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Recently a new form of ultra-thin flexible waveguide consisting of a conducting comb-like structure with a
thickness of the order of 1/600"" of the operating wavelength was presented. However, whilst the thickness of
the guide was massively sub-wavelength, the remaining dimensions (the height and period of the comb)
were much longer. In this paper we propose, and experimentally verify, that a modified guiding geometry
consisting of a chain of ultra-thin conducting spirals allows guiding of electromagnetic waves with
wavelengths that are many times (40+) longer than any characteristic dimension of the guide, enabling
super-sub-wavelength guiding and localisation of electromagnetic energy.

of science, from the simple refractive and reflective instruments of early optics, to more advanced schemes

such as the recent developments in the field of transformation optics"*. One aspect of this control that has
evolved greatly over the last century is the channeling, or guiding, of light in various forms of waveguides such as
fibre-optics, hollow metallic guides, various forms of transmission lines, and surface-waves; descriptions of all of
which can be found in most good electromagnetic text books’. In this paper we will demonstrate an extreme form
of sub-wavelength waveguide formed from a chain of connected conducting spirals and show that it can support
bound guided waves with wavelengths many times longer than any characteristic dimension of the structure.

We will begin by considering a well-known form of surface-wave waveguide, that of a conducting surface
formed from an array of infinitely long rectangular profile protrusions*. The geometrical structuring creates an
artificial electromagnetic boundary condition at the top surface of the dominos due to the penetration of the
electromagnetic fields in to the domino cavities, and this artificial boundary condition is of the form that allows a
bound surface wave to be supported. The dispersion relation of this surface wave is similar in form to that of the
well-known surface plasmon polariton (SPP)® and asymptotically approaches the frequency at which the cavities
support a quarter-wavelength resonance. Such artificially textured guiding structures were well-known in the
field of electrical engineering in the mid 20th century®, but have seen a resurgence of interest in recent years in the
physics community after being rediscovered and termed “spoof” or “designer” SPPs”*. Indeed, it should be noted
that there are a wide range of artificially structured surfaces that can support similar bound modes; the essential
requirement being that the textured surface must exhibit an electromagnetic resonance due to its geometry, and
one can envisage infinite variation on this theme.

Recently, Martin-Cano et al.” predicted that the lateral dimension of these rectangular profiled surfaces could
be narrowed without significantly perturbing the character of the guided wave, and they termed this narrowed
structure a “domino array”, and the supported modes as “domino plasmons” (see figure 1). This insensitivity to
the lateral dimension, ¢, results from the magnetic field within the cavities remaining entirely transverse regardless
of the value of ¢ and, since there is no additional quantisation of the magnetic field, the resulting dispersion
relation remains relatively unperturbed. Full discussions of this can be found in refs 9-11.

Subsequent to Martin-Cano et al.’s work, Brock et al. observed these modes experimentally'®, and Ma et al.
fabricated power dividers, directional couplers, and ring resonators using appropriately designed domino-based
geometries'’. Shen et al."' then took the idea to the extreme and made the lateral dimension of the dominos
massively sub-wavelength, forming a flexible waveguide. They did this by using standard etching techniques to
form arrays of dominos that were only 18 um in thickness on flexible polymer substrates (see figure 1), and
demonstrated guiding of waves with free-space wavelengths of 25 mm (in other words, the operating wavelength
was approximately 1400 times the lateral width of the dominos, and 600 times the thickness including the
substrate). They referred to these modes as “Conformal Surface Plasmons” or CSPs, and demonstrated the
flexibility of their structures by coiling the waveguide into complex geometries. Following this, the same group
demonstrated a dual-band waveguide formed from arrays consisting of two sizes of dominos', and Liu et al."*

T he control oflight, and of electromagnetic fields in general, has been a topic of interest throughout the history
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Figure 1| The three geometries discussed. Left: a domino array consisting
of a periodic array of conducting slabs on a conducting ground plane.
Middle: An ultra-thin domino array on a flexible polymer substrate. Right:
A chain of ultra-thin connected conducting spirals on a flexible polymer
substrate.

investigated the higher order modes of similar ultra-thin domino
geometries (the guided modes corresponding to multiples of the
fundamental quarter wavelength resonance of the domino cavities).
We should also note that other thin metamaterial geometries can also
act as waveguides such as lines of split-ring resonators that support
and guide magneto-inductive waves'>'%, and chains of plasmonic
particles at optical frequencies'”'®. However, it should be noted that
all these systems rely upon the same basic principle: the guided
modes arise from the coupling between the individual localised
resonators.

These CSP based geometries are an example of an “open-wave-
guide” whereby the guided fields are open to the bounding dielectric
(as opposed to closed waveguides such as coaxial cables). Whilst
closed waveguide geometries have huge advantages for many appli-
cations (for example a piece of coaxial cable can guide radio fre-
quency waves within a volume many times smaller than it’s
wavelength) there are some applications for which they are unsuited
and for which open waveguides may be better candidates. For
example, CSP geometries have been suggested as interconnects for
THz circuitry due to their planar sub-wavelength nature, and the ease
with which they may be coupled to using standard transmission line
technologies'. In addition, for on-body sensors®’, and, more gen-
erally, any sensing application in which the guide itself may be used
as the sensing transducer through interactions of the guided fields
with the local environment, open waveguides such as those based on
CSPs may be a natural choice.

Whilst much of the previous work on dominos geometries has
been undertaken on structures that are massively sub-wavelength
in a single dimension, the height, &, of the dominos has remained
of the order of /o/4 since the mode is only highly confined at fre-
quencies close to the asymptotic limit determined by the geometrical
resonance of the domino cavities. However, one might wish to reduce
the overall dimensions of a waveguide due to, for example, their
potential use as interconnects in photonic circuits, or because of
the general interest in concentrating electromagnetic energy into
sub-wavelength volumes. In order to achieve this one requires a
design that exhibits a geometrical resonance at a wavelength that is
much longer than any overall dimension of the geometry. This is, in
fact, rather simple to achieve using spiral cavities, which can have
cavity lengths many times longer than their geometrical size. Indeed,
one might envisage an array of spiral cavities as an array of tall thin
domino cavities that have subsequently been “rolled up” and, since
the spiral cavity array would thus be topologically similar to the
domino array, one might expect them to exhibit the same insensitiv-
ity to the lateral dimension (see figure 1). We also note that individual
thin metallic spiral geometries are of significant interest in their own

right having recently been shown to support “spoof” localised sur-
face plasmon modes with both electric and magnetic dipolar field
configurations®.

Results and Discussion
In figure 2 we present the Fourier magnitude as a function of wave-
vector and frequency for connected spiral geometries consisting of 1,
3, 5 & 7 vertices corresponding to increasingly tightly wound spirals
(see methods section), and the dispersion curves of the guided modes
supported by the geometries are clearly evident as dark bands. Also
shown in figure 2 are the un-scattered and scattered light lines (ori-
ginating from the origin and from k, = 27/, where /, is the peri-
odicity of the spirals, respectively). Note that the dark bands exist only
in the non-radiative region outside of the un-scattered lightline (they
have greater in-plane wavevectors than those available to freely prop-
agating waves) indicating that they are bound guided modes prop-
agating along the spiral chain. It is also clear from figure 2 that, as the
number of vertices in the spirals is increased, the high frequency limit
of the lowest order mode decreases, and higher order guided modes
become supported. This can be easily understood by considering the
cavity lengths, and resonant frequencies, of the spiral geometries.
For square spiral geometries with odd numbers of vertices the
cavity length, /, can be determined using,

5 i
I=nh—w—Y 2wi— > 2gi (1)
i=2 i=2

where h is the height (and pitch) of the square profiled spiral
geometry, g is the width of the air gaps, w is the line width, and n
is the number of vertices (see figure 4). For a constant line width, as
used here, the width of the air gaps is given by:

2(h—w(*31))

n+1 )

g:

From knowledge of the cavity lengths it is a simple matter to
predict the resonant frequencies of the cavities, and hence the high
frequency cut-offs (the asymptotic limits) of the guided waves,

(2m—1)c

fo="—F—" 3)

4]

where f,,, is the resonant frequency of the n order cavity mode and
c is the speed of light in vacuum.

Using eqns. 1 & 2 we obtain asymptotic limits for the fundamental
modes of our spiral chains with 1, 3, 5 & 7 vertices of 7.77 GHz,
3.96 GHz, 2.65 GHz & 2 GHz, respectively. The geometry with only
a single vertex is similar to that of the original domino array studied
by Shen et al., though with a much smaller line width, and from figure
2 we can clearly observe the asymptotic limit at approximately
6 GHz. This is significantly lower than the predicted limit of
7.77 GHz. It is noticeable that the comparison between the predicted
asymptotic limits and those determined from the measurements
improves as the number of vertices, and hence the cavity lengths,
increases. This is due to diffractive effects, arising from the periodic
nature of the waveguide, becoming less pronounced when the oper-
ating wavelength is much greater than the periodicity. Since the
periodic nature of the system requires that the dispersion curves be
flat-banded at the Brillouin zone boundary, a decrease in the high
frequency limit of the bands must occur as a result of the periodicity.
However, if the operating wavelength is much greater than the peri-
odicity, the dispersion curves of the supported modes are already flat-
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Figure 2 | The Fourier amplitude as a function of frequency and wavevector along the chain of spirals for geometries with different numbers of vertices.
The dispersion relations of the guided modes supported by these ultra-thin connected spiral geometries are clearly evident. Also shown on the plots
as blue lines are the scattered and unscattered light lines. Clockwise from top-left: 1, 3, 5 and 7 vertices.
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Finally, in order to confirm the origin of the waveguide modes as k()

arising from coupling between the cavity modes of individual spirals

we have calculated the electric field norm profiles at the Brillouin  Figure 3 | The Fourier amplitude as a function of frequency and
Zone boundary (k. = 7//,) for the first and fourth order eigenmodes ~ wavevector along the chain of spirals for the connected spiral chain
of the numerical solutions shown in figure 3, and these are shown in ~ geometry with 19 vertices. The red dots are the mode positions as
figure 4. For the fundamental mode there exists only a single nodein  calculated using the eigensolver in Comsol Multiphysics.
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Figure 4 | Modelled electric field norm profile of the fundamental guided mode at k, = 7/, for the system described in figure 3. Inset: The same but for
the 4th order mode. Blue corresponds to low field strengths and red to high field strengths.

the electric field profile, which occurs at the center of the spiral. This
is similar to the fundamental mode of the domino cavity which
exhibits a single node at the base of the cavity. For the fourth order
mode, however, an additional three nodes exist, demonstrating that
this guided mode is associated with the fourth order cavity mode of
the spirals. The extreme confinement of the fields to the region
around the spirals is also clearly evident and we can determine their
extent in the transverse direction (the distance over which the field
has decayed to 1/e of its maximum value) using L+ = 1/kg, where kris
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Figure 5| Top: A schematic showing the lithographic fabrication method.
A 50 um thick polyester substrate coated with 18 um of copper has the
desired pattern printed on to it using a solid ink printer (laser printers can
also be used). The printed pattern forms an etch mask, and the unmasked
copper is removed using ferric chloride. The ink mask is subsequently
removed by solvent assisted abrasion. Bottom: Example of the fabricated
samples showing spiral designs with 5, 7, 9 and 11 vertices.

the transverse wavenumber given by kr=1/k% —k2. This gives a

value of 3.3 mm, or 1/120" of the free-space wavelength, for the
fundamental mode at the Brillouin Zone boundary.

We have demonstrated that a connected chain of ultra-thin spiral
cavities can act as a massively sub-wavelength flexible waveguide for
electromagnetic waves. The operating wavelength of these wave-
guides is determined by the length of the spiral cavities, which can
be very long relative to their geometrical size. Indeed, for the fun-
damental waveguide mode of the longest spiral cavity studied here
the operating wavelength of the guide is approximately 40 times the
longest dimension of the geometry. It should be noted, however, that
more tightly wound spirals, with corresponding longer cavity
lengths, could support modes with even longer wavelengths. These
massively sub-wavelength waveguides may be attractive candidates
as interconnects in photonic circuits, or as a means to concentrate
electromagnetic energy into extremely sub-wavelength volumes.

Methods

The chains of connected spirals with different cavity lengths were fabricated using a
standard lithographic technique. A 50 um thick flexible sheet of polyester coated with
18 um of electrodeposited copper (available from GTS Flexible, prod. no.: 550920ED)
had the required design printed on to it using a commercially available solid ink
printer (Xerox ColorQube 9301). The printed ink design acts as an etch mask when
the sample is placed into a ferric chloride etch solution, which removes any un-
masked copper. The remaining solid ink is subsequently removed using solvent
assisted abrasion. Ten designs of square profiled spiral cavity chains were fabricated,
with each design being specified by the number of vertices in the spiral. Designs with
1,3,5...19 vertices were fabricated, and the line width of the copper tracks (350 um),
and the height () and periodicity (or pitch, ) of the spiral array (10 mm), were kept
constant such that the cavity length of each spiral increased with the number of
vertices (see figure 5).

The guided waves supported by the spiral chain were excited using a near-field
source (a 2 mm section of stripped coaxial cable driven by the source port of a vector
network analyser (VNA)). The instantaneous electric field strength was subsequently
measured as a function of distance along the midline of the array approximately
3 mm from the surface using a stripped coaxial probe connected to a second port on
the same VNA. By performing a Fast Fourier Transform (FFT) on the resulting
spatially dependent field profile the wavevectors of any excited guided waves becomes
clearly evident as peaks in the Fourier spectrum, and by undertaking this process for a
range of frequencies the dispersion curves of the excited modes were determined.
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