeit indirectly, activate the immune system through effects on immunogenic or 

tolerogenic cell death [62].

In addition to effects on the expression of immune checkpoints, oncogenes can regulate 

other immune-associated molecules including cytokines. MYC has been shown to regulate 

many secreted molecules. MYC regulates thrombospondin-1, which causally regulates 

angiogenesis and cellular senescence [25]. MYC also regulates Type 1 IFN [63], which 

influences innate and adaptive immunity [64]. Thus, expression of MYC could engender a 

non-immunogenic phenotype to cancer cells through multiple mechanisms, including cell 

surface checkpoint proteins [28] and secreted factors [63].

Second, do oncogenes such as MYC regulate immune checkpoints in a way that would make 

the tumor highly susceptible to immune therapy? MYC and other oncogenes, by inducing 

expression of immune checkpoints, may make tumors more susceptible to immune 

checkpoint-based therapies. However, this remains to be determined. Generally, tumors are 

all thought to undergo immune editing to evade immune surveillance [65,66]. The immune 

system would eliminate many nascent tumor cells, thereby evolutionarily selecting relative 

immune resistant and thus “edited” cells. However, if MYC up regulates immune 

checkpoints, this could bypass the requirement for tumor to find other ways “edit” the 

induced expression of other immune resistance mechanisms. MYC activation would enable 

tumors to proliferatively expand; neoantigens may be generated but not able to elicit an 

immune response. Acute inactivation of the MYC oncogene then would necessarily suppress 

immune checkpoints and restore an immune response against the tumor. Thus, it seems 

likely that tumors that express high levels of MYC may be particularly susceptible to 

immune checkpoint therapy, but this remains to be seen.

Third, do oncogenes and tumor suppressors physiologically regulate the expression of 

immune checkpoints? MYC and other oncogenes may physiologically regulate immune 

checkpoints to enable normal proliferation in a manner that prevents an immune response. 

During normal development, tissue regeneration, and the generation of an immune response, 

normal cells are required to undergo rapid proliferative expansion. Rapidly proliferating 

cells may be at risk of an immune response, as they upregulate NKG2D and other stress 
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ligands [67,68]. During certain physiologic circumstances, an immune response against the 

rapidly proliferating cells must be suppressed (Figure 1). MYC may couple the requirement 

of normal cellular proliferation with the ability to prevent rapidly proliferating cells from 

eliciting an autoimmune response.

One physiological circumstance in which MYC may serve to induce proliferation but 

prevent an immune response would be during the invasion of the uterine wall by the 

trophoblast layer during embryonic development [69]. In this important step in development, 

healthy cells invade into another tissue. Tightly regulated programming must prevent an 

immune response, especially as the embryo-derived trophoblast is not “self.” MYC is highly 

expressed in the trophoblast [69], a highly proliferative tissue that even is described as 

“pseudomalignant” [70]. The trophoblast uses multiple pathways, including the repression 

of polymorphic human leukocyte antigens (HLA) molecules and the induction of PD-L1, to 

prevent an immune response from the mother [71]. Notably, MYC inhibition of pre-

implantation blastocysts induces dormancy [72]. Thus, MYC and for that matter other 

oncogenes might regulate immune checkpoints as part of normal developmental programs to 

protect rapidly proliferating cells from immunological rejection.

MYC and other oncogenes may induce immune checkpoints and regulate other immune 

modulators as part of a physiologic mechanism to ensure that normally proliferating cells 

remain immune privileged (Figure 1). Cancers may coopt this physiologic mechanism 

through specific oncogenes like MYC that not only drive proliferation but also serves as a 

secondary “hit” enabling tumors to bypass immune surveillance. Hence, tumorigenesis may 

recapitulate yet distort a program that normally helps immunologically define self from 

nonself.

Concluding Remarks

If MYC physiologically regulates the immune response, then there are many predictions. 

The activation of MYC in a cell in the absence of immune checkpoints such as CD47 and 

PD-L1 should elicit an immune response and elimination of normal cells. MYC-induced 

tumors may express many neoantigens that will be uncovered upon MYC inactivation. Many 

other immune regulators [30], checkpoints, and secreted factors, are likely to be similarly 

regulated by MYC. Other oncogenes that regulate MYC gene expression, protein activation, 

or stability, may similarly regulate immune checkpoints. Drugs that target the MYC pathway 

could be effective at eliciting an immune response against tumors.

MYC has been already established to regulate the tumor microenvironment and host 

immune system [25,28]. The challenge now is to understand how MYC and other oncogenes 

specifically reshape the immune landscape. This insight should lead to better therapeutic 

strategies for cancer. In particular, identifying the specific mechanisms and immune 

components regulated by MYC and other oncogenes should lead to better experimental 

strategies to use to restore the immune response against tumors and to remodel the tumor 

microenvironment [73,74].
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The realization that oncogenes such as MYC function as central regulators of normal and 

pathological growth and proliferation, but also of the host immune response, should 

galvanize renewed interest in developing drugs against this otherwise difficult therapeutic 

target.
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Trends Box

Oncogenes such as MYC may drive tumor growth both through their intrinsic 

influence on cellular proliferation but also through their regulation of immune 

checkpoints that enables evasion from immune surveillance.

The MYC oncogene causally regulates immune checkpoint expression. Other 

oncogenes including EGFR, STAT3, BRAF, β-catenin, and AKT/mTOR, as well 

as loss of tumor suppressor genes such as PTEN, appear to regulate PD-L1 

expression.

Targeted inactivation of an oncogene with therapy may restore an immune 

response against tumors and remodel the tumor microenvironment.
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Outstanding questions box

Do oncogenes generally regulate expression of immune checkpoints, and if so, 

through what mechanisms?

Do oncogenes physiologically regulate immune checkpoints to prevent an immune 

response against proliferating cells?

Do oncogenes predict sensitivity to immune therapy and can targeted oncogene 

therapy be used to restore an immune response against tumors?
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Figure 1. 
Proto-oncogene and Oncogene Mediated Regulation of Immune Privilege We suggest a 

model where in normal physiological situations requiring rapid proliferative expansion, such 

as during development, tissue regeneration, and immune response (left, top panel) or during 

pathological conditions such as tumor growth (left, bottom panel), oncogenes such as MYC 

induce immune checkpoint expression, thereby allowing immunologic privilege. However, 

oncogene inactivation can elicit immune recognition, which in normal cells can be 

associated with quiescence (right, top panel) but in tumor cells can be associated with 

immune response and tumor elimination (right, bottom panel). Further, MYC inactivation in 

tumors appears to engage the immune system to elicit cellular senescence in tumor cells and 

to collapse the vascular endothelial cells. MYC-driven tumors necessarily might express 

high levels of immune checkpoints suppressing immune response and thereby evade 

immune surveillance, but this oncogene addiction through immune checkpoints may also 

render them highly susceptible to immunotherapy.
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