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Molecular mechanisms underlying noncoding risk variations in
psychiatric genetic studies
X Xiao1,2, H Chang1,2 and M Li1

Recent large-scale genetic approaches such as genome-wide association studies have allowed the identification of common
genetic variations that contribute to risk architectures of psychiatric disorders. However, most of these susceptibility variants are
located in noncoding genomic regions that usually span multiple genes. As a result, pinpointing the precise variant(s) and
biological mechanisms accounting for the risk remains challenging. By reviewing recent progresses in genetics, functional
genomics and neurobiology of psychiatric disorders, as well as gene expression analyses of brain tissues, here we propose a
roadmap to characterize the roles of noncoding risk loci in the pathogenesis of psychiatric illnesses (that is, identifying the
underlying molecular mechanisms explaining the genetic risk conferred by those genomic loci, and recognizing putative functional
causative variants). This roadmap involves integration of transcriptomic data, epidemiological and bioinformatic methods, as well as
in vitro and in vivo experimental approaches. These tools will promote the translation of genetic discoveries to physiological
mechanisms, and ultimately guide the development of preventive, therapeutic and prognostic measures for psychiatric disorders.
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RECENT GENETIC ANALYSES OF NEUROPSYCHIATRIC
DISORDERS
Schizophrenia, bipolar disorder, major depressive disorder and
autism are highly prevalent complex neuropsychiatric diseases
across the world populations with varied clinical
symptomatology.1 The underlying etiology of these neuropsy-
chiatric disorders remains largely unknown, but a number of
family, twin and adoption studies have revealed moderate-to-
strong genetic elements in these illnesses.2,3 Although substantial
heritability of neuropsychiatric disorders suggests that genetic
approaches may provide valuable information about its biology,
early linkage and association analyses in small samples yielded
limited success because of the phenotypic heterogeneity and
genetic architecture complexity in most psychiatric conditions.
Recent large-scale genome-wide association studies (GWASs)
through international collaborations suggest that these psychiatric
disorders, though all featured genetic heterogeneity,4 share
varying degrees of overlap in genetic risk components.5 These
studies have significantly boosted our knowledge of reliable
genetic variants associated with the diseases.6–10

Some examples of these GWASs include the Psychiatric
Genomics Consortium (PGC2) GWAS of schizophrenia8 as well as
Converge consortium GWAS and 23andMe GWAS of major
depressive disorder.6,10 The PGC2 GWAS, which identified 108
independent associated loci for schizophrenia,8 is of epoch-
making significance. Most of these identified risk variants shed
great light on the pathogenesis of psychiatric illnesses. In the
PGC2 schizophrenia GWAS,8 75% of the 108 independent risk loci
contained protein-coding genes (40% include one single gene),
and a further 8% were within 20 kb of a gene. In fact, many genes
within those GWAS risk loci were found to play important roles in

neurodevelopment and brain function. For example, GRM3,
GRIN2A, SRR and GRIA1 were known to involve in the neuro-
transmission mediated by glutamate signaling and synaptic
plasticity. Some risk loci also contained genes encoding voltage-
gated calcium channel subunits (CACNA1C, CACNB2 and CACNA1I)
that play pivotal physiological roles. Indeed, genes involved in
glutamate signaling, synaptic plasticity and calcium channel
activity were also previously implicated in rare genetic variation
studies of schizophrenia.11–13 Moreover, the genes relevant to the
major hypotheses for schizophrenia pathogenesis (for example,
DRD2, a validated target for antipsychotic drugs) have also been
confirmed in the GWASs,8 adding further evidence for these
hypotheses. Taken together, the convergence at a broad
functional level between studies of common and rare genetic
variations suggests that the current genetic approaches are
normally reliable.
In addition to its reliability, GWAS is also highly efficient for

genetic risk factor identification. It is capable of capturing not only
single risk loci7,8,10 but also polygenic components in psychiatric
diseases. These polygenic components usually involve thousands
of common alleles of small effects.14 They are particularly
meaningful when determined simultaneously in one study, in
which case they could represent biological pathways associated
with disease risk. Taking the recent PGC2 schizophrenia GWAS, for
example,8 the defined risk loci supported the neuropsychophar-
macologic hypotheses that both dopamine D2 receptor and N-
methyl-D-aspartate receptor were involved in schizophrenia
pathogenesis. Similarly, another pathway analyses based on
available GWAS data suggested that malfunction of pathways in
histone methylation, neuroimmunology and synaptic signaling
transmission likely contributed to the etiology of psychiatric
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disorders.15 As such, new therapeutic hypotheses can be
proposed and ultimately tested based on the underlying
molecular mechanisms of genetic risk associations revealed by
GWAS.16

Although generally accepted by the scientific community for
the reliability and efficiency, the GWAS results are sometimes
under debate for the normally small effect sizes of the identified
risk loci. This is probably because of the fact that the allele
frequencies in patients and controls typically differ by only o2%
(the difference between odds ratio is o1.1),6–10,17,18 whereas such
variants still yield strong statistical association in GWAS analyses.
However, the small effects of single locus at the individual subject
level do not mean that the biological implications are necessarily
trivial. One example is DRD2, the gene encoding the dopamine D2
receptor. The GWAS variant at this locus was shown to increase
the risk of schizophrenia by o10% with an odds ratio of 1.08 at
the population level,8 whereas the dopamine D2 receptor has
been a primary target of most antipsychotic interventions.19

Therefore, the effect size of a given DNA variant on genetic risk for
psychiatric disorders does not always reflect the therapeutic value
of its affected molecule or biological pathway, and the GWAS-
identified risk loci could provide valuable clues. However, whether
a certain GWAS locus is translatable into clinical treatment for
psychiatric illnesses still largely depends on the relevance of the
proteins and/or transcripts affected by susceptibility genes to
common biological pathways.
The idea of translating the bulk of GWAS data to clinical

application is compelling, but the actual implementation is not
always easy. The vast majority of GWAS risk regions contain
numerous high linkage disequilibrium noncoding variants with
unknown function, and span wide genomic area of multiple
candidate genes.8 For this reason, identifying the specific gene(s)
accounting for the clinical association remains a hassle. Consider-
ing these characteristics of the current enormous GWAS results,
several following important questions should be first asked when
utilizing such genetic data to uncover the relevant disease

biology. (1) Are there any specific pathogenic gene or transcrip-
tion products in the particular loci explaining the genetic risk
association? (2) Are there any causal variant(s) in certain genomic
regions responsible for the disease risk? (3) What are the
mechanisms through which the causal variant(s) affect gene
expression/function? Moreover, (4) are there physiological con-
sequences of the genetic risk factors? If so, are they related to
disease-associated pathological alternations?
Taken together, GWAS provides valuable information for

psychiatric disease research, but efforts are required to tackle
possible problems. Here, we have reviewed recent progress in
functional evaluation of noncoding variations in psychiatric
genetic studies (including GWAS and candidate gene analyses),
and have proposed a stepwise pipeline to follow the risk loci
identification for prioritizing putative functional variations
(Figure 1). Through integrating genomic data, computational
approaches and biological assays, we sought to elucidate the
function of noncoding GWAS risk loci and their roles in psychiatric
illnesses.

TRANSLATING GENETIC SUSCEPTIBILITY LOCI TO RISK
MOLECULES
Utilization of brain eQTL databases
To understand the roles of noncoding risk loci in disease
progression, it is important to predict their functional and
physiological impact on human health. Among the numerous risk
variants defined by genetic analyses such as GWAS, exome-
sequencing or candidate gene studies, nonsynonymous variants
are perhaps the easiest to illustrate for the manifestation of
protein structure or function alternations.20 Indeed, missense
variants in specific risk genes have been found to significantly
associate with psychiatric disorders in both GWAS and whole-
exome sequencing studies (for example, rare loss-of-function
variants in SETD1A).13,20–22 However, as discussed above, most
psychiatric risk loci are located in noncoding genomic regions

Figure 1. Workflow for functionally analyzing and interpreting noncoding risk loci. 3C, chromosome conformation capture; 4C, circular 3C; 5C,
carbon-copy 3C; eQTL, expression quantitative trait locus.

From noncoding risk variations to molecular mechanisms
X Xiao et al

498

Molecular Psychiatry (2017), 497 – 511



Table 1. eQTL studies in human braina

Study No. of
individuals

Tissue source No. of
tissue

samples

Neuropathology Age Gender Ethnicity Expression detection
methods

Gibbs et al.34 (part
of GTEx pilot)

150 Caudal pons 142 Neurologically normal
controls

15–101;
mean 46.2

69% Male and
31% female

Caucasian Microarray (Illumina
Human Ref-8
Expression)

Cerebellum 143
frontal cortex 143
Temporal cortex 144

Ramasamy et al.38

(UKBEC)
134 Occipital cortex 129 Neurologically normal

controls
16–102;
mean 59

74.5% Male
and 25.5%
female

Caucasian Microarray
(Affymetrix Huamn ST
1.0)

Frontal cortex 127
Temporal cortex 119
Hippocampus 122
Intralobular white matter 131
Cerebellar cortex 130
Thalamus 124
Putamen 129
Substantia nigra 101
Medulla 119

Colantuoni et al.32

(BrainCloud)
269 Dorsolateral

Pre frontal cortex
269 Neurological normal controls Fetal 80

mean 27.8
66% Male and
34% female

147 African-
American; 112
Caucasian; 6
Hispanic; 4 Asian

Microarray (Illumina
Human 49K Oligo
array)

Liu et al.41 127 Prefrontal cortex 127 39 Bipolar disorder; 37
schizophrenia; 11 major
depression; 40 controls

20–65;
median 45

65% Male and
35% female

Caucasian Microarray
(Affymetrix Human
Genome U133A)

Myers et al.42 193 Cortex (pooled data from 20%
frontal, 70% temporal and 1%
parietal)

193 Neurological normal controls 65–100;
average 81

54% Male and
46% female

Caucasian Microarray (Illumina
Human Refseq-8)

Webster et al.43 364 Cortex (pooled from 21% frontal,
73% temporal, 2% parietal and 3%
cerebellar)

188 Neurological normal controls 65–100;
average 81

55% Male and
45% female

Caucasian Microarray (Illumina
Human Refseq-8)

Cortex (pooled from 18% frontal,
60% temporal, 10% parietal and
13% cerebellar)

176 Patients with late-onset
Alzheimer’s disease

68–102;
average 84

50% Male and
50% female

Caucasian

Heinzen et al. 40

(SNPExpress)
93 Frontal cortex 93 Neurological normal controls 34–90;

mean 74
59% Male and
41% female

Caucasian Microarray
(Affymetrix Huamn ST
1.0)

Zou et al. 44 ~ 400 Cerebellum 197 Patients with Alzheimer’s
disease

Mean± s.d.;
73.6± 5.6

49% Male and
51% female

Caucasian Microarray (Illumina
HumanHT− 12 v4.0)

177 Patients with other brain
pathologies

Mean ± s.d.;
71.7 ± 5.5

64% Male and
36% female

Caucasian

Temporal cortex 202 Patients with Alzheimer’s
disease

Mean± s.d.;
73.6± 5.5

47% Male and
53% female

Caucasian

197 Patients with other brain
pathologies

Mean± s.d.;
71.6± 5.6

60% Male and
40% female

Caucasian

GTEx, v635,36 72–103 Anterior cingulate caudate, caudate
(basal ganglia), cerebellar
hemisphere, cerebellum, cortex,
frontal cortex, hippocampus,
hypothalamus, nucleus accumbens
(basal ganglia), putamen (basal
ganglia)

NA Neurological normal controls NA NA NA RNA-sequencing
(polyA)

UKBEC
(unpublished)

65–105 Substantia nigra, putamen NA Neurological normal controls NA NA Caucasian RNA-sequencing
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with unknown functionality.8 This is probably explained by the
accumulating consensus that genetic architecture of psychiatric
disorders involves sequence variations that primarily play a role in
gene regulation or processing rather than sequences of encoded
proteins.23 Therefore, it is necessary to use transcriptomics data
combined with genotyping in neural tissues to identify genes or
transcripts associated with risk genotypes. These genes and/or
transcription products are considered ‘true signals’ that are critical
in linking the information from genetic associations to functional
consequences, mostly through their expression quantitative trait
locus (eQTL) effects.
As stated by the name, eQTL provides hints for transcriptome

(for example, promoter regulation, enhancer, splicing, microRNA,
long noncoding RNA and epigenetic processes) alterations
attributed to specific genetic risk factors. As we believe that
psychiatric risk variants that do not result in protein coding
changes usually manifest as an effect on transcriptomic outcomes,
integrative analyses of GWAS and eQTL data are crucial in
understanding genetic mechanisms and discovering targetable
molecules. In fact, several recent studies have achieved great
success following this strategy. For example, the major histocom-
patibility complex region on human chromosome 6 spanned over
hundreds of genes and contained numerous variants conferring
risk of schizophrenia in PGC2 GWAS,8 but little was known about
the underlying molecular mechanisms of this genomic region.
Sekar et al.24 recently identified that the structurally diverse alleles
of the complement component 4 (C4) genes were the major
contributors. They reported that those alleles caused widely
varying levels of C4A and C4B expression in the brain, and the
association of common C4 allele with schizophrenia was propor-
tional to its tendency to increase the expression of C4A.24 They
further revealed localization of human C4 protein in the neuronal
synapses, dendrites, axons and cell bodies, as well as important
roles of murine C4 in synapse elimination during postnatal
development.24 Overall, this study suggested that excessive
dosage of C4 led to increased postnatal synaptic pruning,
providing one of the potential mechanisms for the previously
observed gray matter loss25 and synaptic structure impairment in
schizophrenic brains.26 They illustrated an excellent model for the
meticulous identification and characterization of causal, small
effect size, common loci found in GWAS. Another interesting
example is the series of studies on ANK3 in bipolar disorder.
Genetic loci spanning the ANK3 gene were previously reported in
several bipolar disorder GWASs.7,27–29 A recent study found a loss-
of-function variant in a minor isoform of ANK3 that disabled the
proper splicing of the protein, resulting in protection against
bipolar disorder.30 Intriguingly, another study also described that
allelic variation at the bipolar disorder risk single-nucleotide
polymorphism (SNP) was correlated with a significant difference in
cerebellar expression of a brain-specific ANK3 transcript.31

Although these studies reported different SNPs at ANK3 (and in
very low linkage disequilibrium, r2 = 0.001),30,31 they together
suggested a cis-regulatory transcriptional effect of ANK3 that was
relevant to bipolar disorder pathophysiology.
The eQTL data are both informative and easily accessible. There

have been a number of eQTL databases with varying sample sizes
generated from certain groups (Table 1). These databases present
valuable brain transcriptomics (microarray and RNA sequencing)
data in post-mortem tissues that has long been an essential
substrate for investigating the molecular pathology of psychiatric
disorders.32,33 To date, the major consortia generating brain eQTLs
are the GTEx (Genotype-Tissue Expression), the United Kingdom
Brain Expression Consortium (UKBEC) and the CommonMind
consortium. The original eQTLs in GTEx and UKBEC were derived
primarily from microarray technology, but have now switched
over to RNA-sequencing approach. The initial version of GTEx
(http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi) contained
microarray data from studies on human brain cerebellum, frontalTa
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cortex, caudal pons and temporal cortex (N= 150).34 The newer
GTEx Project data are RNA-sequencing results from a variety of
human brain regions and are available through the GTEx Portal
(http://www.gtexportal.org/home/).35,36 UKBEC presented micro-
array eQTL data from 10 human brain regions (www.braineac.org)
(N= 134).37,38 They have also generated RNA-sequencing data on
substantia nigra and putamen in post-mortem control brains
(N= 65 and 105, respectively). The CommonMind consortium
(http://commonmind.org/WP/) generated data modalities (RNA
and DNA sequencing, genotyping) across multiple brain regions
(dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex
and superior temporal gyrus) from schizophrenia, bipolar disorder
and control samples, totaling a collection of 41000 samples. The
CommonMind consortium started the first data release of SNP
genotypes and RNA-sequencing results for the DLPFC of over 600
subjects registered at the Mount Sinai, University of Pittsburgh
and University of Pennsylvania brain banks since March 2015.
Recently, they have published RNA-sequencing analyses of DLPFC
from people with schizophrenia (N= 258) and controls (N= 279),
and have reported several schizophrenia-associated eQTL genes.39

Besides, Lieber Institute has published a genome-wide microarray
eQTL analysis in human DLPFC of healthy controls (that is,
BrainCloud, N= 269).32 They also generated RNA-sequencing data
with DLPFC and other brain tissues in an expanded sample size
including psychiatric patients and healthy individuals, and plan to
publically release the RNA-sequencing results upon publication.

Cautions needed during eQTL analyses
Although eQTL data provide essential information, cautions are
needed when using these expression data sets. First, the eQTLs
should be considered ‘authentic’ only if they could be replicated
across independent samples. A prior report revealed low-to-
moderate overlap between eQTL loci across earlier microarray-
based eQTL studies32,34,40–44 (the percentage of overlapped eQTL
is from 0 to ∼ 35.4% between pairwise brain studies, as shown in
Table 4 of the study by McKenzie et al.45) that might be explained
by the different analytical methodologies applied in each study.
For example, in the study of Myers et al.,42 the analyses were
based on pooled expression data from three different cortical
regions (frontal, temporal and parietal) with uncontrolled covari-
ates, such as brain pH value and microarray batch effects. Only a
limited number of the significant cis-associations observed in their
study survived multiple corrections.42 In parallel, Liu et al.41

performed a brain eQTL analysis focusing on the prefrontal cortex
with a statistical procedure optimized for possible confounders.
They used surrogate variable analysis46 to adjust for covariate
effects and ComBat47 to minimize microarray batch effects before
the eQTL analyses. This procedure improved the detection power
by removing sources of nongenetic variations from the data, and
they have identified an exceedingly large amount of cis-eQTL
associations that could stand the strict statistical corrections for
multiple testing.41 As such, appropriate analytical methods are
obviously pivotal in the eQTL analyses, and methodology
improvement are always needed. In line with this idea,
CommonMind consortium adjusted for known (for example,
RNA integrity, library batch, institution (brain bank), age at death,
genetic ancestry, post-mortem interval and sex) and hidden
variables detected by surrogate variable analysis (conditional on
diagnosis but excluding ancestry) in a recent DLPFC RNA-
sequencing eQTL analysis of gene expression in European-
ancestry subjects.39 The adjusted expression then underwent
eQTL analyses against genotypes, covarying for ancestry and
diagnosis. A comparison of the identified eQTLs in the Common-
Mind study39 with previously reported DLPFC eQTLs32,34,36,38,48

showed that the CommonMind sample not only captured most
eQTLs found in other independent samples, but also discovered a

substantial number of genes with previously undetected eQTLs
(details shown in Table 1 of the CommonMind study39).
Second, in-depth mRNA characterization are necessary to

identify potentially pathogenic transcripts during eQTL analyses.
It is well known that multiple mRNA isoforms may arise from one
single gene but differ in their expression levels and/or functions in
cells or organs. In some cases, psychiatric risk variants may affect
only specific transcripts of a given gene, such as AS3MT, ZNF804A,
KCNH2 and NRG1.49–52 Li et al.51 have previously reported a novel
truncated AS3MT isoform (AS3MTd2d3) lacking two exons com-
pared with the full-length protein. The AS3MTd2d3 was strongly
associated with schizophrenia risk SNPs in the 10q24.32 genomic
region. The fact that only AS3MTd2d3 but not the full-length AS3MT
was brain enriched, human specific and upregulated during early
neuronal differentiation suggested divergent roles between them.
Another example is the discovery of a novel truncated ZNF804A
splicing variant.52 ZNF804A was previously reported to contain a
genome-wide significant risk variant rs1344706 for
schizophrenia.53–56 Researchers later found that such risk variants
might contribute to schizophrenia pathology via altered expres-
sion of ZNF804A, as significant associations of rs1344706 with
ZNF804A gene expression levels was observed in fetal brain
samples.57–59 Taken one step further, Tao et al.52 discovered a
novel ZNF804A isoform with an alternative 5′ untranslated region
and translation start site using a 5′ RACE (rapid amplification of
cDNA ends) assay. This novel truncated ZNF804A isoform, rather
than the full-length ZNF804A transcript, was associated with
rs1344706 in fetal samples.52 These data suggested that the
association between rs1344706 and ZNF804A gene expression
might originate from the generation of this novel truncated
isoform. Both AS3MT and ZNF804A stories indicate that RNA
splicing plays an important role in psychiatric diseases. In fact, RNA
alternative splicing has been proposed to be a primary mechan-
ism for genetic variation in disease progression, and many GWAS
signals for common traits involved alternative splicing.60 Regard-
ing this, characterizing the transcript structures of a risk gene is
pivotal for our general understanding of the disease biology. To
study this, the current human mRNA data sets (Ensembl and
UCSC) are handy tools. Normally, the diverse transcript structures
of a gene can be retrieved in these data sets. However, in the
event that novel transcripts exist for a defined gene, one will need
to identify them via RNA-sequencing analyses. Specifically,
junction-level analyses in RNA-sequencing data sets should be
carried out. Junctions are the RNA-sequencing read counts
spanning at least two exons, and junction reads between
nonadjacent exons (that is, exon-skipping junctions) indicate
alternative splicing. Following RNA-sequencing analyses, the
transcripts of interest are further investigated using experiments
such as RACE and end-to-end PCR. This strategy will provide clues
for pathogenic gene/protein product that is vital for future model
building based on the biological mechanisms, and development
of relevant drugs and therapies.61

Another important issue to consider during eQTL analyses is the
temporal and spatial conditions that interact with the identified
molecular mechanisms. In a biological system, certain regulatory
effects might exist only in some cell types and/or at particular
developmental stages, or even under certain biological conditions.
Given that some eQTLs and most disease manifestations are tissue
specific,38,62 it is recommended that eQTL analyses be performed
in the disease-relevant tissues. For example, eQTLs from adipose
tissue have shed great light on obesity-related risk loci,63 and
eQTLs from lymphoblastoid cell lines have helped explain genetic
risk loci for immunological diseases.64 This idea has also been
applied in research for the schizophrenia risk variation at the
ZNF804A locus. The genome-wide significant SNP rs1344706
associated with the expression of a truncated ZNF804A isoform
at the early stage of human fetal brain development.52 It was
therefore important to establish where and when psychiatric risk
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variants exerted their effects. This easiest way to obtain such
information is through publicly available databases. For example,
the BrainCloud provides valuable resources of transcriptome
expression data from post-mortem DLPFC of normal human
subjects across the lifespan (that is, from fetal development
through aging). It is thus possible to stratify the subjects based on
the developmental stages (for example, prenatal and postnatal)
and examine the role of the DNA variant at relevant ages.32

Meanwhile, the UKBEC consortium has produced mRNA expres-
sion data for 10 human brain regions from control individuals,
establishing a comprehensive data set for regional specificity of
gene expression regulation across human brain.38

Next, the varying sample sizes of brain eQTL databases can
potentially affect the reliability of eQTL analyses. It is known that
the power to detect eQTL is partly a function of sample size.
Although it was estimated that a sample size of 100 individuals is
sufficient for 80% power in eQTL studies,65 the power to detect an
effect across multiple studies is reduced when an expression SNP
has a subtle effect size or when multiple genomic loci
simultaneously control transcript expression levels. On the other
hand, the effect size of expression SNP on gene expression has
substantial influence over the power of detecting an eQTL
association. For example, Wang et al.66 previously showed that
when the eQTL effect size increased from 0.5 phenotypic s.d. (σ) to
4σ, the power of detecting a significant association (Po0.05)
increased from 10.5 to 100% (Table 5 in Wang et al.66 study), and
the bias of observing authentic effect also decreased (Figure 10 in
Wang et al.66 study). As such, larger sample sizes and the
expression SNP effect sizes should increase the statistical power
for eQTL effect detection.
Last but not least, potential limitations of eQTL analyses should

be considered. First, the majority of identified eQTLs are
considered to be cis-acting and arbitrarily defined to regulate
genes within 1 Mb on a chromosome.67 However, genetic variants
can also affect the expression of genes residing further away or
even on different chromosomes (defined as trans-eQTLs, although
they incur a greater penalty for multiple testing, require greater
power for detection and are more prone to false positives that are
less replicable than cis-eQTL).68 For example, Fehrmann et al.69

reported independent trans-associated SNPs that affected similar
genes, suggesting that independent GWAS associations might
influence similar biological pathways. Second, the impact of
haplotypes on eQTL effects should be factored in.70 As linkage
disequilibrium patterns are usually population specific, associa-
tions between variants that tag a haplotype could lead to
ambiguous identification of the true casual variant. Third, the
targets of eQTL associations could be either coding or noncoding
RNAs,71 whereas the latter still remains to be explored. Finally, the
mapping of regulatory variants for any complex trait within single
or certain populations are often less accurate because of various
factors, such as genotyping issues.72–74 These limitations should
be always acknowledged, and eQTL analyses for complex
illnesses/conditions should always be conducted across diverse
populations.
Collectively, with the help of eQTL analyses, it is possible to

identify a molecular mechanism in the brain transcriptome that
accounts for the genetic association detected in clinical samples.
Such results will guide the subsequent in vitro and in vivo testing
for the identified molecules/pathways.61

DIFFERENTIAL EXPRESSION BETWEEN PSYCHIATRIC PATIENTS
AND CONTROLS
Alongside eQTL analyses, genes that are differentially expressed
between patients and healthy controls may play key roles in the
pathogenesis of psychiatric disorders and aid in the identification
of molecular mechanisms underlying genetic risk loci. That is to
say, if a gene (or a transcript) shows strong eQTL association with

psychiatric genetic risk loci as well as the illness state, and the
risk-associated genotype predicts the same direction of expression
difference between cases and controls, it would be an ideal
target for further functional studies. Indeed, recent advances in
microarray or RNA sequencing techniques have allowed
researchers to dissect the roles of gene expression alterations
in the pathogenesis of psychiatric disorders including bipolar
disorder,75–82 major depressive disorder83–85 and
schizophrenia.79,80,86–90

However, only a small number of genome-wide significant
differentially expressed genes have been reported so far, and only
few overlapping differentially expressed genes were reproduced
across different studies (for the same illness). This is likely resulted
from the multiple confounding factors such as relatively small
samples sizes, sample heterogeneity and other technical reasons
including instability of RNA and the post-mortem conditions (for
example, brain tissue pH changes, coma, respiratory arrest,
hypoxia, seizures, dehydration, multiple organ failure and head
injury). These confounders may interfere with the relationship
between measured gene expression levels and disease status91 to
cause difficulty in capturing the desired signals. The following
paragraphs will discuss these problems in details.
Among all possible confounding factors, sample size is

undoubtedly one major issue that is very difficult to resolve
because of the nature of the affected organ in psychiatric
disorders. In the past, people applied stringent multiple correc-
tions in genome-wide expression analyses, resulting in identifica-
tion of extremely significant effects at the cost of substantial false
negatives. Such problem becomes harder to resolve in the current
gene expression studies that have typically used RNA samples
from either brain tissues or peripheral blood.92 Obviously, brain is
considered to be the most relevant tissue as its dysfunctions are
presumed to be the origin of psychiatric illnesses. However, the
brain tissues can only be collected after the participant is
deceased, and this significantly affected the total sample size,
let alone the number of samples for cases. In fact, this
disadvantage is reflected in many of the current brain eQTL
resources, in which only healthy controls are utilized. Blood has
been an alternative tissue for eQTL analysis. Although it may
appear less direct for understanding psychiatric disorders, it is
relatively easy to collect. So far, it is generally accepted that blood
RNA analyses do provide some clues for the understanding of
psychiatric disorders.84,90

Besides the problems with sample size, technical limitations
exist in the current differential expression analytic methods.
Microarray analyses with a single probe (or several probes) per
gene usually lack ideal resolutions for transcripts. Similarly,
insufficient sequencing depth in RNA-sequencing analyses may
preclude low-abundant transcripts that are important in the
pathogenesis of psychiatric disorders from detection. Taken
together, further differential expression studies comparing cases
and controls involving larger brain sample sizes and more in-
depth RNA-sequencing are necessary.

RESOURCES AND BIOINFORMATICS ANALYSES TO PREDICT
REGULATORY VARIANTS
After obtaining the evidence for a link between DNA genotype
and gene regulation or processing through eQTL analyses and
differential expression analysis, a range of further molecular
approaches are required to elucidate the regulatory mechanisms.
Public resources and bioinformatics analyses are useful and easily
accessible tools that usually provide data suggesting multiple
functional component in the genome.
The most well-known and representative bioinformatics

resources are the data sets of regulatory elements in noncoding
DNA regions obtained through high-throughput sequencing
techniques. These regulatory DNA sequences are characterized
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by an open chromatin for the access of transcription factors (TFs)
that modulate gene expression. Specifically, during the transcrip-
tion of a gene, RNA polymerase II, numerous TFs and accessory
molecules are recruited to the gene promoter region. Through
binding to the regulatory sequences, transcription initiation
complex is formed to start the basal transcription machinery. In
this process, the ease of these molecules to access the DNA, which
is regulated by posttranslational histone modifications (methyla-
tion, acetylation and so on), is the ultimate determinant. Previous
studies suggested that a proportion of psychiatric risk variants
located within the regulatory sequences (such as promoters and
enhancers) influenced gene expression through transcriptional,
posttranscriptional and posttranslational (for example, posttran-
slational modifications of histones or RNA polymerase II as
regulation of transcription) mechanisms.93–95 Importantly, regula-
tory signals can act over long genomic distances when brought
into contact with target promoters by three-dimensional DNA
folding. To reveal such mechanisms conveyed by specific genomic
variants, computational prediction can be conducted based on
recent established large-scale genome-wide data sets (Table 2)
such as the Encyclopedia of DNA Elements (ENCODE)96 and the
Roadmap Epigenomics Mapping Consortium (REMC).97 These
data sets can be routinely mined with multiple computational
tools (for example, RegulomeDB,98 HaploReg,99 GWAVA100 and
FunciSNP101) for the annotation of DNA variants.
Initiated as a follow-up to the Human Genome Project (Genomic

Research), ENCODE project aimed to map the functional elements
in the genome, usually defined as a segment of the genome
having either a biochemical signature (for example, TF-binding
site or some other protein-binding site) or a specific chromatin
structure (for example, accessible open chromatin), and encodes a
product (for example, a protein).96 The initial phase data are
available through the UCSC (University of California, Santa Cruz)
Genome Browser,102 Table Browser tool103 and the FTP site (ftp://
hgdownload.cse.ucsc.edu/goldenPath/hg19/database/). The most
recent releases are available from the ENCODE website (https://
www.encodeproject.org/). The ENCODE consortium has generated
data from both cell lines and human brain tissues. For cell lines,
they categorized multiple cell lines into three tiers based on the
respective superiority for biological experiments. For example, tier
1 cell lines such as GM12878, H1-hESC and K562 have the highest
priority with regard to designing experiments. They later included
two cancerous brain cell lines in its 2012 version: glioblastoma
(Gliobla) and neuroblastoma (SK-N-SH, and sublines SH-SY5Y and
retinoic acid-treated SK-N-SH_RA; also SK-N-BE and clone BE2_C).
Though neither of these were in tier 1, they were valuable addition
to the database given their nature as brain cells. One major
limitation though is that data generated using immortal cell lines
may not represent the actual biology in normal cells and tissues.
This concern was later addressed when ENCODE added new data
from various sources including human brain tissues since the 2012
release. For instance, processed DNase I hypersensitivity data
‘peaks’ (regions of statistically significant enrichment based on the
signal from the measurement of background abundance in the
genome) were available from tissues of nine human brain regions
(frontal cortex, cerebellar cortex, cerebellum, globus pallidus,
midbrain and middle frontal gyrus), two fetal brains and five
primary brain cell types (astrocyte of the cerebellum, astrocyte of
the hippocampus, brain microvascular endothelial cell, brain
pericyte and choroid plexus epithelial cell). Generally, ENCODE is
the first large international collaborative project mapping func-
tional elements in the genome. Its standardized and robust data
have greatly contributed to our roadmap from functional
annotation prediction to laboratory testing.
Besides mapping the functional elements in the genome,

available data sets for epigenome provide another layer of
information for gene expression regulation. One major form of
epigenetic modification is DNA methylation that involves the

enzymatic addition of a methyl group to the carbon-five position
on cytosine residues.104 Currently, data from brain tissue are
available for allele-skewed methylation (also referred to as
methylation quantitative trait loci (meQTL) among other terms),
a scenario in which one allele shows significantly different
methylation levels compared with another allele at the same
base pair location.105,106 Intriguingly, in two recent genome-wide
brain DNA meQTL analyses,107,108 enrichment of meQTL signals
among risk loci in schizophrenia GWAS8 was observed. These data
suggested that meQTL might be useful in refining GWAS loci via
analyzing discrete sites of DNA methylation in the brain that are
associated with schizophrenia (and other psychiatric) risk
variants.109

In addition to DNA methylation on cytosine bases, other forms
of epigenetic DNA modifications (for example, hydroxymethyla-
tion) have been recently reported and require further analyses.110

Meanwhile, mechanisms other than DNA methylation (for
example, histone modifications and DNase I hypersensitivity) can
also regulate DNA accessibility and gene expression.111 Mapping
the epigenome with these information are also potentially helpful
for understanding the brain biology and psychiatric illnesses. The
NIH REMC97 (http://www.roadmapepigenomics.org/) has under-
taken this task and mapped the DNA methylation, DNA
accessibility and RNA expression in primary human tissues.
Although the sample sizes are tiny (usually one or two samples),
there are histone modification and RNA-sequencing data from up
to eight adult brain regions (hippocampus middle, substantia
nigra, anterior caudate, cingulate gyrus, interior temporal lobe,
angular gyrus and dorsolateral prefrontal cortex) and fetal brains.
They also possess data of DNA accessibility mediated by DNase I
hypersensitivity in fetal brain. Along with human brains, REMC
assessed functional elements in stem cells and primary ex vivo
tissues. Although such cells are not ideal for epigenome
investigation in a living system given the stochastic random
epigenetic changes appeared as stem cells divide,112 these data
have still provided valuable information.
In summary, these programs have tested the potential impact

of DNA sequence variation on several genomic features including
histone modifications, chromatin immunoprecipitation followed
by next-generation sequencing (ChIP-Seq), DNase I hypersensitive
sites, chromatin interactions, evolutionary sequence conservation
and TF-binding motifs (measured with targeted biochemical
assays and high-throughput sequencing technologies). Mapping
these data to a genomic region of interest facilitates the design of
further functional assays.
Despite the rapid progress in bioinformatic analyses, many of

these computational tools, however, are still not exhaustive, and
only limited TFs and cell types have been assayed. Moreover,
these programs do not take into account tissue specificity, in
which case regulatory variations might influence signals in
irrelevant cell types. As a result, the high false negative probability
(for example, missing data might lead to the absence of valid
results) remains a major challenge. To address this, the
PsychENCODE project was found113 to produce a public resource
of multidimensional genomic data using samples from ∼ 1000
healthy and psychiatric disease-affected human post-mortem
brains. The key goal of the PsychENCODE project was to look at
regulatory elements (for example, TF-binding sites) as was done
by the ENCODE Project, but in post-mortem control and
psychiatric (schizophrenia, bipolar disorder and autism spectrum
disorder) brains. This project is expected to provide an enhanced
framework of regulatory genomic elements, to catalog epigenetic
modifications and to quantify coding and noncoding RNA and
protein expression. The first release made available a few histone
modifications and RNA-sequencing data from individuals or from
induced pluripotent stem cell (iPSC)-derived neurons on the
PsychENCODE Knowledge Portal (https://www.synapse.org/#!
Synapse:syn4921369/wiki/235539). Overall, as the knowledge
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Table 2. Computational tools and resources for the analyses of noncoding risk locia

Feature Description Significance Experimental approach Bioinformatic tools and online resources

Open chromatin Nucleosome-depleted chromatin DNA sequences harboring
regulatory signals

DNase-seq, FAIRE sequencing ENCODE,96 REMC,97

RegulomeDB,98 HaploReg,99 FunciSNP101

TF-binding prediction Short DNA consensus recognition sequence
characteristic of a particular DNA-binding protein

Computationally predicted TF
recognition site

Position weight matrices TRANSFAC,154 JASPAR,155 MAPPER2,156

GWAS3D,157 DeepSEA158

DNA–protein
interaction

Short DNA sequence associated with a DNA-
binding protein after precipitation with a specific
antibody

Physical protein-nucleic-acid
binding

ChIP-seq, DNase footprinting ENCODE,96 NRCistrome,159

RegulomeDB,98 HaploReg,99 GWAVA100

DNA methylation Methylation of cytosine residues in CpG
dinucleotides

Regulation of gene expression Methylation array, bisulfite
sequencing, MeDIP-seq, MRE-
seq

ENCODE,96 REMC,97

MethDB,160,161 EpiGraph,162

BrainCloudMethyl,163 Fetal brain
meQTLs107

DNase I hypersensitive
sites

Sensitive to cleavage by the DNase I enzyme DNA sequences harboring
regulatory signals

DNase-seq ENCODE,96 REMC,97

PsychENCODE,113 DeepSEA158

Histone modifications Specific posttranslational modifications of particular
histone protein residues are associated with various
regulatory activities

H3K4me1: promoters and
enhancers
H3K4me3: promoters
H3K27ac: active regulatory region
H3K9ac: promoters
H3K9me1: active chromatin

ChIP-seq ENCODE,96 REMC,97

PsychENCODE,113

NRCistrome,159

RegulomeDB,98 HaploReg,99

ChromHMM,164

GWAS3D,157 ChroMoS,165 SEA,166

DeepSEA158

Chromatin interactions Long-range physical interactions between distal
genomic regions

Contact between regulatory
motifs, such as tissue-specific
enhancers and promoters

3C, 4C, 5C, Hi-C, ChIA-PET GWAS3D,157 Hi-C Browser,167 CCSI168

MicroRNA-binding
prediction

Short DNA consensus recognition sequence
characteristic of a particular microRNA

Computationally predicted
microRNA recognition site

Position weight matrices miRanda,169 Target Scan,170

MicroSNiPer171

Abbreviations: 3C, chromosome conformation capture; 4C, circular 3C; 5C, carbon-copy 3C; CCSI, Chromatin Chromatin Space Interaction; ChIA-PET, chromatin interaction analysis by paired-end tag sequencing;
ChIP-Seq, chromatin immunoprecipitation followed by next-generation sequencing; DNase-seq, DNase I hypersensitive site sequencing; FAIRE, formaldehyde-assisted isolation of regulatory elements; MeDIP-
seq, methylated DNA immunoprecipitation sequencing; MRE-seq, methylation-sensitive restriction enzyme sequencing; NRCistrome, Nuclear Receptor Cistrome; REMC, NIH Roadmap Epigenomics Project; RNA-
PET, RNA paired-end tag sequencing; SEA, super-enhancer archive; TF, transcription factor. Websites: ENCODE https://www.encodeproject.org/. REMC http://www.roadmapepigenomics.org/. RegulomeDB http://
www.regulomedb.org. HaploReg http://www.broadinstitute.org/mammals/haploreg. FunciSNP http://bioconductor.org/packages/2.12/bioc/html/FunciSNP.html. TRANSFAC http://www.gene-regulation.com/
index2. MAPPER2 http://genome.ufl.edu/mapperdb. GWAS3D http://jjwanglab.org/gwas3d/. DeepSEA http://deepsea.princeton.edu/job/analysis/create/. NRCistrome http://www.cistrome.org/Cistrome/
Cistrome_Project.html. GWAVA http://www.sanger.ac.uk/sanger/StatGen_Gwava. MethDB http://www.methdb.de. EpiGRAPH http://epigraph.mpi-inf.mpg.de/WebGRAPH/. BrainCloudMethyl http://braincloud.
jhmi.edu/Methylation64/BrainCloudMethyl64bit.htm. Fetal brain meQTLs http://epigenetics.essex.ac.uk/mQTL/. PsychENCODE http://psychencode.org/. ChromHMM http://compbio.mit.edu/ChromHMM/.
ChroMoS http://epicenter.immunbio.mpg.de/services/chromos. SEA http://www.bio-bigdata.com/SEA/. Hi-C Browser http://hic.umassmed.edu/welcome/welcome.php. CCSI http://songyanglab.sysu.edu.cn/ccsi/
search.php. miRanda http://www.microrna.org/microrna/home.do. Target Scan http://www.targetscan.org/vert_71/. MicroSNiPer http://epicenter.ie-freiburg.mpg.de/services/microsniper/. aNonexhaustive list of
examples.
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evolves, projects with consideration of specific biological ques-
tions are being launched and present useful preliminary reference
for designing functional assays.
Collectively, identifying the functional causal variant(s) among

psychiatric noncoding risk-associated loci with public bioinfor-
matics tools is a pivotal step to guide functional assays. Regarding
potential advantages and limitations discussed above, information
in the following aspects should be synthesized: the strength of
clinical risk associations, the eQTL effects on gene/isoform
expression, the likelihood that the variant perturbs cis-regulatory
elements, the relative impact of the variant on reporter gene
activity and the evolutionary conservation of the putative
regulatory element. Although it is difficult to confidently pinpoint
the functional variants underpinning a risk signal, such
approaches will prioritize certain variants of interest at associated
loci. In addition, using these data to test whether psychiatric risk
signals are statistically enriched in regulatory regions of particular
cell types provides the information about where these variants are
active, and implying relevant biological mechanisms.

VALIDATIONS OF REGULATORY EFFECTS VIA IN VITRO
FUNCTIONAL ASSAYS
The eQTL and bioinformatic analyses provide useful tools to
predict targeted molecule(s) of psychiatric risk variants. However,
this strategy usually only achieves indirect evidence of a molecular
association, and experimental testing is necessary to confirm the
mechanistic relevance. Thus, we propose that validation of
regulatory effects in vitro should be the next step. In recent
years, there have been considerable advances in useful techniques
for studying noncoding genomic loci and uncovering causal
variant(s).
As previously discussed, psychiatric risk variants are enriched in

cis-acting eQTLs in brain.93–95 Underlining the principle that
regulatory variations not always affect spatially the closest gene(s),
there has been a growing consensus that chromosomal regions
frequently fold in order to bring distant regulatory regions in
closer proximity to the genes they regulate, such as transcriptional
enhancers. These DNA elements are typically located more than
1 kb away from their target genes and regulate transcription
through long-range interactions enabled by the formation of
chromatin loops.114 The recent PGC2 GWAS has screened the
credible risk variants within the 108 genome-wide significant
schizophrenia loci in 56 human cell lines and tissues, and found
significant enrichment in active enhancers in human brain.8

To verify these long-range chromosomal interactions, chromatin
conformation capture (3C) technique is one of the most reliable
experimental approaches. The 3C-based techniques involve first
formaldehyde crosslinking of interacting sites in cells of interest,

and then cutting of DNA with a restriction enzyme and a ligation
reaction to join crosslinked DNA fragments to investigate
chromosomal interactions at specific candidate loci.115 The 3C-
based methods have been utilized in the functional characteriza-
tions of GWAS risk-associated loci for several complex traits or
diseases such as pigmentation and cancer.116–118 There have also
been several studies using 3C-based methods to interrogate
psychiatric risk loci.119,120 Roussos et al.120 used 3C to elucidate the
regulatory roles of a psychiatric risk variant in the intron of
CACNA1C. The risk variant was predicted to locate in an enhancer
region that interacted with the CACNA1C promoter in human
DLPFC and neurons derived from human iPSCs. Using a reporter
gene assay, they showed that the risk allele within this enhancer
caused lower transcriptional activity, consistent with its associa-
tion with decreased CACNA1C expression in human cerebellum.121

Although such result seemed to be in the opposite direction from
previous studies that showed that the risk allele predicted higher
CACNA1C expression in human DLPFC and induced human
neurons, such conflict could be because of differential roles of
CACNA1C in different brain regions.122,123 The knowledge of
CACNA1C risk variant was further improved by Eckart et al.,124 who
showed that risk variants at CACNA1Cmarked eQTL in the superior
temporal gyrus region, and found one SNP rs4765905 showing
allele-dependent regulatory function in reporter assays and
protein microarrays. Using circular 3C (4C), they revealed
interactions of the disease-associated regions (covering the risk
SNPs) with CACNA1C promoter. In another study of the psychiatric
risk gene MIR137, Duan et al.119 identified a rare enhancer SNP
near this gene that conferred risk of schizophrenia and bipolar
disorder. The risk allele reduced enhancer activity of its flanking
sequence by 450% in human neuroblastoma cells, predicting
lower expression of MIR137/MIR2682 that was then also proved
with 3C assays (Table 3).
Though being a powerful method for testing chromosomal

interaction at specific loci, 3C also has two principle limitations.
First, it is unable to distinguish relevant nearby chromatin
interactions (within ~ 20 kb) from background interactions caused
by random collisions. Second, 3C can only detect specific
interactions between prespecified regions as it relies on PCR
primers designed across interacting zones. To address these
issues, several variations of the 3C method have been developed.
The circular 3C, referred to as 4C, allows screening of the entire
genome for sequences in contact with a specific DNA or ‘‘bait’
region through inverse PCR with bait primers from a circular
intermediate of 3C. However, 4C is also limited because of (1) the
inability to identify interactions around the ‘bait’ region; (2) the
lack of resolution (~100 kb to 1 Mb); (3) the preclusion of certain
interactions because of the enzymes used; and (4) the needs for
validation of trans-interactions (interchromosomal) and distal cis-

Table 3. Functional genetic variants successfully identified at psychiatric risk locia

Disease or phenotype Locus Functional variants Target genes Key methods References

Schizophrenia, bipolar disorder 1p21.3 1:g.98515539A4T MIR137/MIR2682 3C, EMSA, reporter assays 119

Schizophrenia, bipolar disorder 2q32.1 rs1344706 ZNF804A eQTL, EMSA, 52,136

Schizophrenia 2q32.1 rs359895 ZNF804A EMSA, reporter assays 135

Bipolar disorder 7q21.11 rs13438494 PCLO splicing assays 142

Bipolar disorder 7q21.1–q21.2 rs148754219 GRM3 eQTL, EMSA, reporter assays 137

Schizophrenia 10q24.32 VNTR AS3MT eQTL, reporter assays 51

Schizophrenia 11q23 rs1076560 DRD2 eQTL, splicing assays 141

Schizophrenia 12p13.3 rs2159100/rs12315711 CACNA1C 3C, reporter assays 120

Schizophrenia 12p13.3 rs1006737/rs4765905 CACNA1C eQTL, 4C, reporter assays, protein arrays 124

Abbreviations: 3C, chromosome conformation capture; 4C, circular 3C; EMSA, electrophoretic mobility shift assay; eQTL, expression quantitative trait locus.
aNonexhaustive list of examples. It should be noted that some of these genetic loci are positive only in candidate gene studies but not in genome-wide
association studies (GWASs).
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interactions (4500 kb from the bait) by independent methods
such as fluorescence in situ hybridization. Another ‘upgrade’ for 3C
is the carbon-copy 3C (also known as 5C) that detects all
chromatin interactions across large genomic regions using multi-
plex PCR in combination with high-throughput sequencing or
microarrays.125 Hi-C, a method that could comprehensively detect
chromatin interactions in the mammalian nucleus, was also
developed.126 In Hi-C, a biotin-labeled nucleotide is incorporated
at the ligation junction to enable selective purification of chimeric
DNA ligation junctions that is then followed by deep sequencing.
The compatibility of Hi-C with next-generation sequencing plat-
forms makes it ideal to detect chromatin interactions on an
unprecedented scale. Therefore, Hi-C has the power to explore
both biophysical properties and structure of chromatins.126 ChIA-
PET (chromatin interaction analysis by paired-end tag sequen-
cing), another variation of 3C originally developed by Fullwood
et al.127 to map chromatin interactions bound by estrogen
receptor from breast cancer cells treated with estrogen, detects
chromatin interactions bound by a defined protein. Several ChIA-
PET data sets for CTCF (CCCTC-binding factor), RNA polymerase II
and H3K4me2 (a chromatin modification associated with enhan-
cers) are now available in various cell lines.128–130 However, as a
given TF is likely only involved in a subset of chromatin
interactions, ChIA-PET data sets do not include all promoter–
enhancer interactions. To identify the majority of promoter–
enhancer interactions, it is still necessary to use antibodies against
the general TFs (such as RNA polymerase II) or chromatin
modifications (such as H3K4me1 and H3K4me2) together with
deep sequencing.128,129

These variations of 3C techniques have already been applied in
research of several common diseases except for psychiatric
disorders. Using the 4C method, Patel et al.131 showed that
aberrant TAL1 expression in human T-cell acute lymphoblastic
leukemia was mediated by a T-cell acute lymphoblastic leukemia-
specific interchromosomal interaction between the TAL1 promoter
on chromosome 1 and a regulatory element called TIL16 on
chromosome 16.131 Using coined 3C with DNA selection and
ligation, a 5C similar technique, Harismendy et al.132 showed that
cis-regulatory variants associated with coronary artery disease
interacted with IFNA21, located more than 900 kb away. The
coronary artery disease risk alleles also disrupted a binding site for
STAT1, a well-known effector of interferon signaling. This was
confirmed in their following study that treatment of cells with
interferon-γ increased the frequency of interaction between the
enhancers and IFNA21.132 These studies have shown the great
potential of chromatin-interaction approaches. Given that cis-
regulatory elements are often highly tissue specific, future
chromatin-interaction profiles generated in neuronal cell lines
and brain tissues will be an invaluable resource for psychiatric
studies.
Once the target gene(s) of a regulatory element has been

identified using the 3C and similar technology, the impact of
variant(s) on the transactivation of a specific promoter can be
tested via standard reporter assay. When the regulatory potential
of a certain variant is limited, such assays could map DNA regions
harboring regulatory activities and provide hints for its function.
Basically, regulatory elements with different alleles of the
candidate variants are cloned into a promoter-driven reporter
construct (for example, pGL3) and transiently transfected into
relevant cell lines. This assay can be used to test the regulatory
effects of variants (or haplotypes) located in either the promoter
or enhancer regions. Importantly, the effect of the variant(s) might
vary depending on the promoter used for reporter expression. The
choice of cell type is also critical considering the high tissue- and
cell-type specificity of cis-regulatory elements. A recent study
compared variable activities of 11 enhancers across 4 mammary
epithelial cell lines, and emphasized the importance of choosing
appropriate cellular contexts.133

As the majority of regulatory functions are mediated by TFs and
similar proteins, another important direction for functional
analysis is to assess allele-specific protein binding. Computational
prediction of TF binding based on position weight matrices
models has been widely used to identify candidate TFs. With this
method, quantitative scores are generated for the likelihood of
observing a particular nucleotide at a specific position of the
candidate TF-binding site. Recent mapping of TFs with DNA by
means of ChIP-Seq provides a complementary approach that
depicts the genome-wide ‘footprints’ created by TFs bound to the
DNA at greater sequencing depths. ChIP-Seq can also predict the
regulatory status of genomic regions by targeting characteristic
histone modifications. For example, promoters and enhancers are
typically marked by histone methylations H3K4me3 and
H3K4me1, with the additional histone acetylation mark H3K27ac
indicating activation and the histone methylation mark H3K27me3
indicating repression. This approach is relatively mature and
established, but several limitations still call for cautions during
experimental design. First, ChIP assays do not profile more than
one TF in each experiment, and the assay resolution is too low to
determine the precise binding site. In addition, immunoreactivity
assays such as ChIP are potentially compromised in post-mortem
human brain because of the impact of post-mortem state (such as
post-mortem interval and tissue pH) on epitope fidelity.134

Furthermore, the assay efficiency is highly dependent on the
quality of the antibodies used. As a result, ChIP-Seq assay results
should be interpreted considering these problems.
Electrophoretic mobility shift assays (EMSAs) can also assess

protein binding in vitro, especially the SuperShift EMSA that
determines the protein mediating allele-specific binding using
antibodies against TFs of interest. In fact, several psychiatric risk
loci have been analyzed with the EMSA assays for their impact on
TF-binding affinity, such as ZNF804A,135,136 MIR137 (ref. 119) and
GRM3 (ref. 137) (Table 3). Besides, other high-throughput TF-
binding methods such as proteome-wide analysis of SNPs (PWAS)
using quantitative mass spectroscopy have also been used to
screen SNPs for differential TF-binding affinity.138 This technique is
very efficient as multiple SNPs and TFs can be analyzed in one
experiment. For example, Butter et al.138 applied PWAS to 12 SNPs
at the IL2RA locus associated with type 1 diabetes and narrowed
down the targets to 4 SNPs showing preferential binding of
common TFs. However, the in vitro nature of EMSAs and PWAS
gives rise to false positive results, calling for verification by ChIP
experiments.
In addition to tests for promoter and enhancer regulatory

effects, experimental approaches for alternative splicing have also
provided information for the regulatory mechanisms at psychiatric
risk loci. One example is the RNA-sequencing analysis using
junction data (such as alternative splicing of AS3MT in
schizophrenia51) followed by functional verification with in vitro
minigene assays. Specifically, a minigene is an artificial gene
fragment containing exon(s) and necessary control regions
allowing its expression in artificial conditions. The minigene has
been used as a splice reporter vector (or exon-trapping vector) to
determine the important factors in alternative splicing139 both
in vivo and in vitro.140 Using this assay, Cohen et al.141 identified
the regulatory mechanism of a schizophrenia risk SNP rs1076560
within DRD2 in Han Chinese (Table 3). The risk SNP was associated
with lower D2 short isoform expression in post-mortem brain.
Further studies showed that rs1076560 abolished the ability of
ZRANB2 to modulate short versus long isoform expression ratios of
DRD2 minigene in cultured HEK293 cells, probably by disrupting a
binding site for the splicing factor ZRANB2 to diminish binding
affinity between DRD2 precursor mRNA and ZRANB2. In another
study of PCLO gene (Table 3), Seo et al.142 performed functional
minigene analysis of splicing regulatory sequences to characterize
the function of rs13438494, a variant in the intron 24 of PCLO that
is associated with bipolar disorder in a meta-analysis of GWAS
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data sets.76 They found that the C allele of rs13438494 reduced
the splicing efficiency of the PCLO minigene containing exon 24,
intron 24 and exon 25. In addition, prediction analysis using the
Human Splice Finder web tool indicated that rs13438494 induced
abrogation or creation of enhancer/silencer-binding motifs in this
gene. Taken together, rs13438494 altered splicing efficiency by
creating or disrupting a splicing motif and associated binding of
splicing regulatory proteins.142 Overall, this step provides informa-
tion on the regulatory mechanism of specific risk loci that usually
lead to altered risk gene expression, generation of de novo
transcripts or imbalance of the current isoform(s) expression. Such
gene expression and/or processing changes are the functional
parameters that can be further verified in vitro and in vivo.

FUNCTIONAL ANALYSES OF GENETIC RISK IN VITRO AND
IN VIVO
Genes/isoforms
Once the risk genes/transcripts associated with both genetic risk
and illness state are located, genetic manipulation of their
expression in cultured cells (such as rodent primary cultural
neurons) and/or model animals could reveal their influence on
neuronal development, brain circuit and disease-related social
behaviors (Figure 2). For example, Huffaker et al.49 previously
identified a primate-specific isoform (3.1) of the ether-a-go-go
related K+ channel (KCNH2) that modulated neuronal firing to be
significantly associated with schizophrenia. This risk KCNH2-3.1
transcript was primate specific, brain enriched and highly
expressed in patients’ hippocampus, whereas the canonical
isoform KCNH2-1A was conserved between species, abundant in
heart and showed no expression differences between cases and
controls. Moreover, rodent primary cortical neurons overexpressed
KCNH2-3.1 showed a rapidly deactivating K+ current and a high-
frequency, nonadapting firing pattern,49 suggesting a novel
function of this specific truncated transcript compared with
KCNH2-1A. Later, the same group analyzed the role of KCNH2-3.1
using transgenic mice model, and found that mice overexpressing
KCNH2-3.1 had significant alterations in neuronal structure and
microcircuit function in the hippocampus and prefrontal cortex.
These mice exhibited significant deficits in a hippocampal-
dependent object location task and a prefrontal cortex-
dependent T-maze working memory task.143 These data further

strengthened the contention that KCNH2-3.1 was a risk factor for
schizophrenia, and provided information of the neuronal basis of
the disease. In recent years, there have also been studies utilizing
non-human primates (such as monkeys) to characterize the
pathogenic mechanisms of psychiatric risk genes. For example,
Liu et al.144 reported that lentivirus-based transgenic cynomolgus
monkeys (Macaca fascicularis) expressing human MeCP2 in the
brain showed germline transmission of the transgene and
exhibited autism-like behaviors. Specifically, these MeCP2 trans-
genic monkeys had a higher frequency of repetitive circular
locomotion and increased stress responses compared with wild-
type monkeys. The transgenic monkeys were also socially less
interactive, and had a reduced interaction time when paired with
other transgenic monkeys in such behavioral tests.

Functional variants
When the causative variants of disease is identified, delving into
its functional mechanism is a direct and effective approach for
verification of the genetic discovery (Figure 2). The most widely
used research models are in vitro systems such as human iPSCs
and in vivo models with animals. Ideally, it is recommended to
create panels of genetically matched iPSCs from patient somatic
cells to recapitulate both normal and pathologic human tissue and
organ development. These cells then serve as isogenic systems to
understand disease mechanisms and to guide drug discovery with
higher predictability of prognostic effects.
To study the disease-associated loci for psychiatric disorders

with such systems, the common protocol is to generate isogenic
human iPSC-derived neurons that differ only at the target SNP
locus. This goal is usually achieved using genome-editing systems
including designer endonuclease technologies such as zinc-finger
nuclease, transcription activator-like effector nuclease (TALEN) and
clustered regulatory interspaced short palindromic repeat
(CRISPR)/Cas9 endonuclease.145 The consequences of these risk
variants on DNA-binding protein occupancy, epigenetic modifica-
tions and gene expression in the context of neurodevelopment
are then assessed. At present, many in vitro and in vivo studies
involving genome-editing tools primarily focused on missense
mutations. Sudhof and colleagues146 recently generated two
different heterozygous conditional NRXN1 mutations in human
embryonic stem cells. NRXN1 encodes neurexin-1, a presynaptic
cell adhesion molecule. They found that both heterozygous

Figure 2. Roadmap to understand the biology of psychiatric disorders from noncoding risk loci.
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NRXN1 mutations impaired neurotransmitter release, but had no
effect on synapse formation. In another study using TALENs and
CRISPR/Cas9, Young-Pearse and colleagues147 disrupted DISC1
near the site of the chromosome translocation found in the
Scottish pedigree and found increased WNT signaling in iPSC-
derived neural progenitor cells, suggesting its roles in the
development of psychiatric disorders. Such studies have also
provided implications for future studies on noncoding variations.
As an ideal system for studying risk variants in the cellular level,
human iPSCs are currently very popular in neuroscience research.
However, limited access to clinical samples and difficulties in
culturing and manipulating the iPSCs remain the major challenges
impeding the establishment of these models.
In addition to the human iPSC systems, researchers also

attempted to use model organisms (for example, mouse) to
evaluate the functional consequences of the casual variants. The
mouse is usually the choice of in vivo mammalian models for its
high genome similarity, easy manipulation of genetic background
and great capacity to mimic human multifactorial disease
phenotypes including neural circuits and social behavior. For
example, catechol-O-methyltransferase (COMT) modulates dopa-
mine levels in the prefrontal cortex.148 The human COMT gene
contains a polymorphism (Val158Met) that alters its enzyme
activity and influences prefrontal cortex function,149,150 and the
Met allele appears to be human specific.151,152 Recently, Barkus
et al.153 introduced the human Met allele into the native mouse
COMT gene to produce COMT-Met mice, and developed a mouse
model of altered COMT activity comparing with their wild-type
littermates. COMT-Met mice had reductions in COMT abundance
and activity compared with wild-type controls. When adminis-
tered with the COMT inhibitor tolcapoe, the attentional perfor-
mance (assessed with 5-choice serial reaction time task) was only
improved in wild-type mice but not in the COMT-Met mice.153 This
genetic mutation knock-in mouse model provided an interesting
template to study the functions of human risk variant in animals.
Though model animals provide precious information about the

physiological impact of a defined genetic variant, this technique
should only be used for disease-coding variants occurred in
genomic regions that are highly conserved between species and
have been (at best) validated using iPSCs. Comparisons between
the results from human iPSCs and mouse models will demonstrate
the extent to which disease variants converge on common
molecular and cellular mechanisms. Meanwhile, cautions should
be taken regarding several concerns in translating observations in
mice to humans. For example, differences between species often
exist in gene function, evolutionary conservation of genome, host
responses to environmental changes and genetic backgrounds. In
addition, many noncoding variations are not conserved through
evolution and could only be studied in vivo using humanized
mice. To address these concerns, simultaneous mapping of the
genetic variants that already exist and introduction of new genetic
variations to the model to ensure proper recapitulation of human
genetic landscape are needed in future studies.

CONCLUSIONS
Large-scale genetic studies have been successful in identifying
multiple genomic loci conferring risk for psychiatric disorders.
However, significant obstacles have hampered our ability to
pinpoint casual variants, to identify genes/isoforms affected by
causal variants and to disentangle the mechanism by which
genotype influences phenotype. As opposed to linking rare
mutations to Mendelian diseases, revealing the effect of common
variants is a tough mission. This review provides a functional
pipeline for the identification of candidate causal variants and
underlying molecular mechanisms among the noncoding genetic
risk loci. Unraveling the complex mechanisms underlying risk
associations will ultimately pick up important biological pathways

presenting suitable targets for drug development and/or reposi-
tion of known therapeutics. Steps toward filling this knowledge
gap, as described in this review, will bring us closer to elucidating
the genetic bases of psychiatric disorders and offer opportunities
for personalized medicine.
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