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Abstract

BACKGROUND—Propensity score matching is a commonly used tool. However, its use in 

settings with more than two treatment groups has been less frequent. We examined the 

performance of a recently developed propensity score weighting method in the three treatment 

group setting.

METHODS—The matching weight method is an extension of inverse probability of treatment 

weighting (IPTW) that reweights both exposed and unexposed groups to emulate a propensity 

score matched population. Matching weights can generalize to multiple treatment groups. The 

performance of matching weights in the three-group setting was compared via simulation to three-

CORRESPONDING AUTHOR (and reprint request): Kazuki YOSHIDA, M.D., M.P.H., M.S., Departments of Epidemiology & 
Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States., Tel: 617-732-5356; Fax: 
617-732-5505, kazukiyoshida@mail.harvard.edu. 

DATA/CODE AVAILABILITY: The simulation code is on https://github.com/kaz-yos/mw. The empirical dataset is not available as it 
is protected under data use agreement.

DISCLOSURES:
KY receives tuition support jointly from Japan Student Services Organization (JASSO) and Harvard T.H. Chan School of Public 
Health (partially supported by training grants from Pfizer, Takeda, Bayer and PhRMA)
SHD has consulted for AstraZeneca and UCB.
DHS receives salary support from institutional research grants from Eli Lilly, Amgen, Pfizer, AstraZeneca, Genentech, and Corrona. 
He also receives royalties from UpToDate, and serves in unpaid roles in studies funded by Pfizer and Eli Lilly.
JWJ None
JJG has received salary support from institutional research grants from Novartis Pharmaceuticals Corporation. He is a consultant to 
Aetion, Inc., a software company.
RG None
JMF is PI of grants from PCORI and Merck. She also serves as consultant to Aetion, Inc.

HHS Public Access
Author manuscript
Epidemiology. Author manuscript; available in PMC 2018 May 01.

Published in final edited form as:
Epidemiology. 2017 May ; 28(3): 387–395. doi:10.1097/EDE.0000000000000627.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/kaz-yos/mw


way 1:1:1 propensity score matching and IPTW. We also applied these methods to an empirical 

example that compared the safety of three analgesics.

RESULTS—Matching weights had similar bias, but better mean squared error (MSE) compared 

to three-way matching in all scenarios. The benefits were more pronounced in scenarios with a 

rare outcome, unequally sized treatment groups, or poor covariate overlap. IPTW’s performance 

was highly dependent on covariate overlap. In the empirical example, matching weights achieved 

the best balance for 24 out of 35 covariates. Hazard ratios were numerically similar to matching. 

However, the confidence intervals were narrower for matching weights.

CONCLUSIONS—Matching weights demonstrated improved performance over three-way 

matching in terms of MSE, particularly in simulation scenarios where finding matched subjects 

was difficult. Given its natural extension to settings with even more than three groups, we 

recommend matching weights for comparing outcomes across multiple treatment groups, 

particularly in settings with rare outcomes or unequal exposure distributions.
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INTRODUCTION

The emergence of multiple treatment options makes the availability of comparative 

effectiveness/safety evidence more important. However, head-to-head clinical trials are not 

common, let alone trials of multiple active treatment options. Observational studies can play 

an important role in filling this gap; however, confounding by indication1 is a challenge.

Initially proposed in 1983, the propensity score2 has become a commonly used tool to 

address confounding in the scientific literature. However, its use in multiple group settings 

has not received as much attention3–5. Rassen et al3 explored an extension of propensity 

score matching to the three-group setting, developing a three-way simultaneous nearest 

neighbor matching algorithm (three-way matching). However, simultaneous matching in 

multiple dimensions is computationally burdensome and often leads to many patients being 

excluded because appropriate matches are unavailable. Therefore, the extension of this 

approach to four or more groups has not been achieved.

Li and Greene recently proposed a weighting analogue to pairwise 1:1 matching6 (matching 

weights), and demonstrated that its estimand is asymptotically equivalent to the estimand of 

exact pairwise matching on the propensity score, given common support of the propensity 

score between treatment groups. As compared to matching, efficiency gains were seen in 

simulations. Therefore, we hypothesized that matching weights generalized to the setting of 

three treatment groups would outperform three-way matching.

In the current paper, we generalize matching weights to the setting of three or more 

treatment groups and present a simulation study that compares the validity and precision of 

matching weights, three-way matching, and inverse probability of treatment weights. Finally, 

we use empirical data to demonstrate its performance in a real-life dataset.
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METHODS

Matching weights

Li and Greene’s proposed weight is defined as follows for the i-th subject6:

where

ei is the propensity score

Zi is the binary treatment indicator

The denominator is identical to that of inverse probability of treatment weights (IPTW)7, the 

probability of the assigned treatment given covariates. The numerator is the smallest of the 

propensity score or its complement, which can be thought of as a combination of the 

numerator for the average treatment effect on the treated weight (“treated weight”)8,9 and 

that for the average treatment effect on the untreated weight (“untreated weight”)9. These 

weights' close relationships can be appreciated if they are expressed in the same notation as 

shown below.

Matching weights reduce to the treated weights for those with propensity scores < 0.5, 

untreated weights for those with propensity scores > 0.5, and at propensity scores = 0.5, 

matching weights agree with both.

A simulated dataset may help intuitive understanding (Figure 1). Compared to the inverse 

probability of treatment weights method, which up-weights subjects to balance the 

distributions of the propensity score, matching weights instead down-weight subjects to 

achieve balance. In this example, the treated group is as large as the untreated group, making 

the target of matching weights and 1:1 matching depart from the treated group. If there is a 

large reservoir of untreated10, however, most observations fall below propensity score <0.5, 

making both matching weights and 1:1 matching approximate the treated group similarly 

well (eFigure 1). Matching weights confer numerical stability compared to inverse 

probability of treatment weighting, which can suffer from very high weights, by focusing on 

treatment effects in patients with good overlap on the propensity score.6 Compared to 

matching, matching weights are more efficient because they use all of the original data.
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Generalization of matching weights

Unlike matching, weighting methods can naturally generalize to a non-dichotomous 

treatment variable, including three or more treatment groups. For matching weights under K 
treatment groups, the weight can be generalized as follows.

where

eki is the generalized propensity score for the kth treatment

(i.e., probability of receiving the k-th treatment)

Zi ∈ {1, … K} is a categorical treatment

I(·) is an indicator variable (1 if true and 0 if false)

The denominator is the probability of receiving the treatment actually received given 

covariates. The numerator considers probabilities for all treatment levels and selects the 

smallest value. For a given individual, the sum of all propensity scores must add up to 1, 

meaning that a single model must be fit to the data to estimate all of the propensity scores 

(e.g., multinomial logistic regression).4 Again the estimand of this generalized weighting 

method is asymptotically equivalent to the estimand of exact matching across all treatment 

groups if common support (i.e., positivity) holds for all treatment levels (proofs in 

eAppendix page 1–9).

Simulation study

We compared matching weights6, stabilized inverse probability treatment weighting13, and 

the three-way matching method developed by Rassen et al3 in simulated datasets (details in 

eAppendix pages 10–14).

Data Generation—The data generation mechanism followed Franklin et al.14 The 

outcome was binary, and the treatment took on three values. There were ten confounders 

(binary and continuous). Levels of covariate overlap, treatment prevalence, baseline outcome 

risk, treatment effects, and treatment effect modification were varied. Each dataset had 6,000 

subjects. Treatment assignment (Ti ∈ {0, 1, 2}) was generated as a multinomial random 

variable based on true propensity scores. We generated all combinations of exposure 

prevalence {33:33:33, 10:45:45, 10:10:80} and weak (near-random treatment assignment; 

good covariate overlap) and strong (non-random treatment assignment; poor covariate 

overlap) covariate-treatment associations.

All covariates and treatment jointly determined the true probability of disease for each 

subject. The counterfactual probability of disease under each treatment was also recorded. 

To avoid non-collapsibility issues15,16, a log-probability model was used.
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The bold βX represents main effects of covariates. Treatment has two main effect terms. The 

last two terms are treatment-X4 interactions. Treatment 0 served as the baseline for 

comparison, and treatments 1 and 2 had no effects or protective effects. The intercept β0 was 

manipulated to achieve the baseline disease risk of 5% or 20%. We controlled treatment 

effect heterogeneity by setting the coefficients of the interaction terms to either zeros (no 

heterogeneity) or negative (additional protective effect for individuals with x4i = 1). 

Combining these simulation parameters, we constructed 48 simulation scenarios (eAppendix 

page 13). Each scenario was run 1,000 times.

Propensity score estimation—For each simulated dataset, the propensity score model 

including all covariates was fit by multinomial logistic regression17. For each subject, three 

propensity scores (e0i, e1i, and e2i) were estimated.

Matching weight procedure—Weights were estimated from three propensity scores. 

Subsequent analyses, including balance metrics and risk regression (modified Poisson 

regression18), were conducted as weighted analyses19,20. The treatment variable was the 

only predictor in the outcome model. We conducted the estimation using the stabilized 

inverse probability treatment weighting, similarly substituting the weights. Reproducible 

example R code is provided in eAppendix (pages 15–21).

Three-way matching procedure—Using non-redundant propensity scores to define a 

two-dimensional propensity score space, we conducted three-way matching without 

replacement3. The Pharmacoepidemiology Toolbox version 2.4.15 (http://www.drugepi.org) 

was used. The caliper width was based on the perimeter of the triangle formed by three 

individuals in a proposed matched trio.3 The maximum allowed perimeter was:

where

We conducted modified Poisson regression18 without stratifying on matched trios to 

maintain the unconditional estimand comparable to that of matching weights.

Performance assessment metrics—We used several assessment metrics to examine 

validity and efficiency: weighted or matched sample size, covariate balance measured by 

absolute standardized mean differences,21,22 bias in risk ratios, simulation variance, 

estimated variance, mean squared errors (MSE), false positive rates in null scenarios, and 
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coverage probability of confidence intervals. Bias and covariate balance, which measures the 

potential for confounding bias, are measures of validity, whereas variance is a measure of 

efficiency.

We calculated standardized mean differences for three pairwise contrasts and averaged them 

for each covariate. We standardized by dividing the mean difference by the square root of 

the pooled within-group variance (its definition for binary variables is explained in 

references).21,22

We defined bias for an effect estimate as the average risk ratio estimate divided by the true 

risk ratio. The true risk ratio (estimand) was calculated as the contrast of the marginal 

counterfactual outcomes (average of the counterfactual probabilities of disease across 

individuals under each treatment). We calculated this true risk ratio in the unadjusted cohort 

(for the average treatment effect), matching weight cohort, three-way matched cohort, and 

inverse probability treatment weight cohort (this should agree with the average treatment 

effect) to obtain their respective estimands. These adjusted cohorts were newly constructed 

using the true propensity scores to avoid the influence of the propensity score estimation 

model performance. The estimands themselves were also compared for their agreement 

under treatment effect heterogeneity.

The simulation variance is the variance of the estimator across simulation iterations, and 

represents the true variance of the estimator, whereas the estimated variance was calculated 

within each iteration and average across all iterations. The bootstrap variance was calculated 

for matching weights only due to computational burden. The full sequence of propensity 

score modeling and outcome modeling was bootstrapped12. For each one of 1,000 iterations 

of a given scenario, 1,000 bootstrap iterations were conducted. MSE combines bias and true 

variance (variance + bias2). False positive rates were examined in the null scenarios where 

there was no treatment effect and no treatment effect heterogeneity. The confidence intervals 

created from the estimated variance were examined for their coverage of the aforementioned 

true risk ratios to see whether these intervals are conservative in nature by ignoring 

uncertainty in the estimated propensity score6,11.

Empirical study

We re-analyzed Medicare data from a previously published study comparing new users of 

opioids, COX-2 selective inhibitors (coxibs), and non-selective non-steroidal anti-

inflammatory drugs (NSAIDs)3,23 for various safety outcomes. The empirical analysis was 

approved by the Partners Healthcare Institutional Review Board. There were 35 covariates 

including five continuous variables. The propensity score model was pre-specified as a 

model with squared terms for the continuous variables without any interaction terms. All-

cause mortality, any fracture, upper or lower gastrointestinal bleeding, and any 

cardiovascular events were examined.

The baseline covariates for each treatment group before and after weighting (or matching) 

were examined. Average standardized mean difference across all three pairwise contrasts 

was calculated for each variable. For the outcome analyses using Cox models, hazard ratios 
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with corresponding 95% confidence intervals were calculated and compared between 

methods for each outcome event.

Computing

All analyses were conducted in R (http://cran.r-project.org) versions 3. All code for the 

simulation study is available online (https://github.com/kaz-yos/mw).

RESULTS

Simulation study

Sample sizes—Sample size comparison is presented in Figure 2. The matching weight 

sample sizes and the matched sample sizes were similar given Rassen et al.’s caliper 

configuration. They were influenced by both the treatment prevalence and covariate overlap 

because the size of the common support and number of 1:1:1 matches are influenced by 

these factors. This means their estimands are similarly affected by the characteristics of the 

dataset. The unmatched sample size and the stabilized inverse probability treatment weight 

sample size coincide regardless of the treatment prevalence and covariate overlap. This 

agrees with the fact that the stabilized inverse probability treatment weight estimates the 

effect in the entire cohort rather than a subset as in matching weights and matching.

Covariate balance—Figure 3 shows the covariate balance before and after balancing by 

the different methods. In the good covariate overlap setting where there was a minor 

imbalance to start with, all methods did well, making all standardized mean differences well 

below the conventional 0.10 threshold21. Among the three methods, matching weights 

achieved the best balance with near-zero standardized mean differences for all covariates 

followed by inverse probability treatment weights. In the poor covariate overlap setting, i.e., 
a setting with positivity violation (some subjects exist outside the common support), inverse 

probability treatment weights broke down, indicating that the entire cohort estimand is likely 

not estimable in this setting. In comparison, both matching weights and matching performed 

reasonably well, likely because of their emphasis on the effect in the common support.

Bias of estimators—eFigure 2 shows the biases of these methods with respect to their 

corresponding estimands (1.0 means unbiased). The biases were similarly small for all 

methods in the good covariate overlap settings. In the poor covariate overlap settings, 

however, their performance differed. Most noticeably inverse probability treatment weights 

sometimes gave more biased results than the unadjusted analyses, confirming the difficulty 

of estimating the effect in the entire cohort in such settings. Both matching weights and 

three-way matching performed reasonably well in all settings, although in the rare outcome 

setting, matching weights tended to perform better.

Comparison of estimands—eFigure 3 shows the estimands (true risk ratios to be 

estimated) of these methods in different settings. In the absence of effect modification (left 

half of the figure), their estimands numerically agree. In the presence of effect modification, 

they may differ substantially. Inverse probability treatment weighting by definition has the 

entire cohort as its target of inference (thus, the agreement between U and Ip in the figure). 

Yoshida et al. Page 7

Epidemiology. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cran.r-project.org
https://github.com/kaz-yos/mw


The estimands of matching weights and three-way matching agreed as expected, but they 

differed from the inverse probability treatment weights estimand particularly in the 

unbalanced exposure settings. On the other hand, their estimands were close to each other 

with good covariate overlap and the 33:33:33 exposure distribution (i.e., a setting in which 

the matching weight or matched sample sizes are close to the entire cohort).

Variance and MSE of estimators—The matching weight estimator had smaller true 

variance than the three-way matching estimator, particularly in poor covariate overlap 

settings (eFigure 4). In these settings, matching yields a small matched cohort, whereas 

matching weights do leverage data from all subjects although the weighted cohort is 

similarly small. The difference was most striking in the poor covariate overlap, rare disease, 

10:45:45 treatment distribution scenario. This difference was caused by lack of any observed 

events in treatment group 2 in the matched cohort in some datasets. The estimated variance 

(eFigure 5) showed a similar pattern but was sometimes anti-conservative for all methods in 

poor overlap scenarios. The bootstrap variance for matching weights was less often anti-

conservative (eFigure 6). Since the bias was small, MSE (eFigure 7) also showed a similar 

pattern. Importantly, matching weight MSE was always smaller than matching MSE across 

all scenarios.

False positive rates and coverage—Matching weights had false positive rates > 0.05 

for 6 scenarios whereas three-way matching had them for five scenarios (eFigure 8). 

Undercoverage (coverage < 0.94) was observed in seven scenarios for matching weights and 

three scenarios for three-way matching (eFigure 9). For matching weights, undercoverage 

occurred in poor covariate overlap scenarios only, whereas two of the undercoverage 

scenarios for three-way matching were in good overlap scenarios.

Empirical study

In the three-group analgesic example, there were 23,647 potentially eligible patients before 

weighting or matching. After matching weights, the weighted sample size was 13,887.9, 

which was similar to the three-way matched sample size of 13,833, whereas inverse 

probability treatment weights resulted in a weighted sample size of 23,699.4, which was 

similar to the original cohort size. Individuals’ assigned weights ranged from 0.0003 to 1 

with a median of 0.577 [interquartile range: 0.318–0.897] for matching weights, and 0.241–

12.938 with a median of 0.939 [interquartile range: 0.809–1.126] for stabilized inverse 

probability treatment weights. As seen in eFigure 10, matching weights achieved the best 

covariate balance most consistently (24 of the 35 covariates) compared to three-way 

matching (six covariates) and inverse probability treatment weights (five covariates). Thanks 

to the active comparator design24, the covariate overlap was relatively good (relatively small 

standardized mean difference in the unmatched cohort), and inverse probability treatment 

weighting did not break down.

The characteristics of the matching weights cohort and the matched cohorts for selected 

variables with most imbalances were very similar (eTable 1), again confirming the notion 

that matching weights are a weighting analogue to matching. As expected from the 

definition of the common support (overlap area of all three groups), these cohorts are most 
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similar to the smallest group, i.e., the NSAIDs group in the unmatched cohort. The inverse 

probability treatment weights cohort had somewhat different characteristics with higher 

morbidity levels, most closely resembling the largest group, i.e., the opioids group.

The outcome model results are shown in Table 1. The hazard ratios were similar using 

matching weights and three-way matching, but inverse probability treatment weights 

sometimes differed. Between matching weights and three-way matching, the most noticeable 

difference was in the opioids-vs-non-selective NSAIDs comparison for the gastrointestinal 

bleeding outcome, which was the rarest outcome among the four considered in the current 

study. The standard errors were smaller for matching weights than for three-way matching or 

inverse probability treatment weighting for all estimates, as reflected by the somewhat 

narrower confidence intervals.

DISCUSSION

We examined the usefulness of a recently proposed weighting method6 in multiple treatment 

arm settings, comparing it to the previously described three-way matching method3 as well 

as inverse probability treatment weighting25 in both simulated data and a reanalysis of a 

previously published empirical study.23 Overall, matching weights provided smaller MSE 

than three-way matching in the scenarios studied mainly due to smaller variance. Better 

MSE was more pronounced in settings where matching performed poorly, such as with rare 

disease and poor covariate overlap. Compared to inverse probability treatment weighting, 

matching weights demonstrated robustness to poor covariate overlap. The false positive rate 

and coverage rate for matching weights were somewhat less ideal than three-way matching, 

indicating the need for the bootstrap variance. In the empirical data analysis, matching 

weights gave similar point estimates compared to three-way matching, but with better 

covariate balance and narrower confidence intervals.

The strengths of matching weights are the combination of the strengths of matching and 

weighting. The estimand of the matching weight estimator is asymptotically equivalent to 

that of 1:1 exact matching. We confirmed that this approximately holds in finite datasets 

using nearest-neighbor matching (eFigure 3). Those who are nearly equally likely to receive 

all treatment choices are most represented (Figure 1). Matching weights avoid inflating 

weights for a small number of subjects in the extremes of the propensity score distribution 

treated contrary to the norm, which is a major disadvantage of typical inverse probability 

treatment weighting approaches.

From weighting, matching weights inherit the maximum use of the data, i.e., no one in the 

dataset is left out, but subjects contribute differing amounts of information depending on 

their weights. The efficient use of data resulted in lower variance of estimators in our 

simulation and narrower confidence intervals in our empirical study. As with other 

weighting methods, matching weights can naturally generalize to multiple treatment group 

settings, which we demonstrated in this paper. Currently, there appears to be no software 

available for 4+ group simultaneous matching, which matching weights can easily 

accommodate.
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Matching weights outperformed inverse probability treatment weights in scenarios with poor 

covariate overlap; however, choice of a method should carefully consider both the clinical 

question and the data (Table 2). Although matching weights are an extension of inverse 

probability treatment weights, their targets of inference are different as illustrated in Figure 

1. Their estimands (true risk ratios to be estimated) numerically agree if no treatment effect 

heterogeneity exists (left half of eFigure 3), and they nearly coincide if covariate overlap is 

good (first and third rows of eFigure 3). However, their estimands are not directly 

comparable in settings with treatment effect heterogeneity as demonstrated in the right half 

of eFigure 3, particularly if covariate overlap is poor (second and fourth rows). When 

making a decision about which propensity score method to employ, the estimand should be 

decided first based on the clinical question. If it is the causal effect in the entire population, 

inverse probability treatment weighting is the method of choice.

Nonetheless, as seen in the poor covariate overlap simulation scenarios, the performance of 

inverse probability treatment weighting degrades when positivity violations26 exist because 

the effect in the entire cohort is not estimable. The inverse probability treatment weighting 

cohort can be “trimmed” to drop subjects who violate positivity, but this will also reduce the 

effective sample size and modify the target of inference (detailed discussions of propensity 

score trimming in the two-group setting are in Crump et al27 and Stürmer et al28). Matching 

weights and matching approach this problem by focusing on the patients with “empirical 

equipoise”29 --i.e., patients for whom all treatment options under study are appropriate. This 

subset is not easily definable; however, in the setting of 3+ active treatment groups, the 

average treatment effect on the treated is not uniquely defined, justifying focusing on this 

feasible subset. This subset is also where comparative effectiveness evidence may be most 

useful for decision-making. In practice, the matching weight cohort, as well as the original 

cohort, should be presented in the baseline table to clarify the subset of the population for 

which inference was made.

Another potential approach given three or more groups is to match two groups at a time, 

resulting in three matched cohorts with different pairs of treatment arms (i.e., to separately 

target the populations for whom those two treatments are equally possible). These three 

cohorts are not directly comparable to the one cohort given by matching weights or three-

way matching. Whether the former is a more appropriate method depends on the clinical 

question and situation. The mean matching weight (ranges 0 to 1) in the group that had the 

smallest unweighted sample size may be used to assess the simultaneous common support. 

This quantity is roughly interpretable as the fraction of the smallest treatment group in 

clinical equipoise with the other groups. If this fraction is close to 1, the treatment groups 

have reasonable overlap and the factor constraining the weighted sample size is the number 
of subjects in the smallest group. On the other hand, if the fraction is close to 0, it is the lack 
of sufficient common support that is constraining the weighted sample size. In the latter 

setting, the more meaningful questions may be answered by pairwise comparison. If the 

problem persists with pairwise matching weights, it means not enough common support 

exists in the data to enable comparative effectiveness research.

There are potential limitations in the current study. We employed the caliper configuration 

for three-way matching used in the paper by Rassen et al.3 Currently, no known standard 
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exists for caliper definitions (raw propensity score or logit of propensity score) or caliper 

widths for three-way matching. In the 4 or more group settings, even the distance metric is 

hard to define. Matching weights, on the other hand, completely avoids the use of an 

arbitrary caliper parameter. Investigators can instead focus on the structure of the propensity 

score model.

Matching methods, including three-way matching, are, by definition, protected against 

common support (positivity) violations at least with narrow matching calipers. Subjects with 

propensity scores that are not present in other treatment groups cannot match, and are 

excluded. This is not true for matching weights, as everybody, even those without exactly 

comparable subjects in other groups, contributes to the weighted analyses. This is why the 

theoretical asymptotic equivalence of the estimands of matching weights and matching 

requires perfect common support in addition to exact matching.6 However, poor covariate 

overlap did not adversely affect matching weights in comparison to inverse probability 

treatment weights, which did not perform well in poor covariate overlap scenarios.

There have been debates about whether to account for the uncertainty in the estimated 
propensity score11, which are estimates of the true underlying propensity score. Li and 

Greene found that not accounting for the uncertainty (using estimated propensity scores as if 

they were known constants) results in conservative variance estimates6, whereas 

simultaneous estimation of the propensity score and outcome model parameters gave correct 

variance estimates. We did not pursue this method, as the generalization to multiple 

treatment group settings and binary outcomes was unclear. They suggested bootstrapping as 

an alternative that is easier to implement. In our simulation study in the three-group setting 

with a binary outcome, matching weight variance estimates were somewhat anti-

conservative (smaller than the true variance) in poor covariate overlap scenarios. Bootstrap 

variance performed more accurately and was less often anti-conservative.

In conclusion, matching weights are a viable alternative to matching, especially with three or 

more treatment groups. Matching weights demonstrated improved performance over three-

way matching in terms of MSE. With good covariate overlap, matching weight estimates 

were similar to inverse probability treatment weight estimates, although, in such settings, the 

latter may be preferable due to its clearer target of inference. Given its natural extension to 

settings with more than three groups, we recommend matching weights for comparing 

outcomes across multiple treatment groups when covariate overlap is relatively limited, 

outcomes are rare, or exposure distributions are unequal. For variance estimation, use of 

bootstrapping is preferred.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of pre- and post-weighting or post-matching distributions of propensity score 

when the treatment prevalence is 50%. The solid line is the distribution of the propensity 

scores in the treated, and the dashed line is the distribution in the untreated. Matching and 

matching weight cohorts have a similar propensity score distribution, indicating that their 

estimands are similar. However, their distributions are substantially different from the 

original treated group, indicating their departure from the average treatment effect in the 

treated.

Abbreviations: IPTW: inverse probability of treatment weights; ATTW: average treatment 

effect on the treated weights; ATUW: average treatment effect on the untreated weights; 

MW: matching weights.
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Figure 2. 
Comparison of weighted and matched sample sizes under different levels of covariate 

overlap. IPTW shows a weighted sample size identical to the original cohort. Matching 

weights and matching are similarly affected by exposure prevalence and poor covariate 

overlap, indicating shifts in the target population.

Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; 

Ip: Inverse probability of treatment weight cohort; pExpo: Exposure prevalence
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Figure 3. 
Comparison of covariate balance before and after matching or weighting by average 

standardized mean differences under different covariate overlap (selected covariates: X1, 

X4, and X7). MW performs best in both settings, whereas IPTW only works in the good 

covariate setting. The other covariates showed similar patterns.

Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; 

Ip: Inverse probability of treatment weight cohort; pExpo: Exposure prevalence
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Table 1

Comparison of hazard ratios for coxibs and opioids (nonselective NSAIDs as the reference) by different 

methods and outcomes.

Coxibs vs nsNSAIDs Opioids vs nsNSAIDs

HR [95% CI] HR [95% CI]

Death

 Unmatched 1.70 [1.29, 2.24] 2.82 [2.19, 3.64]

 Matched 1.42 [1.06, 1.89] 2.00 [1.49, 2.67]

 MW 1.39 [1.06, 1.84] 1.97 [1.52, 2.57]

 IPTW 1.38 [1.02, 1.87] 1.96 [1.48, 2.60]

Fracture

 Unmatched 1.18 [0.80, 1.75] 5.82 [4.19, 8.09]

 Matched 0.95 [0.62, 1.45] 4.71 [3.31, 6.70]

 MW 1.01 [0.68, 1.50] 4.73 [3.40, 6.60]

 IPTW 0.89 [0.58, 1.36] 4.07 [2.81, 5.88]

GI bleed

 Unmatched 0.93 [0.60, 1.44] 1.53 [1.03, 2.26]

 Matched 0.93 [0.59, 1.48] 1.00 [0.61, 1.64]

 MW 0.86 [0.55, 1.33] 1.11 [0.74, 1.67]

 IPTW 0.92 [0.58, 1.46] 1.20 [0.79, 1.80]

Cardiovascular

 Unmatched 1.60 [1.30, 1.98] 2.29 [1.88, 2.80]

 Matched 1.42 [1.13, 1.78] 1.59 [1.25, 2.00]

 MW 1.36 [1.10, 1.67] 1.63 [1.33, 2.00]

 IPTW 1.27 [0.98, 1.64] 1.44 [1.12, 1.86]

Abbreviations: MW: matching weights; IPTW: inverse probability of treatment weights; Matched: three-way matching; Coxibs: COX-2 selective 
inhibitors; nsNSAIDs: non-selective non-steroidal anti-inflammatory drugs; HR: hazard ratio; CI: confidence interval.
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Table 2

Characteristic of methods examined in this paper.

MW Three-way matching IPTW

Estimand Average treatment effect in a 

subset.a
Average treatment effect in a subset.a Average treatment effect in the 

entire cohort.

Robustness to 
common support 

violation

Robust within our simulation 
scenarios.

Robust within our simulation scenarios. Not robust. Biased in poor covarite 
overlap settings.

Computation Simple Intensive in large datasets. Simple

Tuning parameter PS model PS model. Distance metric and scale. 
Caliper size. Matching algorithm.

PS model

Analysis Weighted analysis Regular analysis Weighted analysis

Variance Small in all settings. Estimate 
using bootstrapping.

Large in poor covariate overlap with rare 
events.

Small if covariate overlap is 
substantial. Large if poor.

Diagnostics SMD after weighting. Weighted 
sample size in comparison to the 

full cohort.

SMD after matching. Matched sample 
size in comparison to the full cohort.

SMD after weighting. Average 
weight (should be close to 1 if 

stabilized).

a
The estimand can be close to the effect in the entire cohort if group sizes are balanced and covariate overlap is substantial. If one of the groups is 

small and covariate overlap is substantial, the estimand can be close to the effect in the smallest group. If covariate overlap is poor, the estimand is 
the effect in a small subset that may not be representative of any of the groups.

Abbreviations: MW: matching weights; IPTW: inverse probability of treatment weights; PS: Propensity score; SMD: Standardized mean 
difference.
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