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Abstract

Rapid, reliable quantification of MR relaxation parameters T1 and T2 is desirable for many clinical 

applications. Steady-state sequences such as Spoiled Gradient-Recalled Echo (SPGR) and Dual-

Echo Steady-State (DESS) are fast and well-suited for relaxometry because the signals they 

produce are quite sensitive to T1 and T2 variation. However, T1, T2 estimation with these 

sequences typically requires multiple scans with varied sets of acquisition parameters. This paper 

describes a systematic framework for selecting scan types (e.g., combinations of SPGR and DESS 

scans) and optimizing their respective parameters (e.g., flip angles and repetition times). The 

method is based on a Cramér-Rao Bound (CRB)-inspired min-max optimization that finds scan 

parameter combinations that robustly enable precise object parameter estimation. We apply this 

technique to optimize combinations of SPGR and DESS scans for T1, T2 relaxometry in white 

matter (WM) and grey matter (GM) regions of the human brain at 3T field strength. Phantom 

accuracy experiments show that SPGR/DESS scan combinations are in excellent agreement with 

reference measurements. Phantom precision experiments show that trends in T1, T2 pooled sample 

standard deviations reflect CRB-based predictions. In vivo experiments show that in WM and GM, 

T1 and T2 estimates from a pair of optimized DESS scans exhibit precision (but not necessarily 

accuracy) comparable to that of optimized combinations of SPGR and DESS scans. To our 

knowledge, T1 maps from DESS acquisitions alone are new. This example application illustrates 

that scan optimization may help reveal new parameter mapping techniques from combinations of 

established pulse sequences.
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I. Introduction

Fast, accurate quantification of spin-lattice and spin-spin relaxation parameters T1 and T2 

has been of longstanding interest in MRI. Many researchers have suggested that T1, T2 maps 

may serve as biomarkers for monitoring the progression of various disorders [1]. 

Neurological applications include: lesion classification in multiple sclerosis [2]; tumor 

characterization [3, 4]; and symptom onset prediction in stroke [5, 6]. In addition, T1, T2 

have shown promise for detecting hip and knee cartilage degeneration [7, 8] and for 

assessing cardiac dysfunction due to iron overload [9] or edema [10]. Motivated by this 

broad interest in T1, T2 mapping, this paper describes a systematic method to guide MR scan 

design.

Classical pulse sequences such as inversion/saturation recovery (IR/SR) or (single) spin echo 

(SE) yield relatively simple methods for T1 or T2 estimation, respectively; however, these 

methods require several scans, each with long repetition time TR, leading to undesirably 

long acquisitions. Numerous modifications such as the Look-Locker method [11], multi-SE 

trains [12], or fast k-space trajectories [13–15] have been proposed to accelerate T1 [16–19] 

and T2 [20–23] relaxometry with these classical sequences. These techniques are more 

sensitive to model non-idealities [24–26], and are still speed-limited by the long TR required 

for (near)-complete T1 recovery.

Steady-state (SS) pulse sequences [27, 28] permit short TR, and are thus inherently much 

faster than classical counterparts. SS techniques are well-suited for relaxometry because the 

signals produced are highly sensitive to T1 and T2 variation. However, short TR times also 

cause SS signals to be complex functions of both desired and undesired (nuisance) 

parameters, complicating quantification. Furthermore, some such methods [29, 30] still 

require scan repetition, though individual scans are now considerably shorter. Despite these 

difficulties, the potential for rapid scanning with high T1, T2 sensitivity has motivated 

numerous SS relaxometry studies [29–38].

The dual-echo steady-state (DESS) sequence [39] was recently proposed as a promising SS 

imaging technique for T2 estimation [35]. Because it produces two distinct signals per 

excitation, the DESS sequence can reduce scan repetition requirements by recording twice 

as much data per scan. As with other SS methods, the resulting signals [40, 41] are 

complicated functions of T1, T2, and other parameters. Prior works have isolated T2 

dependencies using either algebraic manipulations of the first- and second-echo signals [35, 

36] or separate scans to first estimate nuisance parameters [42]. Although DESS 

concurrently encodes rich T1 and T2 information, these methods have shied away from using 

DESS for T1 estimation, either through bias-inducing approximations, or noise-propagating 

sequential estimation, respectively.

Whether it be with DESS, other sequences, or even combinations thereof, it is generally 

unclear how to best assemble a scan profile (i.e., a collection of scans) for a fixed amount of 

scan time. Furthermore, for a given scan profile, it is typically not obvious how to best select 

acquisition parameters (e.g., flip angles, repetition times, etc.) for relaxometry. In this paper, 
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the term scan design refers to the related problems of scan profile selection and scan 

parameter optimization.

Historically, scan design for relaxometry has predominantly been explored using figures of 

merit related to estimator precision. In particular, several studies have used the Cramér-Rao 

Bound (CRB), a statistical measure that bounds the minimum variance of an unbiased 

estimator. Earlier works have used the CRB and variations to select inversion times for 

recovery experiments [43, 44], flip angles for spoiled gradient-recalled echo (SPGR) 

sequences [45], and echo times for SE experiments [46]. More recent studies have 

considered additional scan design challenges, including scan time constraints [47], multiple 

latent parameters [48], multiple scan parameter types [49], and latent parameter spatial 

variation [50, 51].

The aforementioned studies consider scan parameter optimization for profiles consisting of 

only one pulse sequence. In contrast, this paper introduces a general framework for robust, 

application-specific scan design for parameter estimation from combinations of pulse 

sequences. The framework first finds multiple sets of scan parameters that achieve precise 

estimation within a tight, application-specific range of object parameters (e.g., T1, T2, etc.). 

The framework then chooses the one scan parameter set most robust to estimator precision 

degradation over a broader range of object parameters. As a detailed example, we optimize 

three combinations of DESS and SPGR sequences for T1, T2 mapping. For a fixed total scan 

time, we find that well-chosen DESS scans alone can be used to estimate both T1 and T2 

with precision and robustness comparable to combinations of DESS and SPGR. This 

example illustrates that, with careful scan profile design, well-established pulse sequences 

can find use in new estimation problems.

This paper is organized as follows. Section II uses a general signal model to describe a CRB-

inspired min-max optimization problem for robust, application-specific scan optimization. 

Section III adapts the DESS signal models to our framework and optimizes three practical 

DESS/SPGR combinations to show that, even in the presence of radiofrequency (RF) field 

inhomogeneity, DESS is a promising option for T1, T2 relaxometry. Section IV describes 

simulation, phantom, and in vivo experiments and discusses corresponding results. Section 

V discusses practical challenges and suggests future directions. Section VI summarizes key 

contributions.

II. A CRB-Inspired Scan Selection Method

A. A Generalized Signal Model

A broad class of MR pulse sequences useful for parameter mapping produce, after 

reconstruction, a set of noisy images yd(·) that can be described with the following general 

model:

(1)
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where x(r) ∈ ℂL collects L latent object parameters, at position r; ν(r) ∈ ℂK gathers K 
known object parameters at r; pd ∈ ℝP denotes a set of P scan parameters chosen for the dth 

dataset; fd : ℂL×ℂK ×ℝP ↦ ℂ is a (pulse-sequence dependent) function that models the 

noiseless signal obtained from the dth dataset; and  is assumed, for sake of 

simplicity, to be independent, complex Gaussian noise1 [54, 55]. (As a concrete example, for 

T2(·) mapping from single SE datasets, x(·) could collect spin density and T2(·); ν(·) could 

collect known off-resonance and RF field inhomogeneities; and pd could assign the dth echo 

time, chosen to yield image yd(·).)

A scan profile consists of D datasets from a combination of pulse sequences. Let y(r) := 

[y1(r),…, yD(r)]⊤ ∈ ℂD collect the noisy signals at r from all datasets, P := [p1,…, pD] ∈ 
ℝP×D gather the corresponding scan parameters, and vector function f : ℂL × ℂK × ℝP×D ↦ 
ℂD naturally extend scalar function f, where (·)⊤ denotes vector transpose. Then the log-

likelihood function is (to within a constant independent of x(r)):

(2)

where covariance matrix  is diagonal due to the assumption of 

independence between scans.

Under suitable regularity conditions2, the Fisher information matrix I(x(r); ν(r),P) ∈ ℂL×L 

[56] is a measure useful for characterizing the precision of unbiased estimates of x(r) from 

y(r), given ν(r) and P:

(3)

where (·) denotes expectation; ∇x denotes a row gradient with respect to x at fixed r; and 

(·)† denotes Hermitian transpose. In particular, the matrix Cramér-Rao Bound (CRB) [57] 

ensures that any unbiased estimator x̂(r) satisfies

(4)

1Though the noise distribution of k-space raw data is usually well-modeled as complex white Gaussian, the noise distribution of the 
dth reconstructed image yd(·) depends both on the acquisition and reconstruction. If single receive channel k-space data is fully-
sampled on a Cartesian grid, each dataset yd(·) is recoverable via separate Fourier transform, and is thus complex Gaussian and 
independent across datasets. However, if k-space data is multi-channel, undersampled, and/or non-Cartesian, it may be preferable that 
yd(·) be estimated by more sophisticated techniques, e.g., [52, 53]. In such cases, reconstructed image noise is unlikely to be Gaussian-
distributed.
2In particular, f must be analytic in complex components of x at each r.
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where for arbitrary, equally sized matrices A and B, matrix inequality A ⪰ B means A − B is 

positive semi-definite. In the following, we design an optimization problem based on the 

CRB to guide MR scan design for relaxometry.

B. Min-max Optimization Problem for Scan Design

Following [58], we focus on minimizing a weighted average of the variances in each of the L 
latent object parameter estimates. A reasonable objective function for overall estimator 

precision is therefore given by

(5)

where W ∈ ℝL×L is a diagonal, application-specific matrix of weights, preselected to control 

the relative importance of precisely estimating the L latent object parameters; and tr (·) 

denotes the matrix trace operation. For scan design, we would like to minimize (5) with 

respect to scan parameters P.

The CRB depends not only on P but also on the spatially varying object parameters x(·) and 

ν(·). Thus, one cannot perform scan design by “simply” minimizing Ψ over the scan 

parameters P. Instead, we pose a practical and application-dependent min-max optimization 

problem for scan design: we seek candidate scan parameters P̆ over a search space ℘ that 

minimize the worst-case, i.e., maximum cost Ψ̃t, as viewed over “tight” parameter ranges t 

and t:

(6)

(7)

Here, we select latent object parameter set t based on the application and known parameter 

set t based on the spatial variation typically observed in the known parameters ν(·). Min-

max approach (6) should ensure good estimation precision over a range of parameter values.

Since Ψ is in general non-convex with respect to P, it may have multiple global minimizers 

as well as other scan parameters that are nearly global minimizers. To improve robustness to 

object parameter variations, we form an expanded set of candidate scan parameters by also 

including scan parameters that yield costs to within a tolerance δ ≪ 1 of the optimum. 

Mathematically, we define this expanded set of candidate scan parameter combinations (for 

a given scan profile) as
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(8)

To select amongst these candidate scan parameters, we employ a robustness criterion: we 

select the single scan parameter P* that degrades the least when the worst-case cost is 

viewed over widened object parameter sets b ⊇ t and b ⊇ t:

(9)

(10)

To compare different scan profiles, we select corresponding search spaces ℘ to satisfy 

acquisition constraints (e.g., total scan time), but otherwise hold optimization parameters W, 

δ, t,b, and t,b fixed. Since Ψ is data-independent, we can solve (6) and (9) offline for 

each scan profile. The result of each profile’s min-max optimization process (9) is a 

corresponding optimized scan parameter matrix P* that is suitable for the range of latent x 
and known ν object parameters specified in t and t, and is robust to variations in those 

parameters over broader sets b and b, respectively.

III. Application: Optimizing SS Sequences for T1, T2 Relaxometry in the 

Brain

This section applies the methods of Section II.B to the problem of scan design for joint T1, 
T2 estimation from combinations of SS sequences. Section III.A presents a brief overview of 

the DESS signals, formulating models to permit estimation of as few nuisance parameters as 

possible. Section III.B details how we use optimization problems (6) and (9) to tailor three 

combinations of DESS and SPGR scans for precise T1, T2 estimation in white matter (WM) 

and grey matter (GM) regions of the human brain. Section III.C compares the predicted 

performance of the three optimized scan profiles.

A. The DESS Signal Model

The DESS sequence interlaces RF excitations with unbalanced spoiler gradients of fixed 

area [39] to produce two distinct signals per excitation. If the gradient lobe area is carefully 

chosen to dominate through-voxel field inhomogeneity gradients, yet not introduce 

significant diffusive effects [59–61], the bulk steady-state signal sD (from a voxel centered at 

position r) immediately before (t ≈ 0−) and after (t ≈ 0+) an RF excitation centered at time t 
= 0 can be written as
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(11)

(12)

(13)

(14)

Here, Eu (r, t) := exp (−t/Tu(r)) for u ∈ {1, 2} describes longitudinal or transverse relaxation 

at time t, respectively; M0(r) ∈ ℂ is proportional to spin density; flip angle α(r) = α0κ(r) is 

decomposed as a nominal (prescribed) value α0 with spatial variation κ(r) ≈ 1 due to RF 

field inhomogeneities; TR is repetition time; and . Signal models (11) and (12) 

neglect relaxation and off-resonance effects during each (short) RF pulse3, and assume RF 

rotations about the î-axis.

We model each voxel’s macroscopic broadening distribution to be Cauchy (ω̄(r), ), 

where ω̄(r) denotes median off-resonance frequency and  is the broadening bandwidth. 

If we time readout gradients to form echoes symmetrically centered at echo time TE before 

and after RF excitation, then the noiseless DESS signals are well approximated as

(15)

(16)

3Finite-duration RF effects influence SS signals more strongly for shorter TR, larger α0, and smaller T2/T1 [62]. In this work, RF 
pulse durations do not exceed 11% of repetition times and do not excite nominal flip angles greater than 35°. Phantom results (cf. Fig. 
1) show that for these scan parameters, the influence of finite-duration RF effects on T1, T2 estimates is small even for T2/T1 ≈ 0.1 as 
in WM/GM.
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In (15) and (16), nuisance parameters M0(r), , κ(r), and ω̄(r) complicate estimation of 

T1(r) and T2(r). For simplicity, we take κ(r) to be known from a separately acquired RF 

transmit field  scan. To avoid (separate or joint) ω̄(r) estimation, we choose to use 

magnitude DESS data, at the expense of slight model mismatch (studied with simulations in 

Section IV.A) in (1) due to Rician noise. By fixing TE across acquisitions and defining

(17)

we can rewrite magnitude signals as functions of L = 3 latent and K = 1 known object 

parameters, collected as x(r) := [ME(r), T1(r), T2(r)]⊤ and ν(r) := κ(r), respectively:

(18)

(19)

where p := [α0, TR]⊤ collects the P = 2 scan parameters we are free to optimize. From here, 

we use the scan design method described in Section II to select an optimized p 
corresponding to each DESS scan within a particular scan profile.

B. Scan Design Details

There are numerous candidate scan profiles involving DESS and/or other pulse sequences 

that may be useful for fast, accurate T1, T2 mapping. In this work, we consider combinations 

of DESS and SPGR scans [63]. With proper RF phase cycling and gradient spoiling, the 

SPGR signal sS can be expressed without any explicit T2(r) dependence:

(20)

SPGR’s reduced dependence on spatially varying unknowns is reason for its use for T1 

mapping [30–32] and subsequent T2 mapping from other sequences [29, 42]. In a similar 

spirit, we examine scan profiles containing SPGR over other SS sequences because we 

predict that the SPGR sequence’s T2-independence may help estimators disentangle T2 from 

other unknown sources of DESS signal contrast.

As written in (20), each SPGR scan also leaves p = [α0, TR]⊤ as P = 2 scan parameters 

available to optimize. A given scan profile consisting of CSPGR SPGR and CDESS DESS 

scans yields D = CSPGR + 2CDESS datasets. We optimize such a scan profile by solving (9) 

over a dimension-PD = 2(CSPGR + 2CDESS) space of scan parameters.
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We select constraints on search space ℘ based on hardware limitations and desired scan 

profile properties. Since each pair of DESS signals must share the same choice of p, the 

search space is reduced to  (superscripts denote 

Cartesian powers). We assign flip angle ranges 0,SPGR = 0,DESS ← [5, 90]° to restrict 

RF energy deposition. We set feasible TR solution sets R,SPGR ← [12.2,+∞)ms and 

R,DESS ← [17.5,+∞)ms based on pulse sequence designs that control for other scan 

parameters. These control parameters are described in further detail in Section IV, and are 

held fixed in all subsequent SPGR and DESS experiments. To equitably compare optima 

from different scan profiles, we require TR := [TR,1,…, TR,CSPGR, TR,CSPGR+1,…, 
TR,CSPGR+CDESS]⊤ to satisfy a total time constraint, ||TR||1 ≤ TR,max. For a scan profile 

consisting of CSPGR SPGR and CDESS DESS scans, these constraints collectively reduce the 

search space dimension from PD to 2(CSPGR + CDESS) − 1.

Prior works have considered T1 or T2 estimation from as few as 2 SPGR [29, 45] or 1 DESS 

[35] scan(s), respectively. We likewise elect to optimize the (CSPGR,CDESS) ← (2, 1) scan 

profile as a benchmark. We choose TR,max ← 2(12.2)+ 1(17.5) = 41.9ms and select other 

scan profiles capable of meeting this time constraint. Requiring that candidate profiles 

contain CDESS ≥ 1 DESS scans for T2 contrast and satisfy D ≥ L(= 3) for well-conditioned 

estimation, we note that (1, 1) and (0, 2) are the only other eligible profiles.

In the ensuing experiments, we focus on precise T1, T2 estimation in the brain and design 

latent object parameter ranges t = ℳE,t × 1,t × 2,t and t = t accordingly. Noting that 

T1 ~ 10T2, we choose W ← diag (0, 0.1, 1) in (5) to place roughly equal importance on 

precise T1 vs. T2 estimation. Since W places zero weight on ME estimation (obviating the 

need for complex differentiation in (3)), it is easily shown that Ψ depends on ME only 

through a constant scale factor; thus it suffices to consider ℳE,t ← 1. We select 1,t ← 
[800, 1400]ms and 2,t ← [50, 120]ms to correspond with WM and GM regions of interest 

(ROIs) at 3T [64, 65].We take t ← [0.9, 1.1] to account for 10% spatial variation in flip 

angle. Broadened ranges b ← 1×[400, 2000]ms×[40, 200]ms and b ← [0.5, 2] are 

constructed to encourage solutions robust to a wide range of object parameters. We assume 

constant noise variance , where σ2 ← 1.49 × 10−7 is selected to reflect 

measurements from normalized phantom datasets (cf. Sections IV.B.1 and S.V.A-S. V.B for 

acquisition details). Lastly, we set δ ← 0.01 to select a robust scan parameter P* with 

associated worst-case cost Ψ̃t(P*) within 1% of global optimum Ψ̃t(P̆).

C. Scan Profile Comparisons

We solve (6) and (9) via grid search to allow illustration (§S.I in Supplement4) of Ψ̃t(P) as 

well as worst-case T1, T2 standard deviations  and , each defined as

4Supplementary material is available in the /media tab on IEEEXplore.
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(21)

(22)

where σT1 (x; ν, P) and σT2 (x; ν, P) are corresponding diagonal elements of inverse Fisher 

matrix I−1(x; ν, P). Grid searches for the (2, 1), (1, 1), and (0, 2) profiles each took about 4, 

43, and 28 minutes, respectively. All experiments described hereafter were carried out using 

MATLAB® R2013a on a 3.5GHz desktop with 32GB RAM.

Table I compares optimized scan parameters for profiles consisting of (2, 1), (1, 1), and (0, 

2) SPGR and DESS scans, respectively. In addition to  and , Table I presents 

analogous worst-case standard deviations  and  over b × b to show how 

each estimator degrades over the broadened object parameter range. When viewed over tight 

range t × t, the (0, 2) profile provides a 11.5% reduction in worst-case cost over the 

other choices. Extending to broadened range b× b, this reduction grows dramatically to 

31.4%. We thus observe that while the different optimized profiles afford similar estimator 

precision over a narrow range of interest, the (0, 2) profile may be preferable due to its 

robustness to a wide range of object parameters.

As the DESS sequence has already found success for T2 mapping from even one scan [35], 

it is reassuring but unsurprising that our analysis finds two DESS scans to yield the most 

precise T2 estimates. More interestingly, our methods suggest that, with a minimum CDESS = 

2 scans, DESS can be used to simultaneously estimate T1 as well. In fact, for certain choices 

of parameter ranges, a second DESS scan is predicted to afford T̂
1 precision comparable to 

two SPGR scans.

IV. Experimental Validation and Results

To test our approach to optimized scan design (described in Section II.B), we next estimate 

T1 and T2 maps (using maximum-likelihood (ML) and regularized least squares (RLS) 

methods detailed in Section S.II) from datasets collected using the scan profiles optimized in 

Section III. In Section IV.A, we study estimator statistics from simulated data. In Sections 

IV.B–IV.C, we progress to phantom and in vivo datasets to evaluate scan profile performance 

and estimator robustness under increasingly complex settings. For the latter experiments, we 

use reference parameter maps from classical (long) pulse sequences, in lieu of ground truth 

maps.
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A. Numerical Simulations

We select T1 and T2 WM and GM values based on previously reported measurements at 3T 

[64, 65] and extrapolate other unimportant latent object parameters M0 and  from 

measurements at 1.5T [66]. We assign these parameter values to the discrete anatomy of the 

BrainWeb digital phantom [66, 67] to create ground truth M0, T1, T2, and  maps. We then 

choose acquisition parameters based on Table I (with fixed TE = 4.67ms) and apply models 

(20) and (15)–(16) to the 81st slices of these true maps to compute noiseless 217×181 SPGR 

and DESS image-domain data, respectively.

For each scan profile, we corrupt the corresponding (complex) noiseless dataset F with 

additive complex Gaussian noise, whose variance σ2 ← 1.49 × 10−7 is set to match CRB 

calculations. This yields realistically noisy datasets Y ranging from 105–122 SNR, where 

SNR is defined here as

(23)

We use each profile’s noisy magnitude dataset |Y| to compute estimates M̂
E, T̂

1, and T̂
2 

(images and histograms in Section S.III). We then evaluate estimator bias and variance from 

latent ground truth T1 and T2 maps.

In these simulations, we intentionally neglect to model a number of physically realistic 

effects because their inclusion would complicate study of estimator statistics. First and 

foremost, we assume knowledge of a uniform transmit field, to avoid confounding  and 

T1, T2 estimation errors. For a similar reason, spatial variation in the sensitivity of a single 

receive coil is also not considered. We omit modeling partial volume effects to ensure 

deterministic knowledge of WM and GM ROIs. We will explore the influence of these (and 

other) nuisance effects on scan design in later subsections.

To isolate bias due to estimator nonlinearity from regularization bias, we minimize the ML 

initialization cost (S.1) only, and do not proceed to solve RLS problem (S.2). This permits 

consideration of T1, T2 estimation from each of the 7733 WM or 9384 GM data points as 

voxel-wise independent realizations of the same estimation problem. To minimize 

quantization bias, we optimize (S.1) using a very finely spaced dictionary of signal vectors 

from 1000 T1 and T2 values logarithmically spaced between [102, 103.5] and [101, 102.5], 

respectively. Using 106 dictionary elements, solving (S.1) took less than 7 minutes for each 

tested scan design P*.

Table II5 verifies that, despite model nonlinearity and Rician noise, estimation bias in WM- 

and GM-like voxels is negligible. Sample standard deviations are consistent with  and 

5Each sample statistic presented hereafter is rounded off to the highest place value of its corresponding uncertainty measure. For 
simplicity, each uncertainty measure is itself endowed one extra significant figure. Decimal points indicate the significance of trailing 
zeros.
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(cf. Table I). In WM and GM, we observe that the (1, 1) and (0, 2) profiles afford high 

precision, while the (2, 1) and (0, 2) scans afford high  precision. In agreement with the 

predictions of Ψ̃t and Ψb̃, these simulation studies suggest that at these SNR levels, an 

optimized profile containing 2 DESS scans can permit T1 and T2 estimation precision in 

WM and GM comparable to optimized profiles containing SPGR/DESS combinations.

B. Phantom Experiments

This subsection describes two experiments. In the first experiment, we compare the SPGR/

DESS scan profiles described in Table I (as well as a reference profile consisting of IR and 

SE scans) against nuclear magnetic resonance (NMR) measurements from the National 

Institute for Standards and Technology (NIST) [68]. These measurements provide 

information about ROI sample means and ROI sample standard deviations (Fig. 1), which 

we define as first- and second-order statistics computed across voxels within an ROI. In the 

second experiment, we repeat the SPGR/DESS scan profiles 10 times and compute sample 
standard deviation maps across repetitions (not shown). Taking ROI sample means of these 

maps gives pooled sample standard deviations (Table III), which indicate relative scan 

profile precision.

1) Within-ROI Statistics—We acquire combinations of (2, 1), (1, 1), and (0, 2) SPGR and 

DESS coronal scans of a High Precision Devices® MR system phantom T2 array. For each 

scan profile, we prescribe the optimized flip angles α̂
0 and repetition times T̂

R listed in 

Table I, and hold all other scan parameters fixed. We achieve the desired nominal flip angles 

by scaling a 20mm slab-selective Shinnar-Le Roux excitation [69], of duration 1.28ms and 

time-bandwidth product 4. For each DESS (SPGR) scan, we apply 2 (10) spoiling phase 

cycles over a 5mm slice thickness. We acquire all steady-state phantom and in vivo datasets 

with a 256 × 256 × 8 matrix over a 240 × 240 × 30 mm3 field of view (FOV). Using a 

31.25kHz readout bandwidth, we acquire all data at minimum TE ← 4.67ms before or after 

RF excitations. To avoid slice-profile effects, we sample k-space over a 3D Cartesian grid. 

After Fourier transform of the raw datasets, only one of the excited image slices is used for 

subsequent parameter mapping. Including time to reach steady-state, each steady-state scan 

profile requires 1m37s scan time.

To validate a reference scan profile for use in in vivo experiments, we also collect 4 IR and 4 

SE scans. For (phase-sensitive, SE) IR, we hold (TR, TE) ← (1400, 14)ms fixed and vary 

(adiabatic) inversion time TI ∈ {50, 150, 450, 1350}ms across scans. For SE, we similarly 

hold TR ← 1000ms fixed and vary echo time TE ∈ {10, 30, 60, 150}ms across scans. We 

prescribe these scan parameters to acquire 256×256 datasets over the same 240 × 240 × 5 

mm3 slice processed from the SPGR/DESS datasets. Each IR and SE scan requires 5m58s 

and 4m16s, for a total 40m58s scan time.

We additionally collect a pair of Bloch-Siegert shifted 3D SPGR scans for separate 

estimation [70]. We insert a 9ms Fermi pulse (peak amplitude ) at ±8 kHz 

off-resonance into an SPGR sequence immediately following on-resonant excitation. We 

estimate regularized  maps [71] from the resulting pair of datasets. We then estimate flip 
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angle variation κ̂ as , calibrate κ̂ (via separate measurements described in Section 

S.IV), and thereafter take κ as known. For consistency, we account for flip angle variation 

when estimating T1 and T2 from both the candidate (SPGR/DESS) and reference (IR/SE) 

aforementioned scan profiles. With a repetition time of 21.7ms, this  mapping acquisition 

requires 1m40s total scan time.

Fig. 1 plots sample means and sample standard deviations computed within circular ROIs of 

phantom T1 and T2 ML estimates (reconstruction details, analogous plots for RLS estimates, 

and images in Sections S.V.A–S.V.C). The highlighted orange and yellow parameter spaces 

correspond to design ranges t and b. T1 estimates from both the candidate (2, 1), (1, 1), 

and (0, 2) (SPGR, DESS) and reference (4, 4) (IR, SE) profiles are in reasonable agreement 

with NIST estimates [68] across the vial range. T2 estimates from all profiles are also in 

good agreement with NIST for vials within b. SPGR/DESS profiles likely underestimate 

large T2 values (≥200ms) due to greater influence of diffusion in DESS [59–61]. SPGR/

DESS profiles possibly overestimate and the IR/SE profile likely underestimates short 

(≤30ms) and very short (≤15ms) T2 values, respectively, due to poorly conditioned 

estimation.

2) Across-Repetition Statistics—In a second study, we repeat the (2, 1), (1, 1), and (0, 
2) scan profiles 10 times each and separately estimate T1 and T2 for each repetition of each 

scan profile. We then estimate the standard deviation across repetitions on a per-voxel basis, 

to produce sample standard deviation maps for each profile. Each ROI voxel of the sample 

standard deviation map is a better estimate of the population standard deviation (which the 

CRB characterizes) than the ROI sample standard deviation from a single repetition, because 

the latter estimate is contaminated with slight spatial variation of voxel population means 

(due to imaging non-idealities such as Gibbs ringing due to k-space truncation).

Table III reports pooled sample standard deviations and pooled standard errors of the sample 

standard deviations (computed via expressions in [72]) for phantom vials within (or nearly 

within) tight design range t (marked orange in Fig. S.7). Due to error propagation from 

coil combination and κ̂ estimation, pooled ML sample standard deviations cannot be 

compared in magnitude to worst-case predicted standard deviations (Table I); however, 

trends of empirical and theoretical standard deviations are overall similar. In particular, the 

optimized (0, 2) DESS-only scan profile affords T1 ML estimation precision (in vials whose 

T1, T2 is similar to that of WM/GM) comparable to optimized (2, 1) and (1, 1) mixed 

(SPGR, DESS) profiles. Also in agreement with predictions, the optimized (2, 1) and (0, 2) 

profiles afford greater T2 ML estimation precision than the optimized (1, 1) profile.

C. In Vivo Experiments

In a single long study of a healthy volunteer, we acquire the same optimized scan profiles 

containing (2, 1), (1, 1), and (0, 2) SPGR and DESS scans (cf. Table I), as well as the 

reference profile containing (4, 4) IR and SE scans. We obtain axial slices from a 32-channel 

Nova Medical® receive head array. To address bulk motion between acquisitions and to 

compare within-ROI statistics, we rigidly register each coil-combined image to an IR image 

(details in Section S.V.D) prior to parameter mapping. All acquisition (cf. Section IV.B.1) 
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and reconstruction (cf. Sections S.V.A–S.V.B) details are otherwise the same as in phantom 

experiments.

Fig. 2 compares brain T1 and T2 ML estimates from optimized scan profiles (Fig. S.9 and 

Fig. S.10 provide corresponding colorized and grayscale RLS estimates, respectively). 

Though in-plane motion is largely compensated via registration, through-plane motion and 

non-bulk motion likely persist, and will influence ROI statistics. Due to motion (and scan 

duration) considerations, we examine within-ROI statistics from a single repetition as in 

Section IV.B.1, and do not attempt across-repetition statistics as in Section IV.B.2.

Visually, T̂
1 maps from steady-state profiles exhibit similar levels of contrast in WM/GM 

regions well away from cerebrospinal fluid (CSF) as that seen in the reference T̂1 estimate. 

Since we did not optimize any scan profiles for estimation in high-T1 regions, it is expected 

that greater differences may emerge in voxels containing or nearby CSF. In particular, T1 is 

significantly underestimated within and near CSF by the (0, 2) DESS-only profile. This 

suggests that with the signal models used in this work, including at least one SPGR scan in 

an optimized profile may offer greater protection against estimation bias in high-T1 regions.

Table IV summarizes within-ROI sample means and sample standard deviations computed6 

over four separate WM ROIs containing 96, 69, 224, and 148 voxels and one pooled cortical 

GM ROI containing 156 voxels (cf. Fig. 2). Within-ROI T̂
1 sample standard deviations are 

comparable across steady-state profiles. In agreement with Table I, T2 estimates from the 

optimized (1, 1) scan profile exhibit higher within-ROI sample variation than corresponding 

(2, 1) and (0, 2) T̂
2 maps.

In most cases, T̂
1 within-ROI sample means from optimized SPGR/DESS scan profiles do 

not deviate substantially from each other or from reference IR/SE measurements. Two 

notable exceptions are  in anterior left and posterior right WM from (1, 1) and (0, 2) 

profiles: these estimates are significantly lower and higher than analogous estimates from 

other profiles, respectively. Results thus suggest that the optimized (2, 1) scan profile yields 

WM  estimates that are more consistently similar to IR WM  estimates than other 

optimized SPGR/DESS profiles.

Systematic differences in T̂
2 sample means are evident across scan profiles, particularly 

within WM ROIs. Curiously, the (1, 1) profile agrees most consistently (in WM/GM 

within-ROI sample mean) with reference estimates, though with relatively high sample 

variation. The (2, 1) and (0, 2) SPGR/DESS profiles produce consistently lower WM 

than the reference IR/SE profile, though the (0, 2) profile is in reasonable agreement with 

other steady-state estimates [73].

These discrepancies may due to differences in sensitivity to multi-compartmental relaxation 

[74]. Specifically, different signal models with different scan parameter choices might be 

6We have taken effort to try and select ROIs that reflect expected anatomy in all coil-combined and registered images, including 
adjacent slices in images from 3D acquisitions. However, we acknowledge the possibility of some contamination across tissue 
boundaries, especially WM and/or CSF contamination into cortical GM.
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more or less sensitive to the model mismatch incurred by neglecting to distinguish the 

multiple T2 components within each voxel. Section S.VI studies T2 estimation bias due to 

multi-compartmental relaxation in more detail.

V. Discussion and Future Work

Phantom experiments show that optimized scan profiles consisting of (2, 1), (1, 1), and (0, 2) 

(SPGR, DESS) scans yield accurate WM/GM T1, T2 estimates, and that empirical precision 

trends across profiles agree reasonably with CRB-based predictions. However, in vivo 
experiments reveal that even with scan optimization, it may be challenging to achieve 

clinically viable levels of precision from the aforementioned steady-state profiles, at least at 

3T. At the expense of greater scan time, it is of course possible that optimized profiles 

containing greater numbers of SPGR, DESS, and/or other steady-state scans can provide 

clinically acceptable precision levels. For these and other more complicated scan profiles, 

estimator dependence on scan parameters becomes even less intuitive, increasing the need 

for scan design.

The proposed scan design framework addresses spatial variation in object parameters 

through a min-max design criterion. The min-max criterion guarantees an upper bound on a 

weighted sum of variances and assumes no prior knowledge of distributions. However, in 

general it is non-differentiable in P, precluding gradient-based optimization. Furthermore, it 

is conservative by nature, and often selects scan parameters based on corner cases of the 

object parameter space. To reduce the influence of corner cases, it may be desirable to 

instead construct a cost function related to the coefficient of variation as in [44, 46–48], 

perhaps by setting parameter weights W−1 ← diag (x) for x ≠ 0 in (5).

As a less conservative alternative to min-max design, other recent works [50, 51] have 

addressed object parameter spatial variation by instead constructing cost functions related to 

the Bayesian CRB [75], which characterizes the expected precision with respect to a prior 

distribution on object parameters. Bayesian cost functions are usually differentiable and can 

also, with appropriate priors, penalize object parameter coefficients of variation instead of 

variances, as in [50]. However, prior distributions are generally unknown, and may need to 

be estimated from data, as in [51].

Careful calibration of flip angle scaling κ is essential for accurate T1,T2 estimation from 

SPGR/DESS scan profiles. In this work, we estimate κ from separate acquisitions and adjust 

nominal flip angles prior to reconstruction, but acknowledge that non-idealities in those 

separate acquisitions may themselves cause resultant  errors to propagate into our T1,T2 

estimates. To reduce error propagation, it may be desirable to instead design scan profiles to 

permit joint estimation of κ, in addition to other latent object parameters. Unfortunately, we 

find that optimizing the (2, 1) or (0, 2) profile to allow for four-parameter x(r) := [ME(r), 
T1(r), T2(r), κ(r)]⊤ estimation results in unacceptably high amplification of the worst-case 

T1 standard deviation. (Incidentally, precise T2 ML and RLS estimation alone from the (2, 
1) or (0, 2) profile is possible [42].) It remains an open scan design question as to whether 

time spent collecting Bloch-Siegert data for separate  mapping could instead be better 

spent collecting additional SPGR, DESS, and/or other data for joint estimation.
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By working with closed-form signal expressions, we neglect to model several higher-order 

effects. However, it is apparent that the nonlinear estimation procedures required for many 

mapping problems can amplify the influence of these secondary effects, often inducing 

substantial bias. Since the CRB (as described) applies only to unbiased estimators, it is thus 

desirable to use signal models that are as complete as possible for CRB-based scan design. 

In theory, scan optimization approach (9) is even compatible with acquisitions where a 

closed-form model relating data to latent and scan parameters is unknown, as in [22, 76]. In 

practice, difficulties arise in efficient computation of signal gradients required in (3), which 

may demand more specialized techniques, as in [77]. Designing scan profiles involving such 

complex signal models would likely necessitate optimization techniques more involved than 

the simple grid searches used in this work.

VI. Conclusion

We have introduced a CRB-inspired min-max optimization approach to aid robust, 

application-specific MR scan selection and optimization for precise parameter estimation. 

As a detailed example, we have optimized combinations of fast SPGR and DESS scans for 

T1, T2 relaxometry in WM and GM regions of the human brain at 3T. Numerical simulations 

show that at typical noise levels and with accurate flip angle prior knowledge, WM- and 

GM-like T1, T2 ML estimates from optimized scans are nearly unbiased, and so worst-case 

CRB predictions yield reliable bounds on ROI sample variances. Phantom accuracy 

experiments show that optimized combinations of (2, 1), (1, 1), or (0, 2) (SPGR, DESS) 

scans are in excellent agreement with NIST and IR/SE measurements over the designed 

latent object parameter range of interest. Phantom precision experiments show that these 

SPGR/DESS combinations exhibit trends in pooled sample standard deviations that 

reasonably reflect CRB predictions. In vivo experiments suggest that with optimization, the 

(0, 2) profile can yield comparable T̂
1, T̂

2 precision to the more conventional (2, 1) [42] scan 

profile in well-isolated WM/GM ROIs; however, the (0, 2) T1 estimates are unreliable 

within and near the CSF and do not agree with IR measurements in WM as consistently as 

the (2, 1) profile. This and other disagreements across profiles in vivo may be attributable to 

differences in signal model sensitivities to neglected higher-order effects. Nevertheless, this 

simple example application illustrates that scan optimization may enable new parameter 

mapping techniques from established pulse sequences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Phantom within-ROI sample statistics of T1 and T2 ML estimates from optimized SPGR/

DESS and reference IR/SE scan profiles, vs. NIST NMR measurements [68]. Markers and 

error bars indicate ROI sample means and ROI sample standard deviations within the 14 

labeled and color-coded vials in Fig. S.7. Tight t and broad b latent parameter ranges are 

highlighted in orange and yellow, respectively. Fig. S.8 provides analogous plots for RLS 

estimates. Table S.2 replicates sample statistics within Vials 5–8. Our MR measurements are 

at 293K, while NIST NMR measurements are at 293.00K. Within the designed parameter 

ranges, estimates from different acquisitions are in reasonable agreement with NIST 

measurements.
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Fig. 2. 
Left: WM and GM ROIs, overlaid on a representative anatomical (coil-combined IR) image. 

Separate WM ROIs are distinguished with anterior/posterior (A/P) and right/left (R/L) 

directions. Four small anterior cortical GM polygons are pooled into a single ROI (cyan). 

Right: Colorized T1 and T2 ML estimates from the brain of a healthy volunteer. Columns 

correspond to profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1 DESS), (0 SPGR, 2 

DESS), and (4 IR, 4 SE) acquisitions. Parameter maps are cropped in post-processing for the 

purpose of display. Figs. S.9 (colorized) and S.10 (grayscale) provide analogous full-FOV 

maps estimated via both ML and RLS estimators. Colorbar ranges are in milliseconds.
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TABLE II

Sample means ± sample standard deviations of T1 and T2 ML estimates in WM and GM ROIs of simulated 

data, compared across different optimized scan profiles. Sample means exhibit insignificant bias, and sample 

standard deviations are consistent with worst-case standard deviations  and  reported in Table I. All 

values are reported in milliseconds.

Scan (2, 1) (1, 1) (0, 2) Truth

WM 

830 ± 17 830 ± 15 830 ± 14 832

GM 

1330 ± 30. 1330 ± 24 1330 ± 24 1331

WM 

80. ± 1.0 80. ± 2.1 79.6 ± 0.94 79.6

GM 

110. ± 1.4 110. ± 3.0 110. ± 1.6 110
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TABLE III

Phantom pooled sample standard deviations ± pooled standard errors of sample standard deviations, from 

optimized SPGR/DESS scan profiles. Each entry is a measure of uncertainty of a typical voxel’s T1 or T2 ML 

estimate. For sake of brevity, sample statistics corresponding only to phantom vials within (or nearly within) 

tight design range t (color-coded orange in Fig. S.7) are reported. ‘V#’ abbreviates vial numbers. All values 

are reported in milliseconds.

(2SP,1DE) (1SP,1DE) (0SP,2DE)

V5 

50 ± 12 40 ± 10. 39 ± 9.4

V6 

70 ± 18 60 ± 15 70 ± 16

V7 

60 ± 13 50 ± 13 50 ± 13

V8 

23 ± 5.4 20. ± 4.7 18 ± 4.3

(2SP,1DE) (1SP,1DE) (0SP,2DE)

V5 

2.6 ± 0.63 6 ± 1.4 3.5 ± 0.84

V6 

1.9 ± 0.46 5 ± 1.1 2.3 ± 0.54

V7 

1.4 ± 0.34 3.4 ± 0.80 1.5 ± 0.35

V8 

1.1 ± 0.26 3.5 ± 0.84 1.4 ± 0.33
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