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We present a fluid-instability-based approach
for digitally fabricating geometrically complex
uniformly sized structures in molten glass. Formed by
mathematically defined and physically characterized
instability patterns, such structures are produced via
the additive manufacturing of optically transparent
glass, and result from the coiling of an extruded
glass thread. We propose a minimal geometrical
model—and a methodology—to reliably control the
morphology of patterns, so that these building blocks
can be assembled into larger structures with tailored
functionally and optically tunable properties.

This article is part of the themed issue ‘Patterning
through instabilities in complex media: theory and
applications’.

1. Introduction
Since the Bronze Age, humans have put to use the
inherent compliance of liquids to shape matter and
construct objects. Metal casting, glass blowing—even
painting—are all examples of processes where a final
construct is obtained following the solidification of
an initially liquid phase. In each of those cases, the
liquid phase is shaped by a combination of tools
and craftsman skills, until solidification is completed.
Through history, this concept has matured into a
plethora of industrial processes in areas ranging from
the polymer industry to metalworking, as well as the
glass and food industries. In these areas, fabrication
capabilities have progressed via improvements and
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optimization of the constraints applied to the liquid phase that is to be transmuted into a desired
shape. The term ‘constraint’—as used throughout this article—connotes an externally applied
factor preventing the natural evolution of the liquid phase: it can be a physical object, like a
mould preventing its flow or a piston forcing its extrusion, or an intangible feature of the process
acting on the physical properties of the liquid, such as the temperature profile imposed in an
oven. Those engineering successes, however, come at the expense of simplicity. Furthermore,
as a consequence of their complex multi-physics components, processes are generally largely
tuned empirically with compromises between versatility and reproducibility. Here, we propose
to explore an alternative route of fabrication, harnessing pattern-forming fluidic instabilities to
fabricate structures in complex media.

A mechanical instability describes the natural tendency of a system to destabilize, that is, to
depart from an equilibrium position (not necessarily static) towards a bifurcated, qualitatively
and quantitatively different state. Euler’s elastica is a prototypical example of a buckling
instability. When quasi-statically increasing the axial loading of a vertical elastic rod clamped at
one end and free at the other, one reaches a critical value of the load where the rod suddenly fails to
retain a straight configuration and spontaneously buckles into a laterally deformed shape [1]. The
straight solution becomes unstable and is never observed in practice past the critical buckling
load. Traditionally associated with the failure of engineering structures or loss of control in
dynamical systems, instabilities are therefore best avoided. As a consequence, the literature on the
subject—particularly in the field of theoretical mechanics—focuses on understanding instabilities
in order to prevent or minimize their occurrence. Yet, instabilities can contain useful features [2],
in particular, regarding the formation of structured materials and surfaces. The most unstable
mode of deformation often dominates post-instability dynamics, to the point that it is the only
one observed, thereby setting the wavelength λ of the patterns it forms. Examples are many,
from the Rayleigh–Taylor instability in a thin liquid film generating a lattice of monodisperse
droplets [3], to the wrinkles and dimples formed on elastic membranes [4], which also organize
into well-defined patterns. Such features can be harnessed to actively control surface properties,
with applications ranging from solar cells [5] to drag reduction [6]. In fluid mechanics, instabilities
leading to singularities are routinely used to induce topology changes, e.g. to form droplets from
a bulk of fluid, with applications to inkjet printing, spray painting [7] and microfluidics [8].
However, little has been achieved using fluidic instabilities as a design tool: exploiting the structure
arising from the instability in order to fabricate an object.

This paper focuses on the buckling [9,10] of viscous threads extruded from a nozzle, which,
under the action of gravity, form a myriad of patterns when impacting a surface moving relative
to the nozzle [11]. These patterns—similar to the coils formed when syrup or honey drizzles onto a
breakfast pancake [12]—include alternating loops, meanders and more intricate patterns [13,14].
These patterns are the result of the path traced out by the viscous thread when impacting the
surface, which in turn originate from the mismatch between the ‘free fall’ terminal velocity of
the thread and the motion of the surface [13,15–18]. This condition, combined with geometrical
arguments, is sufficient to rationalize the formation of patterns under certain conditions (see §3).
Embedded in geometry, coiling patterns are indeed found to be generic: they resist changes in the
intrinsic mechanical properties of the thread. In particular, similar patterns have been observed
when the thread is elastic [19–21]. Here, we illustrate how such fluidic instabilities may be applied
to further the capabilities of additive manufacturing.

The advent of freeform fabrication capabilities—such as 3D printing—has critically impacted
the design process, with applications ranging from simple, rapid and economic design iterations
in laboratories, to the additive manufacturing of complex objects with unprecedented costs,
fabrication rate and quality [22]. Here, we explore the possibility of furthering the capabilities
of additive manufacturing by harnessing fluidic instabilities. Specifically, we use a 3D printer
extruding threads of molten glass [23] with a large offset, thereby inducing buckling in the thread
that subsequently yields the fabrication of coiled patterns. A predictive model of the pattern
formation associated with the deposition of the thread allows us to program the instability in
order to freely fabricate structures in molten glass, which are collected after they have cooled
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Figure 1. Experimental set-up. (a) Schematic view of the 3D printer, which comprises (1) the crucible kiln, (2) crucible, (3) xy-
motion stage, (4) the nozzle, (5) nozzle kiln, (6) annealing kiln, (7) ceramic build plate and z-axis motion. (b) Thread of initial
radius a0 falling from a distance H onto the print plate. The thread accelerates under the action of gravity so that its radius
decreases during the fall and buckles under its own weight. The coiling motion is characterized by the radius Rc and frequency
Ωc. (c) Dynamic viscosity,μ, of the glass thread plotted as a function of temperature as prescribed in equation (2.1), using data
from [23]. (Online version in colour.)

down (figure 1a,b). In stark contrast with the earlier evoked industrial processes, most of the
features characterizing the final product—including its characteristic size and shape—do not arise
from applied constraints, such as a cast. Rather, they are conveyed by the instability, turning this
technique into an avenue for freeform fabrication. Specifically, these patterns, whose size exceeds
the native resolution of the printer, may be seen as building blocks subsequently assembled into
larger structures.

2. A molten glass 3D printer

(a) Set-up
The glass printer shown in figure 1a consists of three main heating zones: the crucible kiln that
holds the molten glass feedstock (1050◦C), the nozzle kiln that heats the nozzle the glass flows
through (1010◦C) and the annealing kiln that prevents the printed object from cooling too quickly
and cracking (500◦C). A three-axis computer numeric control (CNC) motion stage is married
to the thermal system forming the 3D printer. The motion, precise control of the print height,
position and speed of the print head are driven by custom-generated G-code and fed into the
stepper motors [23]. For standard operation of the printer, the nozzle is programmed to extrude
from one layer height (typically 10 mm) above the previous layer, but for the coiling experiments
mentioned in this paper the nozzle is instead spaced at a relatively large offset of 100 mm.
By increasing the offset of the printer, its operation could be transformed from traditional 3D
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Figure 2. Themoltenglass sewingmachine. (a) Thenozzle is advectedhorizontally at speedVn. Instead of the expected straight
line, the system generates a variety of patterns; (b) translated coils and (c) alternated loops andmeanders. Scale bars are 5 mm
in length in (b) and (c). (Online version in colour.)

printing [23] to controlled coil deposition, as discussed in the remainder of this article. For our
glass source, we used commercial soda-lime glass (System 96 R© Studio NuggetsTM, Spectrum R©
Glass Company, Inc., Woodinville, WA, USA). This specific composition is designed for artistic
glass-blowing purposes, and thus possesses relatively low softening and annealing points and
behaves as a long glass (i.e. it has a wide working temperature window). Nonetheless, the
glass dynamic viscosity, μ, strongly depends on temperature, as shown in figure 1c, using the
Volger–Fulcher–Tammann model:

logμ(Pa s) = −2.47 + 3964.8/(T(◦C) − 241.5), (2.1)

where T denotes the temperature (see [23] for details).
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(b) The patterns
In a typical experiment, the value of the offset H—denoting the distance between the nozzle and
the print plate—is kept constant, H � 100 mm. The nozzle is translated horizontally, progressively
mapping the printing surface in the xy-plane at constant speed Vn. Shown in figure 2a is the
system after one row has been completed and the nozzle is initiating a second row. Here, we
have dxn(t)/dt = Vn and yb(t) = C, where (xn, yn) are the coordinates denoting the position of the
nozzle and C is a constant that is augmented incrementally after the completion of each row in
such a way as to avoid overlap between patterns from adjacent rows. The value of Vn is chosen
such that the nozzle is outrun by the terminal speed of the thread right before impact, Uc, i.e. the
speed at which glass arrives on the print plate is greater than that of the nozzle lateral motion
(see §3). Following [18], we classify patterns using the ratio Vn/Uc < 1. We report the existence of
three regimes:

— For relatively small advection speeds (0<Vn/Uc � 0.4), we observe the formation of
loops, as evident in figure 2b. The spacing between adjacent loops is an increasing
function of Vn/Uc, such that for Vn = 0 the spacing is effectively zero (figure 1b) and
is maximal for Vn/Uc � 0.4. For instance, in figure 2b the nozzle speed incrementally
decreases from top to bottom while all other parameters are left constant. As evident
from the figure, the distance separating adjacent loops diminishes accordingly.

— For intermediate cases (0.4 � Vn/Uc � 0.6), we report the formation of tighter loops that
appear alternately on one side of the plate and then the other. In figure 2c, we show a
photograph of these alternating-loop patterns in glass.

— Finally, for speeds Vn approaching Uc (0.6 � Vn/Uc � 1), those loops open out into
meanders (figure 2c). Their amplitude is a function of Vn: the closer Vn gets to Uc, the
smaller the meanders, such that in the limit—where Vn = Uc—we expect meanders to
vanish, and the pattern to be straight [13,15]. The straight pattern has not been observed
in our experiments, as it is beyond the available speed range of the nozzle.

— We note that for values of Vn/Uc � 0.7, i.e. at the transition between meanders and
alternating loops, another pattern has been observed. Small loops form only on one side
and are connected by a wavy branch (similar to the alternating-loop pattern but without
the alternation). Consistent with previous studies, we found that this pattern did not
occur often [14,18].

All the aforementioned patterns and their order of appearance are consistent with what is
observed in both viscous and elastic cases [19–21]. This robustness suggests the existence of a
common explanation for the formation of these patterns, which was recently given in [18,21] and
is detailed in the following section so that it may be adapted to molten glass.

3. Pattern design

(a) Geometrical model
We derive a set of equations for the deposition of a thread—represented by its centreline—as it
falls from a nozzle translated linearly at speed Vn, and impinges a motionless, flat, solid surface
placed at a given distance from the nozzle. The speed at which the thread reaches the plate is
denoted Uc >Vn. We consider heights of fall small enough so that inertia can be omitted in the
problem [18]. Following [18], we assume that Uc is independent of the speed of the nozzle and
is thus equal to the coiling speed (i.e. for Vn = 0). As a consequence, the path followed by the
contact point between thread and plate, r(t), is directly related to the curvature of the lower end
of the thread, κ . In figure 3a, we illustrate the behaviour of the end of the thread, which locally
acts as a hoop spinning on a table (dashed line aligned to the thread centreline). However, unlike
a regular hoop, this virtual hoop has an adaptive curvature κ . Specifically, this radius of curvature
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Figure 3. (a) Sketch of the heel-like structure of the thread in the vicinity of the printing plate. Its shape is approximated by a
fraction of a circle with radius 1/κ . (b) Kinematics of the problem describing the position of the contact point, r, and pattern, q,
forming at speedUc while being advected at speed Vn. t and r′, respectively, denote the tangent to the pattern in the laboratory
frame and the tangent to the fictitious trajectory of the contact point in the frame of the nozzle. (c) The thread’s curvature κ is
assumed to be a function of r andφ. Shown here is dependence inφ for r = Rc. (d) Integration of the reducedmodel (3.5) with
Vn = 0 for (i) r(0)= 1,φ(0)= π/2, (ii) r(0)= 0.5,φ(0)= π/2 and (iii) r(0)= 1.2,φ(0)= 3π/4 displaying the stability
of the base solution (i). (e) Result of the integration of equation (3.5), where Vn is a piecewise function of time as indicated in
the legend. Coils, alternated loops and meanders are recovered. (Online version in colour.)

changes depending on where the thread impinges the plate and its orientation. In the quasi-static
regime that we explore, κ is a function of the two state variables of the system: (i) the distance
r separating O—the vertical projection of the nozzle on the plate—from the contact point, r; and
(ii) the direction followed by the thread as monitored by the angle φ between the polar direction
r and the tangent to the pattern t (figure 3b). The curvature κ is a priori unknown, aside from the
reference case, Vn = 0, for which κ = 1/Rc, where Rc denotes the radius of coiling [10], i.e. the
radius of the circular trajectory followed by the thread in figure 1b. When Vn �= 0, κ departs from
this reference value in such a way as to collapse to a function of (r,φ) as demonstrated in [18]
in the limit of vanishing inertia. Here, we propose an ansatz for κ with separate variables that
captures the essence of the function obtained in [18] while being relatively simpler:

κ(r,φ) = r
Rc

sin

(
π

√
|φ|
π

φ

|φ|

)
sin

(
π√

2

)−1
, (3.1)

where Rc is the coiling radius of the thread, that is the adequate length scale of the problem [18]. In
figure 3c, we illustrate the angular dependence of (3.1) as we plot κ(Rc,φ). Note that for symmetry
reasons κ must be odd with respect to φ, such that we enforce κ(r, 0) = 0 and add absolute values
to best account for negative values of φ. The expression of the curvature in equation (3.1) is
tailored such that the system acts in a way analogous to a ‘spring’ with equilibrium position
r = Rc, φ = π/2. We thus have κ(Rc,π/2) = R−1

c , which describes a circle of radius Rc, in reality
corresponding to the coils reported in figure 1b for Vn = 0. This base solution of the problem
is shown in dimensionless units in figure 3d(i) and—by design—is stable for, and relevant to,
a variety of perturbations when Vn = 0, i.e before the symmetry of the problem is broken by
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advection of the nozzle. This stabilizing effect, in particular enforced by the square root embedded
in the sine in (3.1), is evident in figure 3c and is exemplified in figure 3d. Outgoing trajectories lead
to increased curvatures such that the path returns to a circle (figure 3d(ii)). Conversely, converging
trajectories have the opposite effect and lead to a decrease of the value of κ , in turn acting so that
the system returns to its circular base solution (figure 3d(iii)). Note that trajectories in figure 3d
are drawn at speed Uc, which is the speed at which the thread falls on the printing plate, yielding
|ṙ| = Uc, where a dot denotes a derivative with respect to time. This equation is the result of the
no-slip boundary condition on the plate when Vn = 0, and generalizes to

Uct = ṙ − Vnex, (3.2)

when Vn �= 0.
The pattern q(s, t) represents the position on the printing plate, at time t, of the point of arc-

length s. We implicitly define s as the Lagrangian coordinate, such that s = Uct�, where t� is the
time at which the material point s impinges the plate at position r(s). In the frame of the nozzle,
this material point, s, is then advected at velocity Vnex so that its position q(s, t) at time t is

q(s, t) = r(s) + Vn

(
t − s

Uc

)
ex, (3.3)

where the prefactor t − s/Uc denotes the time interval between the current time t and the impact
time t� = s/Uc ≤ t. Differentiating equation (3.3) with respect to s and taking its value at s = Uct,
we find

t(s) = ∂q
∂s

∣∣∣∣
s=Uct

= r′(s) − Vn

Uc
ex, (3.4)

thereby showing that ṙ = Ucr′, when substituting equation (3.4) in equation (3.2). Since the tangent
r′ is unitary, we recover that the contact point moves at speed Uc, consistent with our definition
of s = Uct.

We now project equation (3.4) in the polar basis (er, eψ ) depicted in figure 3b, and use the
relations θ =ψ + φ and θ ′(s) = κ to obtain a system of three first-order differential equations:

r′ = cosφ + Vn

Uc
cosψ , (3.5a)

rψ ′ = sinφ − Vn

Uc
sinψ (3.5b)

and φ′ + ψ ′ = κ(r,φ), (3.5c)

where κ is the function defined in equation (3.1). Integrated with an appropriate set of initial
conditions (e.g. r = Rc, φ = π/2 and ψ = 0), the system (3.5) yields the patterns reported in
figure 3e, for which Vn is the piecewise function depicted in the inset. Aside from short transient
regimes, the patterns are found to be fully determined by the value of the ratio Vn/Uc, a result
that we now take advantage of in practical settings.

(b) Methodology
Our model (3.5) conveys the idea that geometry and kinematics play a central role in pattern
formation and in the subsequent morphology. Specifically, we have observed that the nature of
the pattern is, in our model, solely determined by the scalar ratio Vn/Uc. This result has practical
implications that are discussed next.

In the experiment, the parameter Vn is directly set by the operator, so the only unknown in
the problem is effectively Uc. This value can be determined analytically for a Newtonian fluid in
steady coiling [10,24,25] or numerically [26] when Vn �= 0. Yet, both methods require knowledge of
the fluid’s constitutive equations, its Newtonian viscosity, at each point of the thread. In our case,
these local physical properties are a priori unknown, as they result from the thermal coupling
between the thread and the surrounding, cooler, environment. Coupling solutions to the fluid
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with a nozzle of radius a0 = 5 mm, height of fall H = 100 mm and nozzle speed Vn = [9, 8, 7, 6] mm s−1 from top to bottom
serves as a background of the image. It is compared with the numerical results obtained by integrating equation (3.5) using the
values Rc = 6.8 mm,Ωc = 2π/1.62 s−1, so that Uc � 26 mm s−1, and the value of Vn corresponding to each row. The dotted
line represents the centreline as predicted by theory, and the transparent orange lines are the result of reconstruction obtained
giving adequate thickness to this line in order to best fit the pattern. The scale bar is 5 mm in length. (Online version in colour.)

problem as in [26] to the thermal problem is possible but cumbersome, notably owing to the large
temperature gradients in the set-up evident in figure 1b. The jet glows next to the nozzle, but this
light progressively vanishes along the falling jet. As a consequence, we expect the viscosity to
greatly vary, as evident in figure 1c.

Instead, we propose to determine Uc experimentally, such that it is benchmarked for a given
height of fall in coiling conditions (i.e. Vn = 0). For best accuracy we measure the coiling radius
Rc and coiling frequency Ωc, and then use the relation Uc = RcΩc. Such a measurement is easy to
implement prior to fabricating patterns, and allows us to accurately determine the time and space
scales of the system, which are then used to adjust the nozzle speed accordingly. It is the geometric
nature of pattern formation that allows us to ‘screen out’ the fluidic and thermic components
of the problem. Specifically, the boundary layer at the bottom of the thread, responsible for the
pattern formation, does not act on Uc: all the patterns are ‘stitched’ at the same velocity [18].

In figure 4, we show the results obtained in our experiments in the case of a thread extruded
from a nozzle with a radius a0 = 5 mm and falling from a height H = 100 mm. Using images
similar to that reported in figure 1b, we determine—once and for all—that Rc = 6.8 mm and Ωc =
2π/1.62 s−1t, so that the terminal speed of the filament is Uc � 26 mm s−1. Using the results of our
geometric model, we determine the range of nozzle speeds Vn to form coils (typically Vn � 0.4Uc).
In figure 4, we show photographs of the glass patterns obtained for Vn = [9, 8, 7, 6] mm s−1 and
compare them with the results of the geometrical model in equation (3.5) integrated without
adjustable parameters. We identify an agreement between model and experiments, thereby
validating the approximations made to derive the model: (i) the quasi-static approximation and
geometrical construction (3.5), (ii) the ansatz (3.1), and (iii) the use of a single value for Uc—
determined for Vn = 0—throughout a range of values of Vn �= 0. Similar results are obtained for
meanders and alternating loops (not shown here). Note, however, that our geometrical model,
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(a) (b)

Figure 5. Coiling patterns as building blocks. (a) Photograph of an experiment illustrating the structure progressively formed
as the nozzle follows a circular printing path. (b) Computerized X-ray tomograph scan of the final structure. Each loop is roughly
15 mm in size. (Image credit: James Weaver.) (Online version in colour.)

thus far, solely accounts for the centreline of the thread. Reverting this dimensional reduction, so
as to restore a finite thickness in the thread, requires an additional step. This step may be achieved
by direct measurement of the thread radius at impact, ac, or else using mass conservation, yielding
ac =√

Q/πUc, where Q is the flow rate of the system.
Our geometrical model, coupled to the aforementioned method, may therefore be used to tune

the parameters of the experiment, Vn or H, in order to ‘program’ the thread and drive its buckling
instability in a controlled and constructive way. We note the contrast between the simplicity of
the nozzle’s motion, simply translated at constant speed in the x-direction, and the complexity of
the print, which presents features in both the x- and y-directions. This richness is the sole result
of the fluidic instability that, in fact, shapes matter through geometrical nonlinearities, thereby
offering an avenue for patterning complex media, such as glass, in a controlled and tunable way. Here, the
coiling instability is used as an instability-assisted design tool, which can be taken advantage of
towards the assembly of larger structures.

4. Patterns as building blocks
In this section, we show how coils and other related patterns may be used as building blocks
towards the fabrication of larger structures.

Using the settings provided in §3b, we print a piece by moving the nozzle along a circular
trajectory with a relatively large radius R = 50 mm 	 Rc. Upon completion of a circle, the printing
plate is lowered to account for the filament thickness, and another circle is made. In figure 5a,
we show a photograph of the experiment, where the circular path followed by the nozzle is
evident. In figure 5b, we provide a computerized tomography scan of the resulting structure,
which appears as if the glass threads have been ‘woven’ into a wicker basket. Further, this
metaphor becomes instrumental, since each layer presents bonds with adjacent layers, resulting
in overall strong mechanical cohesion. We note that those bonds—as well as their distribution—
are irregular. This is attributed to the fact that, as a coil forms, it crosses its own path, effectively
resulting in the formation of a bump. As a result of this effective roughness, only a fraction of
the thread contacts the neighbouring layers. This result contrasts with conventional prints, where
a single thread follows the exact path of the nozzle, and where each layer fully bonds with the
previous and following layers, strongly stiffening the resulting structure [23]. However, the latter
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is more exposed to catastrophic fracture than the former: in its ‘woven’ configurations, we expect
that a mechanical load large enough to damage the structure will lead to a series of small cracks
distributed in the wall, as opposed to a single catastrophic fracture crossing the entire structure.

5. Discussion
We have demonstrated the use of a fluidic instability to fabricate systematic patterns in complex
media. Specifically, we have shown that coiling-like instability can be harnessed in molten glass
as a viable route for fabricating uniformly sized structures. The pattern’s morphological features
and physical characteristics may be tailored using a single scalar parameter—the nozzle advection
speed—when all other parameters remain constant.

The predictive nature of the model proposed is enhanced by the geometrical nature of coiling
instability. In the context of this research, the physical properties of the fluid are relevant merely to
determine the velocity scale of the system, Uc, denoting the speed at which coils would naturally
form when impacting a flat motionless surface. Results achieved are valid within the limit where
inertia is negligible, a condition restricted to relatively small heights of fall [10]. Moving to larger
heights of fall would broaden the range of accessible patterns [11,13]; however, this development
will be made at the expense of the applicability of our model. In such a regime, we expect a
coupling between (i) the region near the plate, where patterns are formed, accounted for in our
model, and (ii) the vibration modes of the upper section of the flow, where the thread stretches.
Incorporating this coupling in our reduced model will be the subject of future work.

In this work, inertia is irrelevant while geometry drives pattern formation. Given this, one
would expect that coiling, meandering and alternating-loop patterns would form in settings
whose typical size is significantly smaller than those explored and included within this paper
(and to some extent in low-Reynolds-number microfluidic settings [27,28]).

This is indeed the case—as shown in [29,30], where coils with approximate radius of 50 µm
have been obtained via coiling with the goal of fabricating microstructures featuring sacrificial
bonds. This avenue of research—inspired by natural materials constructed in a hierarchical
manner—could benefit from the predictive nature of our model, which, in fine, permits the
fabrication of regularly sized structures in complex media and their assembly without the
need for external assistance. Such salutary features may be taken advantage of in the additive
manufacturing of cellular structures [31]. In this context, glass—as a chemically inert, optically
transparent, mechanically strong material—has great potential for future applications ranging
from design and architecture to the digital fabrication of bio-compatible and even bio-augmented
scaffolds. Finally, coiling is demonstrated as a method to rapidly fabricate and assemble tailored
structures at a scale exceeding the native resolution of the printer.
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