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Embryonic epithelia achieve complex morphogenetic movements, including

in-plane reshaping, bending and folding, through the coordinated action

and rearrangement of individual cells. Technical advances in molecular

and live-imaging studies of epithelial dynamics provide a very real oppor-

tunity to understand how cell-level processes facilitate these large-scale

tissue rearrangements. However, the large datasets that we are now able

to generate require careful interpretation. In combination with experimental

approaches, computational modelling allows us to challenge and refine

our current understanding of epithelial morphogenesis and to explore exper-

imentally intractable questions. To this end, a variety of cell-based modelling

approaches have been developed to describe cell–cell mechanical inter-

actions, ranging from vertex and ‘finite-element’ models that approximate

each cell geometrically by a polygon representing the cell’s membrane,

to immersed boundary and subcellular element models that allow for

more arbitrary cell shapes. Here, we review how these models have been

used to provide insights into epithelial morphogenesis and describe how

such models could help future efforts to decipher the forces and mechanical

and biochemical feedbacks that guide cell and tissue-level behaviour. In

addition, we discuss current challenges associated with using computational

models of morphogenetic processes in a quantitative and predictive way.

This article is part of the themed issue ‘Systems morphodynamics:

understanding the development of tissue hardware’.
1. Introduction
The past decade has witnessed remarkable progress in quantitative studies of

morphogenesis fuelled by advances in microscopy, image analysis and fluor-

escent reporter methods [1]. The resulting toolkit has enabled processes to be

quantified and correlated across multiple scales: from the spatio-temporal

dynamics of specific molecules within cells [2,3]; to individual cell shape

changes and movement; to tissue-scale growth and deformation [4]. This has

led to an increasing recognition that morphogenesis involves a complex inter-

play between cell signalling and mechanical forces [5]. Gene expression and

protein activity modulate the cellular generation of, and response to, forces.

In turn, mechanical cues may have a direct role in regulating these biochemical

processes, and affecting cell behaviour, for example by controlling growth [6]

or triggering apoptosis [7]. Improving our understanding of such feedbacks

enables a more holistic view of development and may have future implications

for improved tissue engineering and repair strategies.

Morphogenesis is frequently driven by the growth and deformation of epi-

thelial tissues, which form polarized sheets of cells with distinct apical and

basal surfaces, and tight lateral attachments located nearer their apical sur-

face. The coordinated movement, shape change and intercalation of cells in

an epithelial sheet facilitate complex morphogenetic processes, from tissue

elongation through convergent extension [8] to bending and invagination [3]

and tube formation [9]. The mechanical forces driving these processes

are multiscale in nature [10] and include the action of molecular motors,
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membrane-bound adhesion components and extrinsic forces

from underlying tissues [11,12]. Until recently, such forces

were not experimentally measurable, and thus the role of

mechanics in morphogenetic processes not well character-

ized. This has changed, however, with recent advances in

measurement techniques, in particular in vivo [13,14].

The resulting force measurements, combined with cell- and

tissue-level summary statistics on geometry and morphology

that can be extracted from long-term live imaging, constitute

an incredibly rich amount of data on morphogenetic processes.

Computational modelling offers a useful framework for inte-

grating such data and disentangling the roles of mechanics

and signalling [15]. The iterative development of models

and experiments allows us to refine our mechanistic under-

standing of biological observations and test competing

hypotheses [16]. In particular, quantitative measurements

enable us to constrain models, for example through parameter

estimation, increasing the potential of such models to be used

in a predictive way.

A variety of approaches have been developed to model

how processes at the cell level determine tissue size, shape

and function during morphogenesis [17].

A large class of these models neglect cytoplasm and cell

junctions, treating an epithelial tissue as a continuum (e.g.

viscoelastic) material [18–21] and employing finite elements

or similar methods to discretize the tissue for simulation

purposes. In essence, the continuum approximation averages

over length scales much larger than the typical diameter of a

cell. It can thus be difficult to incorporate heterogeneity

between cells within a population. Accelerated, in part,

by the reduction in cost of computing power, a number of

discrete or ‘cell-based’ approaches have also been developed

that treat cells as discrete entities. They provide natural

candidates for studying the regulation of cell-level proces-

ses but are less amenable to mathematical analysis than

their continuum counterparts. We restrict our focus to this

burgeoning class of models in this review.

Cell-based models vary in complexity from those that

consider the movement of cells on a fixed lattice [22,23] to

models that account for continuous cell movements and con-

sider cell shape to be fixed [24] or varying. The latter include

models that track the centre of each cell as a point, determin-

ing cell neighbours through an ‘overlapping spheres’ or

Delaunay triangulation approach [25–27], and vertex

models that include an explicit description of cell shape.

Such models are well suited to investigating the ‘passive’

mechanics of autonomous epithelial monolayer defor-

mations. However, few existing models properly integrate

descriptions of cell mechanics with models of biochemical

signalling or genetic programming, or allow for the complex

cell shapes that arise owing to localized adhesion, constric-

tion and protrusion.

Here we summarize how several recent cell-based models

have sought to overcome these limitations, and discuss

how these models could help future efforts to study the inter-

play between chemical and mechanical signals in epithelial

morphogenesis. Our aim is to provide a biologically acces-

sible overview of the models’ underlying assumptions,

strengths and weaknesses, and the computational challenges

associated with their further development, rather than an

exhaustive comparison of the constitutive laws and material

behaviour of the different models; for more detailed physical

descriptions of recent approaches see, for example, [28].
We present these models, broadly speaking, in order of

increasing computational complexity, starting with vertex

models that contain the simplest explicit, dynamic descrip-

tion of cell shape. An overview of the strength, limitations

and example applications of each class of model is

presented in table 1.
2. Vertex models
We take as our starting point two-dimensional vertex models,

a popular example of off-lattice cell-based models that approxi-

mate cell apical surfaces geometrically by polygons defined

through the interfaces between adjacent cells [44]. In these

models, the movement of junctional vertices is assumed to

be governed by the strength of cell–cell adhesion, actomyosin

cortical contractility and cell elasticity. Originating from

models of inorganic structures such as soap bubbles, vertex

models have been widely used to investigate the deformations

of homogeneous and patterned epithelial tissues.

A highly cited example of the utility of vertex models is

the work of Farhadifar et al. [45], who performed a systematic

analysis of the equilibrium cell packing geometries and their

dependence on cell mechanical and proliferative parameters

with application to the Drosophila wing epithelium. By com-

paring simulations with experimental results on laser

ablation of individual cell–cell interfaces, the authors arrived

at a set of parameter values for which their model accounts

for the observed vertex movements induced by laser ablation,

epithelial packing geometries and area variations. This work

demonstrates how such models may be parametrized, and

their predictions tested, against experimental data.
3. Incorporating mechanical complexity
While successful in recapitulating much of the gross behav-

iour of planar epithelial sheets, vertex models typically

ignore contributions such as cell–matrix adhesion [46] and

medial actomyosin contractility [47]. These models also tend

to neglect active remodelling of cytoskeletal components.

One approach to including cytoskeletal remodelling is to

introduce viscoelastic elements representing the cell mem-

brane and cytoplasm (figure 1a). This approach was first

adopted by Odell et al. [34,35], who modelled a cross section

of an embryo as a ring of cells with interconnected vertices

subject to a viscoelastic force. The authors assumed that

apical edges actively contract in response to stretch. With

additional system-specific assumptions, this model recapitu-

lated patterns of deformation as observed in, for example,

sea urchin gastrulation or Drosophila ventral furrow forma-

tion (figure 1b). Several more recent studies have focused on

the different patterns of cell mechanical properties that can

generate observed tissue deformations. For example, models

of Drosophila ventral furrow formation have suggested a poss-

ible role for pushing by cells neighbouring the furrow,

or buckling owing to uniform tissue-wide changes in apical

tension [36].

An alternative extension of the vertex model has been

developed by Brodland and co-workers [48], who decompose

each polygonal cell into triangular ‘finite elements’, joined at

the centroid of the polygon. This approach treats the cyto-

plasm as a continuous viscous material and assumes that

cell–cell interfaces experience a constant force. As in vertex



Table 1. Summary of applications to date of different modelling approaches for epithelial tissue morphogenesis. CA, Cellular automata; CPM, cellular Potts
model; IBM, immersed boundary method; SEM, subcellular element model.

modelling
approach example applications strengths limitations

continuum models brain cortical folding [18]

cephalic furrow formation [19]

ventral furrow formation [20]

strong mathematical foundation;

typically few parameters; well

placed to study buckling and

folding phenomena

difficult to incorporate cell-level

heterogeneity or subcellular processes

lattice-based models

(CA, CPM)

epiboly [23]

branching morphogenesis [22]

computationally cheap;

straightforward to simulate many

cells

risk of lattice anisotropies and cell

fragmentation; difficult to relate

parameters to experimentally accessible

quantities

off-lattice cell-centre

models

C. elegans germ line [29] more physically motivated and

easily parametrized than lattice-

based models

more computationally costly than lattice-

based models

Lack explicit description of cell shape

dynamics

vertex models tissue size regulation [30,31]

germband extension [32,33]

explicitly incorporate cell neighbour

rearrangements; straightforward

to generate experimentally

testable summary statistics

typically neglect cell – matrix adhesion,

medial actomyosin contractility, active

cytoskeletal remodelling

viscoelastic models ventral furrow formation [34 – 36]

cell sorting [37]

germband retraction [38]

include active cytoskeletal

remodelling

like vertex models, require cells to be in

confluent tissues

‘multi-node’/curved

edge models

gastrulation [39]

cell sorting [40]

detailed description of cell shape

dynamics

more computationally costly than vertex

and ‘finite-element’ models

IBM limb bud morphogenesis [41]

Turing patterns [42]

do not require confluent tissues;

allow detailed modelling of

regulated growth and death

processes; straightforward to

incorporate subcellular structures

unclear how to estimate ‘fluid’ properties

from biological data; require

sophisticated numerical solvers to avoid

fluid ‘leakage’

SEM primitive streak formation [43] allow detailed and emergent cell

shape changes in response to

mechanical stimuli

computationally intensive; difficult to

associate interactions functions directly

with particular cytoskeletal components
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models, the motion of cell vertices is driven by interfacial ten-

sion between cells of the same and different types; however,

here the volume of each cell is held constant. This model has,

for example, been successfully used to test the roles of differ-

ential adhesion [49] and differential surface contraction to

cell sorting and engulfment [37], to assess the mechanical

efficiencies of different tissue-reshaping mechanisms [50],

and study the contributions of applied stress and edge-

tension anisotropies to germband retraction in the Drosophila
embryo [38].
4. Incorporating additional geometric complexity
The models discussed in §§2 and 3 share the assumption that

cell shape is well approximated by a polygon of specified

degree. In recent work by Tamulonis et al. [39], the cross sec-

tion of each cell is modelled by a polygon comprising a large

number of vertices, allowing for more complex cell shapes
(figure 1c). Membrane elasticity is modelled by associating a

linear spring with each cell edge, whose stiffness and equili-

brium length varies according to whether the edge is apical,

basal or lateral. The apical (and, in some simulations, basal)

corners of neighbouring cells are also connected by very stiff

springs, representing adherens junctions. Apical constriction

is implemented via an intracellular spring between each endo-

dermal cell’s apical corners. The authors do not impose a

constant cell volume, instead assuming the cytoplasm to be

linearly elastic, resulting in an additional force acting at each

vertex. This model was applied to study gastrulation of the

starlet sea anemone Nematostella vectensis, which culminates

some cells adopting a characteristic ‘bottle’ shape. The model

successfully reproduces several key features of gastrulation

and suggests that bottle cell formation may emerge from the

balance of spatially patterned mechanical forces: strong

apico-basal contractility, reduced cell–cell adhesion and a lat-

eral constraint (figure 1d ). It will be interesting to see how

widely conserved this combination of apical constriction and



apical surface

active subcortical
filament bundle

basal surface

ectodermal
cell

endodermal
cell

(b)

(a)

(c) (d)

Figure 1. Polygon-based models of gastrulation. (a) Model of an epithelial cell cross section, incorporating viscoelastic cytoskeletal elements and active apical
contractility. Adapted from [35]. (b) Simulating this model from a cylindrically symmetric configuration, while imposing a constant inner volume representing
a yolk-filled lumen, leads to behaviour redolent of Drosophila ventral furrow formation. Reproduced from [35]. (c) Model of endodermal (yellow) and ectodermal
(blue) cells in the Nematostella vectensis blastula, showing contractile elements (black) within and between cells. Adapted from [39]. (d ) Simulation of bottle cell
formation with this model. Left: In vivo image showing bottle (red) and squat (blue) cells. Middle/right: two model configurations, where endodermal cells are
bound apically only (middle) or also basally (right), resulting in distinct cell shapes during apical constriction. Reproduced from [39].
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reduced cell–cell adhesion is as a mechanism for generating

complex cell shapes in embryonic epithelia.

While the model by Tamulonis et al. [39] assumes a fixed

number of nodes per cell, a recent development of the finite-

element model by Brodland and co-workers [40] replaces

straight edges by polylines with an arbitrary number of seg-

ments, allowing for curved cell boundaries. The authors

allow the number of nodes per cell to vary dynamically

according to some threshold on segment length, and also

replace the triangular decomposition with an orthogonal

dashpot system. By comparing simulations of annealing,

engulfment and cell sorting, the authors show that cells

with polyline boundaries exhibit a more fluid, biologically

realistic behaviour than those with straight edges, which

experience shape constraints limiting their movement and

deformation.

In other work, Ishimoto & Morishita developed a

‘bubbly’ vertex model [51], motivated by observations of

curved cell boundaries within a range of epithelia and

‘two-vertex’ cells within the mouse olfactory epithelium.

The framework uses a generalized form of the tissue poten-

tial energy that is a function of the curvatures and vertex

positions, where the Young–Laplace law represents the

force balance along the cell boundary. This significantly

increases the computational cost of simulation, but provides

an interesting extension to the standard vertex model that

may be applicable to a variety of morphogenetic processes.
We conclude our discussion of models that allow complex

cell morphologies by considering the immersed boundary

method (IBM) [42,52–56]. Originally developed to study the

flow of blood around heart valves [57], the IBM considers

the dynamics of one or more elastic membranes, which

represent cell boundaries, immersed in a viscous incompressi-

ble fluid (figure 2a), which represents the cytoplasm and

extracellular matrix [53]. The IBM has been applied to three-

dimensional problems, such as the deformation of leucocytes

and [58] and red blood cells [59], but for simplicity, we restrict

our focus to two dimensions here. We emphasize that the fluid

does not interact directly with the immersed boundaries, and

the boundaries do not directly partition the fluid. The fluid

obeys the Navier–Stokes equations with an imposed body

force acting owing to the elastic interactions of each cell. The

precise functional form of this body force may be formulated

rigorously as a strain relation [56], or else by decomposing

it into inter- and intracellular interaction contributions

(figure 2a) [53]. The immersed boundaries move owing to

the fluid flow without slipping. The numerical solution of

this model involves discretizing the fluid onto a regular

square grid, whereas the immersed boundaries are represented

by a finite number of points along their length.

The first application of the IBM to collective cell dynamics,

by Rejniak and co-workers, focused on the growth of solid

tumours under differing geometric configurations, initial con-

ditions and progression models [53,54]. Although not yet used
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Figure 2. The immersed boundary method. (a) Model schematic shows an off-lattice discretization (blue nodes) of the immersed boundaries representing individual
cells (orange) and the regular grid use to discretize the fluid flow problem. Adhesion links exist between blue nodes within each immersed boundary, as well as
between neighbouring boundaries. (b) A simulation viewed at two time points shows the computed fluid velocity (blue arrows) and immersed boundary geometry
(orange lines). Immersed boundaries are initially at rest in a honeycomb pattern before reacting to the central cell reducing its surface area.
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extensively to model epithelial morphogenesis, the IBM has

been applied extensively in biology and elsewhere [52,55,60].

The flexibility of the IBM is exemplified by an application by

Dillon and co-workers to vertebrate limb bud morphogenesis,

where an immersed boundary now represents a tissue domain

rather than a cell [41].

Although still primarily used in other settings, the IBM

has several features that make it well suited to modelling

epithelial morphogenesis, as argued by Tanaka et al. [42].

First, the IBM allows cell shapes to be an emergent property

rather to be than a constraint of the model. In particular, in

contrast to the vertex and finite-element models, the IBM

does not require cells to be in confluent tissues, and thus

appears well suited for detailed modelling of problems invol-

ving cell–cell interface dynamics such as intercalation, shear,

loss of epithelial organization and delamination, with less

need for explicit rules for processes such as T1 and T2 tran-

sitions. Second, unlike most vertex models, cells maintain a

constant area in the absence of fluid sources or sinks, and

thus the IBM enables detailed modelling of regulated

growth and death processes. Third, the IBM also lends itself

well to efficient numerical solution on periodic domains

[60], which may be a sensible choice for considering a small

snapshot of a larger tissue. Fourth, it is straightforward to

explicitly incorporate subcellular structures such as the

nucleus within the IBM using additional immersed bound-

aries, for example to investigate the role of intracellular

mechanical heterogeneity in morphogenetic processes

where significant cell bending or deformation occurs [61].

Finally, as already briefly mentioned, the extension to three

dimensions is conceptually straightforward without the

need to specify large numbers of different types of vertex

rearrangements [62].

We illustrate the utility of the IBM in figure 2b, which

shows a simulation of epithelial cell packing where neigh-

bouring cell shapes evolve in response to a central cell

shrinking (e.g. in preparation for extrusion from the sheet).
5. Three-dimensional models
Models of embryonic epithelia can reduce complexity by

adopting a two-dimensional approximation (either in plane,

as in convergent extension [47]; or cross section, as in ventral

furrow formation [35]). However, some morphogenetic
events require a three-dimensional model. A number of

studies have extended vertex models to three dimensions.

These include models of systems where apical patterns of

myosin appear to control morphogenesis that allow a two-

dimensional sheet of cells to buckle out of the plane, as in the

case of dorsal appendage formation [63], as well as models

that represent cells as three-dimensional prisms [64–66].

Examples of three-dimensional finite-element models include

studies of neurulation by Brodland and co-workers [67].

Another relevant model in this context was proposed by

Savin et al. [68] to describe the development of gut looping.

The IBM has not yet been applied to three-dimensional cell

populations, and existing software implementations are not

straightforward to generalize to three dimensions [42].

We conclude by considering the subcellular element

model (SEM), where now discrete elements are used to rep-

resent both the cell membrane and cytoplasm. The SEM

was initially developed by Newman [69] as a flexible frame-

work for simulating the detailed dynamics of emergent cell

shape changes in response to mechanical stimuli. In the

SEM, each cell is composed of a large, and possibly varying,

number of small volumes of cytoplasm (or other organelles)

called subcellular elements. Each subcellular element of a

cell is modelled as a single point at its centre of mass,

which changes position over time subject to three processes:

(i) weak random fluctuations; (ii) elastic interaction with

elements of the same cell; and (iii) elastic interaction with

elements of other cells (figure 3a).

The motion of each subcellular element is subject to a

strong viscous drag owing to the surrounding cytoplasm.

As with most cell-based models, it is assumed that viscous

terms dominate inertial terms. The biomechanical properties

of cells are encoded in elastic interactions between elements

that are defined using phenomenological potential functions

encoding close-range repulsion and medium-range attraction

[71] for elements of the same or different cells. It is difficult to

associate such functions directly with particular cytoskeletal

components or other structural protein systems. However,

computational studies of bulk properties at the tissue scale

suggest that the precise functional form of the potential has

little impact on the system dynamics [25,72].

By carrying out in silico bulk rheology experiments on a

single cell over a timescale of around 10 s, it is possible to

scale the parameters of the SEM such that its passive bio-

mechanical properties are independent of the number of



cell i cell j

(b)(a)

Figure 3. The subcellular element model. (a) Model schematic diagram shows two cells and a subset of the intra- and intercellular interactions between their
elements. (b) SEM simulation under a creep-stress protocol. Reproduced from [70]. & IOP Publishing. Reproduced with permission. All rights reserved.
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elements that make up each cell [72]. These experiments

follow a creep-stress protocol in which a constant extensile

force is applied to a cell’s surface, whereas the opposite

surface is fixed, before the extensile force is released, and

the strain is measured as the extension of the cell in the direc-

tion of the force, relative to its initial linear size (figure 3b).

The SEM agrees qualitatively with in vitro rheology measure-

ments [73], exhibiting a finite strain that plateaus after around

one second, with complete recovery of the original cell shape

after the force is released [72]. Over longer timescales (100 s),

cells instead respond actively to external stresses, for example

by undergoing cytoskeletal remodelling, making them more

fluid-like. This can be incorporated into the SEM by inserting

and removing subcellular elements of a cell in the regions of

high and low stress, respectively [70].

To date, the SEM has not been widely used to study

biological processes outside the area of epithelial morpho-

genesis. Christley et al. [74] developed a model of epidermal

growth on a basal membrane that incorporates a simple

algorithm for cell growth (through the incremental addition

of subcellular elements) and division (through the redistribu-

tion of subcellular elements to two daughter cells) coupled to

a subcellular gene network representing intercellular Notch

signalling. The SEM has also been coupled to a fluid flow

model to simulate the attachment of platelets to damaged

blood vessel walls in thrombus development [75]. By using

a detailed mechanical model of the platelets, the authors

determine the relationship between platelet stiffness and

movement in the fluid and, consequently, how platelets

attach to injured sites on the vessel wall. In the context of

developmental biology, the primary application of the

SEM to date has been a computational study of primitive

streak formation by Sandersius et al. [43]. Like the IBM, the

SEM enables straightforward inclusion of subcellular struc-

tures such as nuclei for the study of processes such as

(pseudo-)stratification; and cell rearrangements are emergent

rather than imposed as constraints. There are already three-

dimensional examples of the SEM, which allows for efficient

library algorithmic implementations that can simulate tissues

comprising several thousands of cells [74,76].
6. Incorporating signalling
While some morphogenetic processes can be modelled by

assuming a specified patterning of cell mechanical properties
[30,63], in the case of mechanotransduction the mechanism

underlying such patterning may need to be treated explicitly.

An appealing property of cell-based models is the ease with

which they may be modified to incorporate such feedback.

Vertex and cellular Potts models now frequently couple

descriptions of morphogen transport and signalling to cell

behaviour [31,66,77–79], whereas a recent vertex model of

active cell intercalation during Drosophila germband exten-

sion incorporates an explicit description of planar cell

polarity and medial myosin II dynamics [80]. A similar

approach has been taken to describe the role of myosin II pat-

terning in driving intercalation during germband extension

[32]. Such biological detail is rarer in the more complex

mechanocellular models described above; though recent

examples include [42,74]. Further development of increas-

ingly detailed mechanocellular models will require the

careful derivation of key relationships between the fluor-

escence intensity of relevant proteins and mechanical

properties from live-imaging datasets.
7. Outlook
We conclude by highlighting some of the technical develop-

ments required to increase the utility of the cell-based

models discussed above as computational tools for the

study of epithelial morphogenesis.

(a) Model choice and implementation
An increasingly important consideration is availability of

software. At present, Chaste [81] is the only open-source

simulation tool publically available for off-lattice models

of cell populations, including vertex and finite-element

models. Implementations of the IBM and SEM also exist

within this framework. The more widespread availability of

such tools and, in particular, the use of industrial-grade soft-

ware engineering approaches to ensure robust, extensible

code and reproducible results, are crucial as computational

modelling evolves from a qualitative to a quantitative tool

in cell biology. A technical requirement for this is the devel-

opment and use of stable, accurate and efficient numerical

algorithms for solving models.

Related to this problem is the choice of a particular cell-

based model for a given problem. The decision as to which

is the best model to interrogate a specific research question
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is subjective, and often based on the experience of the mod-

eller and the software they have access to obtaining and

extending. Moreover, the issue is often exacerbated by the

fact that it is difficult to accurately compare different model-

ling approaches, because the modeller cannot generally

distinguish between differences that are due to model

assumptions and those that arise from the specific details of

the numerical implementation of the model [82]. A systematic

comparison of the relative strengths and weaknesses of each

model, and the underlying biophysical assumptions, remains

lacking; this would go a long way towards addressing the

above problem. A rare example of such a comparison is the

simulation study by Pathmanathan et al. [25]; this type of

analysis could be extended to other cell-based approaches.

(b) Key challenges in future model development
The majority of existing models of epithelial morphogenesis

neglect interactions with neighbouring tissues, yet there is

increasing evidence for their importance. While a small

number of theoretical studies have included an explicit

representation of basement lamina or stromal tissue [83,84],

further work is required to make progress in this area. In

particular, the development of methodologies to interface

models that include descriptions of cell shape, mechanics

and biochemical signalling in different ways and on different

scales, will be crucial. As mentioned above, the extension of

cell-based models to three dimensions is both an urgent

requirement and technically challenging. An overarching

question in this context is what physics needs to be included

in a cell-based model, and how to implement this across

different frameworks, as we continue to add greater amounts

of biological detail. This requires balancing mechanical

realism with computational tractability.

(c) Integrating models and quantitative data
Recent years have witnessed dramatic changes in our

ability to extract multiplex, quantitative data, on a range of
spatio-temporal scales, from actomyosin dynamics within

single cells, to tissue-level morphogenetic changes, including

folding, bending and within-plane reorganization. A major

remaining challenge for the modelling community is to under-

stand how to best integrate and interpret these data with

cell-based modelling frameworks. A goal for the future

should be a concrete pipeline that includes: data acquisition,

analysis and fusion; model development, reduction and para-

metrization; model validation/selection and the guidance of

future experimental directions. Key challenges in this regard

involve developing efficient methods for computational infer-

ence and experimental design, and designing standardized

approaches to report uncertainty.
(d) Summary
Here we have sought to provide some representative

examples (in order of increasing complexity and geometric

realism) that give a clear picture of developments to date,

rather than an exhaustive list of models. These models are

most suited for situations where we are particularly inter-

ested in capturing irregular cell shapes because they are

important for the system-level behaviour, such as bottle

cells in gastrulating embryos [39]. The development of such

models, in combination with recent advances in the live ima-

ging of embryogenesis and image analysis, means that the

field is now in a position to develop and validate biologically

realistic models in a quantitative manner. Having the ability

to extract geometric and mechanical summary statistics from

data and parametrize models in an integrated manner will be

crucial if we are to exploit the full potential of combined

experiment-modelling efforts.
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