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ORIGINAL ARTICLE

Abstract: The author proposes that epidemiologic studies should 
more often assess the associations of a single exposure with multi-
ple outcomes simultaneously. Such “outcome-wide epidemiology” 
will be especially important for exposures that may be beneficial 
for some outcomes but harmful for others. Outcome-wide epi-
demiology may also be helpful in prioritizing public health rec-
ommendations. Methodologically, the conduct of outcome-wide 
epidemiology will generally be more straightforward than recent 
proposals for  exposure-wide epidemiologic studies, in which the 
associations between a single outcome and many exposures are 
assessed simultaneously. Such exposure-wide studies are likely to 
be subject to numerous biases because of the inability to make 
simultaneous confounding control and because exposures are 
likely to affect, and mediate the effects of, other exposures. These 
problems simplify considerably in an outcome-wide approach 
when a single exposure is being considered. Moreover, outcome-
wide approaches will generally be more useful than exposure-wide 
approaches in shaping public health recommendations.

(Epidemiology 2017;28: 399–402)

Due in part to the success of genome-wide association stud-
ies, there has been a recent suggestion that the research 

community begin to move toward an “exposure-wide epidemi-
ology,”1 in which associations between an outcome and many 
exposures—possibly very many exposures—are assessed 
simultaneously.1 I would like to argue here that, due to the 
nature of confounding, attempts at “exposure-wide epidemio-
logic” studies are likely to be plagued by biases, but that instead 
an “outcome-wide epidemiology” may in fact be more feasi-
ble, and that, moreover, such outcome-wide epidemiology will 
likely also be more relevant for public health recommendations.

LIMITS OF EXPOSURE-WIDE EPIDEMIOLOGY
The notion of an exposure-wide epidemiologic study 

is that a researcher could select a specific outcome, regress 

it upon a wide range of different exposures, assess which 
relationships are most substantial, and for which there is the 
strongest statistical evidence of an association, and, provided 
appropriate control is made for multiple testing, thereby poten-
tially gain insight into the underlying causes of the disease 
or outcome under study. This approach has effectively been 
what has been used in genome-wide association studies,1,2 and 
these have now yielded thousands of replicated associations 
between genetic variants and various diseases.3,4 Could we 
not then pursue something similar within epidemiology more 
broadly using environmental, social, and behavioral exposures 
as well?

The difference between genetic exposures and almost 
all others, and the difference that arguably creates problems 
for an exposure-wide epidemiology, lies in the nature of 
confounding. In a genome-wide association study, although 
hundreds of thousands of variants are examined, it is often 
thought to be the case that, subject to control for population 
stratification (often done say by principal components analy-
sis adjustment strategies), the association between the variant 
and the outcome is roughly unconfounded.2 While a particular 
variant may serve as a proxy for the true effect of another, it 
is the case that once the genome is fixed, each variant is act-
ing on the outcome, possibly in conjunction with, but not by 
altering the value of, any other variant. This is manifestly not 
the case with environmental, behavioral, and social exposures, 
wherein one exposure is likely to affect many others down-
stream. Each exposure will thus likely require a distinct set of 
other variables to control for confounding, with the confound-
ing variables for a particular exposure consisting only of other 
exposures that are temporally before it. If we include all of 
our exposures in the model and some of these are downstream 
from others, then the downstream exposures will likely medi-
ate, and potentially block, the effects of prior exposure.

This creates two potential problems. First, for each 
exposure, the association estimate will, at best, represent 
the direct effect of the exposure not through any of the other 
exposures in the model downstream of it. If there are numer-
ous subsequent exposures that mediate the effect of the prior 
exposure then the importance of the prior exposure (in terms 
of its overall influence on the outcome) might be severely 
misrepresented.5,6 Second, it is now well documented in the 
methodology literature that if control is made for mediating 
variables on pathways from exposure to outcome, then any 
unmeasured common cause of the mediating variable and the 
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outcome can induce bias; spurious associations between expo-
sure and outcome can be generated even if the exposure has no 
effect on the outcome whatsoever. This problem is sometimes 
referred to in the literature as one of “collider stratification 
bias.”7,8 When considering multiple exposures simultaneously, 
the likelihood of such biases is substantial.

EXAMPLES AND CHALLENGES IN 
CONFOUNDING CONTROL

Let us illustrate with some examples. Consider the 
first problem concerning mediating variables: Suppose we 
had an exposure-wide epidemiologic study examining self-
rated health as the outcome. We might consider race, age, 
educational attainment, various health behaviors, and so on, 
as possible exposures. How would the exposure “race” fare 
in such an exposure-wide regression model? Analyses using 
the National Longitudinal Survey of Youth data indicate that, 
after control for a measure of educational test scores, the gap 
between black and white men in self-reported health effec-
tively disappears entirely.9,10 Are we thus to conclude that race 
is irrelevant here as an exposure? This would be misleading 
as race affects educational opportunities that are themselves 
arguably on the pathway from race to health. The exposure-
wide approach, by controlling for downstream factors, does 
not capture the overall importance of the variable.

One might then take the position that such exposure-
wide approaches can be useful, but need to be interpreted 
carefully as only the direct effect not through other expo-
sures. However, even this is potentially problematic because 
of the potential for collider stratification bias discussed above. 
Consider an exposure-wide epidemiologic study examin-
ing infant mortality as an outcome with maternal smoking, 
age, and birthweight among the exposures. Numerous studies 
have documented a seemingly protective association between 
maternal smoking and infant mortality for low-birthweight 
infants.11,12 One explanation for these paradoxical associations 
is again collider stratification bias, an unmeasured common 
cause of low birthweight and infant mortality (e.g., malnutri-
tion or a birth defect).13,14 Such an unmeasured common cause 
essentially sets up an unfair comparison between smoking 
and nonsmoking mothers with low-birthweight infants: for 
the nonsmoking mothers who have low-birthweight infants, 
smoking cannot be the cause of low birthweight so the cause 
might well instead have been something like malnutrition or 
a birth defect, the consequences of which for infant mortality 
are worse than smoking.

An exposure-wide epidemiologic study which ignored 
such potential biases might come away with the conclusion 
that among low-birthweight infants, maternal smoking is pro-
tective for infant mortality. While someone might respond that 
it is simply the case that such biases must be thought through in 
exposure-wide studies, just as in regular epidemiologic inves-
tigation, the number of potential instances of such biases that 
must be considered when dozens, or hundreds, of exposures 

are considered simultaneously is mind-boggling. The field of 
epidemiology currently struggles with these issues in studies 
of a single exposure. It is arguably not reasonable then to think 
that we could do this adequately when numerous exposures 
are considered at once. Moreover, even if we could, we would 
still only be obtaining direct effects as above.

The typical epidemiologic approach toward confound-
ing control when examining the effect on an outcome of a 
single exposure at a specific point in time is to consider all 
possible temporally prior variables that might affect the expo-
sure or the outcome, including possibly prior values of the 
exposure and the outcome.15,16 While precise confounding 
control strategies do vary,17,18 there is consensus that, if the 
total effect of the exposure on the outcome is desired, then 
adjustment should not be made for variables that might be 
affected by the exposure. The implication of this, as indicated 
above, is that for each individual exposure, we will likely need 
a distinct set of confounding variables. We cannot make the 
decision about confounding for all variables at once when we 
are supposedly examining the effects of multiple exposures.  
A single regression model will not suffice; nor will simply 
looking at each bivariate association one at a time, as in 
genome-wide studies. This arguably creates difficulties for a 
simple approach to exposure-wide epidemiology.

OUTCOME-WIDE EPIDEMIOLOGY
Consider instead now what one might call an “outcome-

wide epidemiologic study” in which only a single exposure is 
under study but its effects on multiple outcomes are being con-
sidered simultaneously. In such a design, we could potentially 
attempt to control for confounding for the effect of the exposure 
on all outcomes simultaneously. This could be done by attempt-
ing to control for all variables temporally prior to the exposure 
that might affect the exposure (and possibly any one or more of 
the outcomes). If we simply control for all variables temporally 
prior to the exposure and include this same set of covariates 
as control variables for each outcome, then the confounding 
control decision effectively only has to be made once. While 
some variables may confound the relationship between the 
exposure and one outcome, but not another, we do still have the 
option, unlike in the exposure-wide epidemiologic setting, of 
simply controlling for all variables prior to the exposure. With 
the exposure fixed, the set of all variables temporally before the 
exposure stays the same even when we change the outcome. 
With the outcome fixed, the set of variables temporally before 
the exposure changes as we change the exposure.

To illustrate the difference further, consider the causal 
diagram19–21 in the Figure with five exposures, E1–E5, some 
baseline covariates C, an outcome Y, and a single unmeasured 
common cause U of E4 and Y. In an exposure-wide study which 
regressed Y on all five exposures along with the covariates C, 
we would obtain biased estimates of the direct effect of E4 on 
Y because of the unmeasured confounder U, but the regression 
would also give biased estimates of the direct effects of E1, E2, 
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and E3 on Y because of collider stratification7,8 as discussed 
above: E4 is common effect of U and each of E1, E2, and E3 
so controlling for it in the regression will introduce spurious 
associations between each of E1, E2, and E3 and Y because of 
U. Thus, in our exposure-wide epidemiologic study, the causal 
effect estimates (even acknowledging these are at best direct 
effects) of four out of our five exposures will be biased by a 
single unmeasured confounder. In contrast, an outcome-wide 
epidemiologic study that simply focused on E3 would obtain 
unbiased estimates of the effect of E3 on the outcomes E4, 
E5, and Y. Likewise, an outcome-wide epidemiologic study 
of the effects of E1 or of E2 on everything subsequent would 
be unbiased. We would still have bias in an outcome-wide 
analysis of the effects of E4, because of confounding, but as 
seen above, for many exposures the outcome-wide approach 
would be free of bias. A single unmeasured confounder of a 
particular exposure–outcome relationship introduces bias in 
an outcome-wide analysis for that particular exposure; but a 
single unmeasured confounder in an exposure-wide analysis 
generates bias for that exposure and also all prior exposures 
that affect that exposure. The number of potential confound-
ing relationships and biases are much broader in an exposure-
wide analysis than in an outcome-wide analysis.

PUBLIC HEALTH IMPORTANCE OF OUTCOME-
WIDE EPIDEMIOLOGY

However, perhaps an even more powerful argument for 
outcome-wide epidemiology than the relative simplicity of 
confounder control concerns its potential use for public health 
recommendations. Epidemiology has traditionally examined 
exposure–outcome relationships one at a time. This is argu-
ably still the soundest approach for assessing evidence for cau-
sality. However, many exposures are likely to affect a variety 
of outcomes. When effects are nearly universally beneficial, 
as with say low-impact exercise on health, public health rec-
ommendations are straightforward. But other exposures may 
affect different health or life outcomes in divergent directions: 
some beneficial, some harmful. Moderate drinking may have 

some benefit for all-cause mortality, but also increases the 
likelihood of accidents and liver cirrhosis.22–24 For postmeno-
pausal women, studies indicate that estrogen plus progestin 
increases the likelihood of coronary heart disease, breast can-
cer, and stroke but decreases the risk of colorectal cancer and 
hip fractures.25,26 In making public health recommendations 
concerning a particular exposure that may be favorable for 
some outcomes and unfavorable for others, it would arguably 
be helpful to examine associations between that exposure and 
many different outcomes simultaneously, rather than just one 
at a time across studies. An outcome-wide epidemiologic study 
looking at a broad range of health and life outcomes could pro-
vide considerable insight into what the trade-offs might be. 
Such analyses could provide a more nuanced set of recommen-
dations and potentially be helpful for individual decision-mak-
ing as well. The analyses could also potentially be stratified 
by gender and age, or by race, or, when sufficient data are 
available, perhaps also by other variables as well. Even when 
exposures are beneficial across a wide range of outcomes, such 
outcome-wide epidemiologic studies might be helpful in pri-
oritizing public health recommendations by identifying those 
exposures with the largest relative effect sizes across numer-
ous outcomes. Large cohort studies with extensive covariate 
information, long-term follow-up, and data on a wide range 
of outcomes would of course be extremely useful both for the 
purposes of confounding control and for examining numerous 
outcomes, including rarer outcomes, simultaneously.

DISCUSSION
I do not want to dismiss the potential utility of exposure-

wide epidemiologic studies entirely. A single regression model 
for a given outcome using many exposures may be valuable 
for predictive purposes. With cohort data for which repeated 
measures of exposures are available, another approach might 
be to examine a single outcome at the end of follow-up and 
fit a series of regressions, each of which controls for all expo-
sures simultaneously in one wave but then also includes a sin-
gle subsequent exposure—one per regression—from the next 
wave.15,16 One might refer to this as a “confounder-lagged 
exposure-wide epidemiologic design.” See Betancourt et al.27 
for a recent example in which both this and an outcome-wide 
approach were simultaneously used in the study of mental 
health outcome for war-affected youth. Other variations that 
attempt to straightforwardly automate the confounder selec-
tion process for exposure-wide epidemiologic studies contain-
ing numerous exposures might also be considered.

I also do not want to minimize the potential biases that 
may still be present in an outcome-wide epidemiologic study. 
Confounding control decisions, even for a single exposure, 
can be challenging with numerous subtleties16–21,28–31 and 
temporal ordering may not always be clear; issues of mea-
surement error and selection bias must likewise be evaluated 
carefully21; and careful modeling including potential interac-
tions between the exposure and covariates may be necessary. 

E1C E2 E3 E4 E5 Y

U

FIGURE. Causal diagram illustrating the confounding chal-
lenges that can arise in trying to assess the effects of multiple 
exposures (E1–E5) on a single outcome (Y) in the presence of 
measured (C) and unmeasured (U) confounding variables.
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Focusing on a single exposure certainly does not sweep all 
problems away. However, I would still maintain that, from the 
perspective of public health recommendations, and individual 
decision-making, the outcome-wide approach will be of more 
direct and immediate benefit. For exposures with both benefi-
cial and detrimental effects, epidemiologists should perhaps 
be  employing such approaches routinely.
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