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Charged colloidal dispersions make up the basis of a
broad range of industrial and commercial products,
from paints to coatings and additives in cosmetics.
During drying, an initially liquid dispersion of
such particles is slowly concentrated into a solid,
displaying a range of mechanical instabilities in
response to highly variable internal pressures. Here
we summarize the current appreciation of this
process by pairing an advection-diffusion model
of particle motion with a Poisson–Boltzmann cell
model of inter-particle interactions, to predict the
concentration gradients in a drying colloidal film. We
then test these predictions with osmotic compression
experiments on colloidal silica, and small-angle X-ray
scattering experiments on silica dispersions drying
in Hele–Shaw cells. Finally, we use the details of the
microscopic physics at play in these dispersions
to explore how two macroscopic mechanical
instabilities—shear-banding and fracture—can be
controlled.

This article is part of the themed issue ‘Patterning
through instabilities in complex media: theory and
applications’.

1. Introduction
The solidification of a drying colloidal dispersion has
similarities with sedimentation [1], filtration [2] and
the freezing [3] of multiphase fluids, as well as the
solidification of polymer solutions [4,5]. A mass and
momentum balance for all phases is necessary to describe
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Figure 1. Large-scale mechanical instabilities in dried colloidal materials can include (a) radial and spiral cracks in a blood
droplet, (b) shear bands (diagonal features) and cracks (near-vertical lines) in a paint film, highlighted by viewing under crossed
polarizers and (c) the guiding of cracks in a calcium carbonate paste, that had been pretreated by a brief rotational flow (see
e.g. [21–23]). Image (a) courtesy of W. Turner and D. Fairhurst and (c) courtesy of A. Nakahara.

the compression of the dispersed particles by a flow towards the solidification, or drying,
front. The essential ideas behind models of this kind can be traced back to Kynch’s theory of
sedimentation [6], or to Biot’s theory of poroelasticity [7]. The former treats the evolution of a
two-phase mixture with liquid-like properties, while the latter deals with flows and deformations
in a mixture with solid-like properties. In recent years, more general models have evolved that
can smoothly transition between these two limiting behaviours [2,8–10].

The above class of models focus on essentially mean field, or continuum, approximations of
the behaviour of an enormous number of small interacting colloidal particles. For example, in a
50 µl drop of a typical dispersion with 100 nm particles at a 10% volume fraction, there are about
1 trillion particles, more than twice the number of stars in the Milky Way. This is a comfortably
large number for such approximations, yet a number of observations have shown additional
effects that go well beyond the capacity of these models: the formation of crystals with rate-
dependent structures [11,12], or which show fractionation and multiple-phase coexistence [13];
crystalline domains with grain boundaries that can influence flow patterns [14]; birefringence
and structural anisotropy [15–17]; plasticity during fracture [18]; and shear banding [19,20].
Some of these responses are shown in figure 1. They largely involve the onset of solid-like
properties, such as a yield stress or shear modulus, as a colloidal material concentrates during
drying.

Here we will explore how well a continuum model of drying colloidal dispersions agrees with
the behaviour of colloidal silica dispersions. These dispersions allow for a great range of colloidal
interactions to be explored by varying the size of their constituent particles, and the chemistry of
the dispersing fluid. We begin by outlining a force and mass balance model, which describes the
general behaviour of a drying front. This model is completed by a Poisson–Boltzmann cell (PBC)
model of inter-particle interactions, which estimates the osmotic pressure of a dispersion under
different conditions. These paired models are then tested by X-ray scattering experiments that
reveal the structure of drying dispersions. Finally, to relate this to the general theme of this special
issue, patterning through instabilities in complex media, we show how some of the more complex
aspects of colloidal interactions can be used to control the shear-banding and fracture instabilities.

2. Theory of a one-dimensional drying front
We will outline here a mean-field theory of how a colloidal dispersion, such as paint, should
behave when it dries under simple conditions that allow for a one-dimensional flow. This is how
a dispersion would behave in a Hele–Shaw cell (e.g. [17,24–28]) or capillary tube [29,30] that
is drying from one end. Similar models have been developed for the slightly different case of
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Figure 2. We model the directional solidification of a drying colloidal dispersion, in one dimension. The colloidal dispersion
enters from a reservoir on the far left, at some volume fraction φ = φ0 and evaporation occurs at the far right at a rate Ė.
A solid deposit grows in from the drying edge at a velocity w. Near the liquid–solid transition the particles slow down, from
an initial velocity vs = Ė to zero, and concentrate until they reach a final volume fraction φf . This results in a thin transition
region, governed by a balance between advection and diffusion, where the properties of the dispersion change rapidly. This
drying front grows into the cell, at velocityw, along with the solid deposit.

evaporation in a microfluidic microreactor, such as the designs of Salmon and co-workers [14,31,
32]. The model is also compatible with the drying of polymers, such as in [4,5], if the cell model
of §2b is replaced by an appropriate polymer equation of state.

(a) Model of a moving liquid–solid transition
We consider a colloidal dispersion that is drying in a Hele–Shaw cell, as sketched in figure 2. The
cell has a regular (usually rectangular) cross-section and two ends. Evaporation occurs at a rate
(volume flux per unit area) Ė at one end, while the other end is fed by a reservoir of colloidal
dispersion, with some initial volume fraction φ = φ0. The dispersion flows slowly through the
cell, from one end to the other, along a direction x. While the liquid phase can evaporate from the
drying end, the solid colloidal particles must remain behind and will accumulate there. Over time
they will build up a porous solid deposit with final volume fraction φ = φf, that will grow back
into the cell at some velocity w.

Within the cell one can distinguish between the velocity of the colloidal particles, vs, the
velocity of the dispersant liquid, vl, and a bulk velocity v̄ = φvs + (1 − φ)vl. Here, all velocities
are averaged over the cross section of the cell. This thus neglects any effects of gravity, such as
sedimentation-driven instabilities near the solidification front [33]. If there are no material losses
in the cell, then the total flux everywhere must balance the drying rate at the edge, v̄ = Ė. Far
from the solidification front both the particles and the liquid will travel together at this speed.
The mean velocity, vs, and volume fraction, φ, of the particles can evolve, however. In particular,
they will slow and concentrate as they approach the solidification front. During this process a
mass balance on the solid phase requires that

∂φ

∂t
+ ∂

∂x
(φvs) = 0. (2.1)

We want to know how the evolution of vs and φ near the solidification front depends on the
properties of the dispersion. To do so, we now use a momentum balance to find an expression for
the solid volume flux φvs.

As the particles slow down the fluid phase must speed up, to keep the total flux across the cell
constant. The flow of water past the particles will cause drag, and transfer momentum from the
fluid phase to the dispersed phase. The pressure of a small parcel of dispersion, containing both
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solid and liquid, can be decomposed as

P = p +Π , (2.2)

where P is the total, or thermodynamic, pressure; p is the pressure of the fluid phase, as would
be measured by a manometer through a dialysis membrane that blocks the particles [8,10]; and
Π is the osmotic pressure of the dispersed charged particles. Starting from the viewpoint of a
compliant solid, the equivalent poroelastic balance between a total (or effective) stress σ , a stress
borne by the network of particles, σ̃ , and the fluid (or pore) pressure, p, can be expressed in tensor
notation as

σij = −pδij + σ̃ij, (2.3)

where δij is the Kroneker delta function, and the sign difference is due to the different conventions
of positive stress versus pressure.

Since there are no external forces on the dispersion, nor any body forces (we are neglecting
gravity), momentum balance can be expressed as ∇P = 0, or ∇ · σ = 0. Considering only a one-
dimensional flow along the x-direction, this momentum balance implies that the osmotic pressure
of a fluid-like dispersion will vary according to

∂Π

∂x
= −∂p

∂x
= nFd, (2.4)

where n is the number density of particles (i.e. for spheres of radius a, n = 3φ/4πa3), and Fd is the
average drag force per particle.

For an isolated spherical particle of radius a moving at a relative speed vs − v̄ with respect to
a surrounding fluid of viscosity μ0 and average velocity v̄, the drag force felt by the particle is
the Stokes drag −6πμ0a(vs − v̄). In a dense dispersion, the hydrodynamic interactions between
nearby particles will increase this drag by the factor r(φ), known variously as the hindered
settling coefficient [34] or the sedimentation factor [35] (or a mobility, f = 1/r, is sometimes used
[8–10]). For rigid spheres, the semi-empirical expression r = (1 − φ)−6.55 has been suggested [9,35],
and we will adopt this here. Colloidal interactions can be included by introducing an equation
of state Π = nkTZ, where the compressibility factor Z(φ) depends on the interaction potential
between particles (e.g., for an ideal gas Z = 1), and kT is the Boltzmann energy (we use T = 293 K
throughout this paper). By combing these definitions, equation (2.4) becomes

kT
∂

∂x
(Zn) = −6πμ0a(vs − v̄)rn. (2.5)

Now, by introducing the Stokes–Einstein diffusivity, D0 = kT/6πμ0a, which is the diffusion
constant of a single isolated spherical particle, and by using the chain rule, one can obtain the
expected flux of particles past any point as

φvs = φv̄ −
(

D0

r(φ)
∂φZ
∂φ

)
∂φ

∂x
. (2.6)

Here, the two terms on the right-hand side of the equation correspond to the advective flux along
the cell, and the diffusive flux down any concentration gradients, respectively. The latter can be
simplified by collecting all the inter-particle interactions into a dimensionless diffusivity

D̃(φ) = 1
r(φ)

∂φZ
∂φ

, (2.7)

such that

φvs = φv̄ − D0D̃
∂φ

∂x
. (2.8)

In other words, for any concentration (or collective) diffusivity D, the dimensionless diffusivity
D̃ = D/D0.
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Introducing the above particle flux into the mass balance of equation (2.1), one obtains the
usual (e.g. [8,9,17,27]) advection–diffusion model of colloidal transport,

∂φ

∂t
+ ∂

∂x

(
φv̄ − D0D̃

∂φ

∂x

)
= 0. (2.9)

Here, given a model for D̃, developed in the next section, we look for a steady-state solution
that describes the jump in concentration associated with the liquid–solid transition, in a reference
frame that is co-moving with the drying front. If the front is growing into the cell at a fixed velocity
w, then the transformation x′ = x − wt introduces an additional advection term, giving

∂φ

∂t
+ ∂

∂x′

(
φ(v̄ − w) − D0D̃

∂φ

∂x′

)
= 0. (2.10)

If we seek a steady-state solution, then the term inside the spatial derivative of equation (2.10)
must be a constant. In the reservoir (i.e. in the limit of x′ → −∞), we have the boundary condition
φ = φ0, allowing one to write down a simple first-order equation describing the evolution of the
volume fraction across the liquid–solid transition,

∂φ

∂x
= (v̄ − w)(φ − φ0)

D0D̃
= (φ − φ0)

LD̃
, (2.11)

where L = D0/(v − w) sets the natural length-scale of the front, and the effects of all particle
interactions are contained in D̃. To solve this we choose some arbitrary value for φ at the origin,
typically 0.3, and use Matlab’s nonlinear ODE solver to numerically integrate equation (2.11)
in both directions. Such solutions will form the basis of comparison to experiments in §3.
Performing the same transformation directly on the mass balance of equation (2.1), and looking
for the co-moving steady-state solution, then allows us to simultaneously solve for the particle
velocity via

vs

v̄ − w
= φ0

φ
− φ0

φf
. (2.12)

Finally, it is interesting to note that much of the above discussion can also be applied when the
dispersion is concentrated to the point of behaving as a porous solid [8,10]. In this context, the
compressibility factor Z can be related to the relevant bulk modulus of the collective assembly, or
network, of particles by

K = φ

(
∂Π

∂φ

)
T,N,p

= nkT
∂φZ
∂φ

, (2.13)

where the derivative is taken at a constant temperature T and number N of particles, and fluid
pressure p. In poroelasticity this is often referred to as the drained bulk modulus [10], as its
definition allows for exchange of water molecules with some reservoir (as through a dialysis
sack). A second elastic modulus, such as a shear modulus or Poisson’s ratio is, however, required
to complete any mechanical description of a solid. We are not aware of any model that attempts
to predict such additional moduli in the context of colloidal materials.

(b) Osmotic pressure and the Poisson–Boltzman cell model
To evaluate the advection–diffusion model described above we need its equation of state, which
takes the form of an expression for the osmotic pressure, Π (φ), or compressibility factor Z(φ).
When charged particles are dispersed in an electrolyte solution they affect the distribution of
ions in the solution. The osmotic pressure of the dispersion can include contributions from the
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hard-sphere interactions of the particles (Πs), and from the deformation of the clouds of ions
around each particle, as the particles are concentrated (Πq). We thus assume a function of the
form

Π =Πs +Πq = nkT(Zs + Zq). (2.14)

Of course, additional contributions to the osmotic pressure could also be considered. The models
presented in [36,37] discuss how to add an attractive van der Waals term toΠ , for example, before
neglecting it as only relevant for very small particle separations.

For the entropic term, we use the Carnahan & Starling [38] equation of state for hard spheres,

Zs = 1 + φ + φ2 − φ3

(1 − φ)3 . (2.15)

Although there are known to be observable deviations from this at high volume fractions (φ �
0.55 [9]), we do not wish to introduce a divergence in Z at close packing [37,39] or random close-
packing [9,27] such as are included in other approximations of the hard-sphere equation of state.
Rather, as in [40], for a slowly increasing φ we would expect van der Waals attraction to cause
irreversible aggregation, before any such divergence would be physically relevant.

To describe the electrostatic contribution to the equation of state, we evaluate the effective
pair-potential between nearby particles through the PBC model [41–44], which solves the fully
nonlinear Poisson–Boltzmann equation on electrically neutral domains around each particle.
This model divides the total volume of a small parcel of dispersion up equally between all the
particles within it, assigning a spherical ‘cell’ of radius R = a/φ1/3 to each particle, as sketched in
figure 3a. In other words, each particle lives in its own neutrally charged sphere, which shrinks
as the volume fraction increases. Inside any cell one solves the Poisson–Boltzmann equation that
describes the interactions of an equilibrium distribution of ions and the electric field that they
generate. Generally, this takes the form [35]

εε0∇2ψ = −e
N∑

i=1

zini0 e−eziψ/kT, (2.16)

where ε0 is the permittivity of free space, ε is the dielectric constant of the fluid, ψ is the
electrostatic potential field, e is the fundamental charge, kT is the thermal energy and zi is the
relative charge of chemical species i with some background number density ni0 (defined by
the electrolyte concentration when ψ = 0).

We consider a monovalent electrolyte of equilibrium concentration n0. For a colloidal
dispersion that has been dialysed, this will be the concentration of the electrolyte in a solution
that is in Donnan equilibrium with the dispersion across the dialysis membrane [42,43]. For a
monovalent electrolyte, equation (2.16) simplifies to

∇2ϕ = κ2 sinhϕ, (2.17)

where

ϕ = eψ
kT

(2.18)

is the reduced electrostatic potential, and κ−1 is the Debye length defined through

κ2 = 2e2n0

εε0kT
. (2.19)

The distributions of positive (+) and negative (−) ions in the cell can then be given by n± = n0 e∓ϕ ,
and a typical ion distribution is shown in figure 3b.

As boundary conditions for equation (2.17), Gauss’ Law is used to equate the electric flux out
of a sphere to the charge contained within it. Since the total cell is charge-neutral, this means that
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Figure 3. Poisson–Boltzmann cell model. (a) An electrically neutral spherical cell is constructed around each charged particle.
(b)Within this cell, the equilibriumdistribution of ions is shown for the example case of colloidal silicawith radius a= 8 nmand
surface charge density σ = 0.5 e nm−2 at volume fraction φ = 0.05 in equilibrium with a monovalent salt of concentration
n0 = 5 mM. The ionic concentrations at the outer surface of the cell are related to the osmotic pressure of the dispersion.
(c) These colloidal interactions will typically increase the effective diffusivity of the particles, D/D0, above that of hard spheres
(black curve, Zq = 0). Peaking from left to right are shown the cases for (red) a= 8 nm, σ = 0.5 e nm−2 and n0 = 5 mM,
(green) a= 99 nm,σ = 0.033 e nm−2 and n0 = 1 mM and (blue) a= 99 nm,σ = 0.033 e nm−2 and n0 = 5 mM.

∂ϕ/∂r = 0 at r = R. The surface of the particle is charged, with a surface charge density σ . This
gives ∂ϕ/∂r = −4πLBσ at r = a, where LB = e2/4πεε0kT is the Bjerrum length (0.7 nm in water at
room temperature).

We are interested in the osmotic pressure of the dispersion. In equilibrium, this pressure must
be constant throughout the cell, and is easily calculated at the outer surface of the cell, where the
electric field vanishes. The osmotic pressure is then simply the difference between the chemical
potential of the ions there and in an electrically neutral solution of ions at concentration n0 [36,41,
44]. In other words,

Πq

kT
= (n+(R) − n0) + (n−(R) − n0) = n0(e−ϕ(R) + eϕ(R) − 2). (2.20)

The time scale at which this equilibrium is established within a cell is fast (a characteristic time of
R2/D ∼ 1 µs for salt ions around our particles) compared with those of drying or dialysis, which
occur over hours to days, and so the internal distribution of ions can always be taken to be fully
equilibrated.

The materials to which we will apply these models are noticeably polydisperse (with a size
polydispersity of 10–20% [13,45]). Variations of the PBC model do exist to deal with bidisperse
populations of particles [46,47], but applying them to a truly polydisperse system would require
extending such methods to simultaneously solve for many subpopulations of particles, with
different radii but the same osmotic pressure. While the contributions of polydispersity to mean-
field properties like osmotic pressure should remain a second-order effect, we note that they have
recently been shown to significantly alter the appearance of colloidal crystals [13], and so should
still be considered with a degree of caution.

The PBC model, as described above, has been used to model the osmotic pressure of a range of
colloidal materials, including colloidal polystyrene [36,48] and silica [13,44,49] under a variety of
conditions. It can also be used to estimate the effective pair-potential of the particles, predicting
an effective (or renormalized) surface charge, surface potential and Debye length [41,43]. We
implemented the PBC model in Matlab, and checked the code against results in [42,44], which it
was able to reproduce. The osmotic pressures from it were then used to calculate the concentration
diffusivity of a dispersion via equation (2.7), given its bare surface charge density σ , radius a and
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the equilibrium salt concentration n0. Some typical predictions of D(φ) are shown in figure 3c, and
the code underlying the cell model is provided as the electronic supplementary material.

3. Drying fronts observed by X-ray scattering
Small angle X-ray scattering (SAXS) was used to observe the drying fronts in colloidal silica of
different particle sizes and salt concentrations. Our primary aim was to evaluate the accuracy
of the combined advection–diffusion and PBC models in describing the concentration gradients
across the drying front, and to identify when additional effects were important. Additionally, the
sample preparation for these experiments allowed us to make precise tests of the PBC method of
predicting the osmotic pressure of strongly charged colloidal particles.

(a) Material and methods
Aqueous dispersions of colloidal silica (Ludox SM 30, HS 40 and TM 50, Sigma-Aldrich) were
passed through a 5 µm teflon filter, and then cleaned by dialysis for 2 days against an aqueous
solution of NaCl (concentrations between 0.5 and 50 mM) and NaOH (0.1 mM, to bring the
measured pH to 10). The washed dispersions were then compressed by the osmotic stress method,
as detailed in [44,49]. Briefly, the concentration was slowly raised by the addition of polyethylene
glycol (PEG 35000, Sigma-Aldrich) to the bath on the outside of the dialysis sack, while keeping
the NaCl and NaOH concentrations there fixed. This solution was changed every 2 days, for a
period of at least 6 days. The polymer could not pass through the dialysis sack (molecular cut-
off 14 kDa), and so created a pressure difference that was balanced when the osmotic pressure
of the colloidal dispersion in the sack reached an equilibrium concentration. After dialysis the
volume fraction of each dispersion was determined through weighing a small sample before, and
after, drying at 120◦C in an oven overnight. For this calculation, we assume a silica density of
2200 ± 50 kg m−3 [13,50,51].

We note that even at the highest salt concentrations reported, these dispersions were stable—an
additional range of HS 40 dispersions with up to 100 mM NaCl showed no signs of aggregation,
over several months of observations (by contrast, a dispersion at 150 mM NaCl slowly became
slightly cloudy during this time).

Hele–Shaw cells were constructed out of two 26 × 52 mm2 mica sheets, 35–50 µm thick, as
sketched in figure 4. A pair of 0.3 mm thick plastic spacers, wrapped in Teflon tape, were placed
between the mica sheets, along the long edges of each cell. This created a space of about 1 cm
wide, and 5 cm long, which was open on both short ends. These cells were clipped together, filled
approximately half-full of dispersion, and then left to dry for approximately 8 h. During this time
one open end was raised slightly to allow the dispersion to settle to the other side, from which
evaporation proceeded at a rate Ė. The large air-gap to the other edge rendered negligible any
evaporation from the other open side of the cell. Time-lapse images were then taken of the cells as
they dried at intervals of 10 min, and the evaporation rate was measured by tracking the velocity
v̄ of the retreating meniscus in the cell, on the assumption that v̄ = Ė. The velocity at which the
solid phase grew back into the cell, w, was also directly measured through the image sequence. In
all cases, the relative speed of the particles with respect to the drying front, v̄ − w, was between
0.36 and 0.58 µm s−1, with an estimated error on each measurement of about 10%.

After about 8 h of drying, the cells were raised vertically and placed in the path of an X-ray
beam. The SAXS experiments were performed with beamline ID02 at the European Synchrotron
Radiation Facility at an energy of 12.4 keV, using detector distances of 2.5 and 10 m. An elliptical
beam was used, characterized by a full-width half-maximum of intensity of 50–70 µm in the
vertical direction and 250–400 µm in the horizontal. As in [17], the structure of the colloidal
dispersions near the liquid–solid transition was characterized by moving the sample vertically
across the path of the beam, in periodic steps of between 60 and 200 µm. Typically, 50–100 spectra
were collected along each scan line, over a period of about 5 min.
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Figure4. Small-angle X-ray scattering (SAXS) sample geometry. (a) Dispersionswere prepared by drying in narrowHele–Shaw
cells. One end of the cell was raised by a few millimetres, to allow the dispersion (cloudy intermediate region) to drain to the
other edge,where evaporation occurred. A solid deposit (clear, right-hand side) then slowly grew in from this edge. After several
hours cells were raised vertically, and SAXS spectra were collected at a series of scan points along themidline of the cell. (b) The
sample geometry is idealized as a receding meniscus moving at a velocity v̄= Ė, to balance evaporation at rate Ė from one
end, and a solid deposit growing in the opposite direction at velocityw.

(b) Results
In preparation for our scattering experiments, we dialysed about a hundred samples of colloidal
silica against standard solutions of PEG. This provided dispersions with a range of particle
sizes, salt concentrations and solid volume fractions. For each sample, the osmotic pressure was
determined from the equation of state for PEG given in [49], as in [13,44,49]. Then, the PBC
model was used to predict the corresponding osmotic pressures, by equations (2.14), (2.15) and
(2.20). For this calculation, a bare surface charge density of 0.5 e nm−2 was assumed, based on
titration [44,52,53]. This bare charge density reflects the ionization of surface silanol groups at
the particle surfaces, and should be particle size independent (e.g. see [53] for a comprehensive
review of silica sol surface chemistry). By contrast, we note that the PBC model can also be used
to calculate an effective surface charge [43], which will vary with particle size, volume fraction and
salt concentration (e.g. see [13] for the relevant calculations for HS 40).

The results of our osmotic compression tests, shown in figure 5 and tabulated in the electronic
supplementary material, demonstrate the excellent agreement of the PBC model with the
experimental equation of state of the colloids at low-to-intermediate salt concentrations, and
intermediate colloid concentrations (when dispersions still behave rheologically as a liquid). For
example, for 0.5 mM NaCl the PBC model accurately predicts the osmotic pressure of all three
types of dispersions to within 15%, with no free parameters. Agreement becomes less good
for higher salt concentrations, however, until the PBC model systematically under-predicts the
osmotic pressure of HS 40 at 50 mM NaCl by about a factor of 2, in the range of concentrations
studied.

It has been previously shown [54] that many-body effects and the limiting assumption of a
spherical geometry mean that the PBC model will start to significantly under-predict the osmotic
pressure of strongly charged colloidal dispersions, like ours, when κa(φ−1/3 − 1) ≥ 3. This limit
is indeed reached for a = 8 nm at 50 mM salt, at volume fractions of about 0.3. This, in turn,
suggests that the discrepancies between experiment and model at high salt concentrations could
be accounted for with a more sophisticated (and hence numerically expensive) many-body model
of interacting colloidal particles. Nevertheless, given the complexity of the interactions between
the densely packed, highly charged colloidal particles, the observed level of agreement is still
quite satisfying.

Five samples were used for drying experiments in Hele–Shaw cells, where we extracted
volume fraction profiles from series of X-ray spectra collected across the drying fronts. These
cells contained dispersions of the three types of colloidal silica with either 0.5 or 5 mM NaCl,
and initial volume fractions of about 0.2. The resulting spectra were analysed as in [17], which
focused on the onset of anisotropy and birefringence in a similar experiment. Briefly, as shown
in figure 6, from each spectrum we measured the position of the main scattering peak of the
structure factor (obtained by dividing the scattering intensity by a form factor of dilute particles)
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Figure 6. Scattering spectra (a,b) were collected from locations across the liquid–solid transition of dispersions drying in
Hele–Shaw cells. From each two-dimensional spectrum we extracted the scattering intensity along the x- and y-directions by
azimuthally averaging over arcs±5◦ to the respective axis. For low volume fractions (a) the dispersions all behave as liquids,
with no anisotropy between the x and y directions. After some critical volume fraction (here, about φ = 0.38), the structure
factors along the two directions begin to differ: the particles start to pack closer together along the x-axis than in the other
directions. (c) From the structure factors we find the q-values corresponding to the maximum of the primary scattering peak
along the x- (qx ) and y- (qy) directions, from which we calculate the volume fractionφ and strain γ .

in two orientations: qx parallel to the flow through the channel, and qy perpendicular to it. For
the third direction, we assume that qz = qy, as the dispersion is being compressed only along the
x-axis (n.b. this assumption was tested in [17]). From these results, we then calculated the volume
fraction

φ = c(qxq2
y), (3.1)

and a deviatoric strain

γ = 2
3

(
qx

qy
− 1

)
, (3.2)

as derived in [17]. In equation (3.1) the constant of proportionality, c, was found for each type of
dispersion by measuring the position, qp, of the main scattering peak in each of the calibration
samples that were used in the osmotic stress test, and fitting them to φ = cq3

p, as in [55]. The
volume fraction tracks the volumetric strain (or compression) of the system as it dries, while γ
characterizes any volume-preserving, but shape-changing strains, such as can result from shears.
For a liquid-like response one expects that γ = 0, as qx = qy.
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Figure 7. The liquid–solid transitionwas observed in the drying of five different dispersions, with various particle sizes and salt
concentrations. The solid volume fraction slowly increases from the left to the right of each graph, as the particles are packed
closer and closer to each other. Distances are rescaled by the advection–diffusion length L= D0/(v̄ − w), to highlight the
effects of charge on stretching out the transition region (for non-interacting particles, the transition should occur over a length
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results of themodel calculations are shown as solid curves, assuming a surface charge densityσ = 0.5 e nm−2. All figure data
are provided as the electronic supplementary material.

Figure 7 shows the results of these experiments, matched with the corresponding model
predictions. All data, including the unscaled observations, are provided in the electronic
supplementary material. For the experimental data, the origin of the x-axis was arbitrarily centred
where φ = 0.3. In the model, the initial volume fraction φ0 was taken to be the smallest recorded
experimental φ, and the origin of the x-axis was positioned by hand such that the model drying
curves coincided with the data as well as possible. Otherwise, there were no free parameters in the
model, which uses the same particle properties as in figure 5; in other words, the salt concentration
and particle size are set by the corresponding experimental dispersion, and we assume a particle
surface charge of σ = 0.5 e nm−2.

In both experiment and model, the particle volume fraction rises characteristically as one
crosses the liquid–solid transition. There is then a kink in the experimental compression curves
after the particles aggregate [17,55], followed by a much more gradual compression of the solid
phase in response to the large capillary pressures that occur there. Qualitatively, these trends
match the type of compression curves that have been seen in other drying droplets of complex
fluids [4,14,17,27,28,55,56]. Additionally, the drying dispersions all become anisotropic (i.e. qx 
=
qy) after some critical volume fraction between φ = 0.33 (for the TM 50 at 0.5 mM) and 0.47 (for
the SM 30). As in [17] the deviatoric strain then rapidly accumulates in the dispersion, reaching a
maximum of about 0.1 by the end of the liquid–solid transition. This strain then decreases slightly
in the solid region, as cracks form to release the total stress in the film.

In all our experiments, the transition from a liquid-like dispersion to an aggregated solid
film extends over about 1–2 mm in real space. Rescaled by the advection–diffusion length,
L = D0/(v̄ − w), we can observe exactly how inter-particle interactions affect this compression of
the dispersion during drying. Point-like particles, behaving like an ideal gas, would lead to a
relatively sharp drying front where φ − φ0 ∼ ex/L. The high charge of the silica particles causes
strong electrostatic interactions, which increases the width of the solid–liquid transition by a
factor of about 10 above the non-interacting case. In particular, the fronts remain surprisingly
well fit by a simple exponential increase in concentration, but where the exponential behaviour
ranges from a characteristic length of 6.6l for the smaller SM 30 to 15.6 l for the larger
TM 50. This effect is captured by the advection–diffusion model, but the model somewhat
overestimates the width of the front in all cases; this is particularly apparent for the TM 50
dispersions.
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Figure 8. Measured and predicted dimensionless diffusivities for colloidal silica in Ludox (a) SM 30, (b) HS 40 and (c) TM 50, at
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is an artefact of numerical differentiation of slowly varying data. Arrows show the first volume fraction where the deviatoric
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modified hard-sphere compressibility factor ZP from Peppin et al. [9], which diverges at random close packing. Figure data are
provided in the electronic supplementary material.

To look more carefully at the physics of the liquid–solid transition, we took a numerical
derivative of the data in figure 7, and used equation (2.11) to estimate the dimensionless
diffusivity D̃ from each experiment. The results of this process are shown in figure 8, and can
also be compared to observations of D̃ for Ludox AS 40, published recently in [56]. Generally,
for both experiment and model, the larger the charged particle, the more the effective diffusivity
is enhanced by the inter-particle interactions. For the SM 30 and HS 40 dispersions, the model
diffusivity agrees reasonably well with the experimental data at intermediate volume fractions,
namely in the range from 0.2 to 0.4. Above this they differ noticeably: the model predicts a
decreasing diffusivity, approaching that of hard spheres (see also figure 3), whereas the data turn
distinctly upwards. For TM 50, the model and experiment substantially disagree, although the
observed diffusivity shows the same trends as the other experiments, increasing quickly at high
φ. These differences could suggest additional, or non-DLVO, interactions.

The modified Carnahan–Starling equation proposed by Peppin, Elliot and Worster ([9, eqn 17]
matched asymptotic solution between Carnahan–Starling at low φ and molecular dynamics
simulations at high φ) does also turn back upwards at large volume fractions, and in fact diverges
near random close packing (φ = 0.64). However, if this compressibility factor, ZP, is used in place
of equation (2.15), there is no noticeable difference in the response below about φ = 0.60, as
demonstrated by the dashed line in figure 8a. It cannot account for the observed increase in the
effective diffusivity of the colloidal particles in the range of φ = 0.4 to 0.6.

Instead, the increase in the collective diffusivity of the particles appears to be associated with
the onset of a macroscopic yield stress of the dispersions. In figure 8, we also indicate the volume
fractions corresponding to the first detection of structural anisotropy in our dispersions (i.e. the
first values of φ where γ is noticeably non-zero, in figure 7). These concentrations mark the
point where the dispersions acquire both a yield stress and a finite shear modulus, and where
the individual particles will start being caged by strong interactions with their neighbours. The
unexpected increase in D̃ occurs at, or shortly after, the particles start to behave together as a
weak, soft solid.

4. Patterns and instabilities driven by drying fronts
The previous sections have explored first a simple theoretical description of a drying front in
a colloidal dispersion, then an experimental investigation of such fronts via X-ray scattering
techniques. We showed that a force and mass balance allowed us to predict how a colloidal
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Figure 9. Shear bands in a colloidal film can be visualized by (a) polarizationmicroscopy of the film between crossed polarizers
and a half-wavelength filter. (b) Under these conditions, and white light illumination, the film will appear purple when the
optic axis is aligned with the initial polarizer. Birefringence is visible by colour changes. As shown here, clockwise rotation of
the optic axis shifts the colour to blue, while counterclockwise to red. In either case, the resulting lighter shades can be seen
highlighting the black shear bands. (c) The addition of salt to the dispersion reduces the intensity of these colour variations, i.e.
the total shear felt across the shear bands. In some cases, for very high salt concentrations, additional fainter shear bands can
be seen between the main lines. Scale bars are 200µm.

dispersion is compressed along one axis as it dries, and how this compression affects the state
of the dispersion. Here we will attempt to make connections between these results and the
macroscopic mechanical instabilities that accompany drying, namely the appearance of shear
bands and cracks in a drying colloidal film. In particular, we will show that the magnitude of
shear relieved by the shear bands is controlled by the total amount of strain accumulated across
the liquid–solid transition, and that the anisotropy caused by the transition can also control the
paths of any subsequent cracks that form.

(a) Control of shear bands
Dried colloidal films frequently show regular bands or strips, arranged in a chevron pattern, as in
figure 9. Although such features have often been noticed (e.g. [17,57,58]), they have only recently
been shown to be shear bands [19,20], and they form at ±45◦ to the direction of drying. Here we
will show how the amount of slip (or the magnitude of the shear) accommodated by these bands is
controlled by the liquid–solid transition. In other words, we will demonstrate that the shear-band
instability can be manipulated through changes to the chemistry of a drying dispersion.

We explored shear bands in a Hele–Shaw geometry using silica dispersions; the experiments
are similar to those described in §3. The distortion around the bands can be visualized, and
quantified, by polarization microscopy, as in [19]. Briefly, dried drops or films of dispersions
are generally birefringent [15–17,19], as their material has been compressed along the direction
of flow, during drying [17]. The direction of compression defines, on average, the optic axis of
the film. Light with a polarization that is either parallel or perpendicular to this axis will pass
through the film unchanged—all other polarizations will be modified by the film. The shear bands
focus distortion into their immediate neighbourhood, and thus can locally reorient the optic axis,
rotating it one way or the other. If the sample is between crossed polarizers, this rotation is visible
as a change in the colour and/or intensity of transmitted light.

Of the types of colloidal silica used in this study, Levasil 30 (AkzoNobel; particle radius
a = 46 nm) has a particularly strong birefringence. As received, it is dispersed in a solution of
approximately 27 mM NaCl (measured by conductivity measurements of the supernatant liquid
after centrifugation; ions and approximate value confirmed by manufacturer). To test how salt
changes the shear bands, samples of this dispersion were diluted by mixing with equal volumes
of NaCl solutions of various concentrations. This resulted in dispersions with an initial particle
volume fraction of φ = 0.16 and electrolyte concentrations of 33–213 mM. These samples were
dried in 150 mm thick Hele–Shaw cells, built from 25 × 75 mm2 glass microscope slides and
plastic spacers, held together by clips. To each cell 175 µl of dispersion was added, which took
about a day to dry into a solid deposit about 15 mm thick, at ambient temperature (approx. 20◦C)
and relative humidity.
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Figure 10. Shear bands can reorient the anisotropy of a colloidal film and can be controlled by adding salt. (a) The pattern
of their distortion can be mapped by polarization microscopy, showing exactly how the bands localize shear strains. A sample
with 43.5 mM NaCl is shown here. (b) The (root-mean-squared) average changes induced by the bands were measured for
dispersions with various initial concentrations of NaCl. The average reorientations of the film (filled points) are proportional to
the total amount of uniaxial compression applied to the film, between the gelation and aggregation fronts, as predicted by a
DLVO calculation (black line).

The dried films were imaged in a polarizing microscope, between crossed polarizing filters
and a half-wavelength filter (first-order retardation plate), as sketched in figure 9a. In this set-up,
using white light, birefringence in the film appears as variations in colour (figure 9b,c). We noticed
that as the salt concentration of the dispersion was increased, the intensity of the colour variations
decreased; the films appeared more uniform in hue. Further, for high salt concentrations (approx.
100 mM), in addition to the main shear bands, many additional fainter shear bands could also
be seen, as in figure 9c. Finally, at salt concentrations of 143 mM and above, no bands were seen
(other than, occasionally, a few bands near boundaries).

To map the distortion caused by the shear bands we rotated the sample stage, collecting images
of each film at 10◦ intervals. The set-up was as described above, but in this case the light was
passed through a 533 nm filter, before the first polarizer. The resulting images were then digitally
counterrotated so that, by comparing an image series, we could measure the intensity I of the
transmitted light through any particular point in the film, as it was turned about an angle θ .
For the green light used, I(θ ) will be minimized when the optic axis is oriented along one of the
crossed polarizers. By fitting a sinusoidal variation in the light, I(θ ) = I0 sin2(2(θ + ψ)) + Ibkg, at
each pixel, we could measure the orientation ψ of the optic axis across the film, as shown in
figure 10a. The average shear that is taken up by the shear bands can thus be related to the root-
mean-squared average of the reorientation of the optic axis, or 〈|ψ |2〉1/2. As shown in figure 10b,
the average twist in the film slowly decreases from about 6◦ for the drying of dispersion at an
as-supplied salt concentration, to 2◦ at about 100 mM salt, just before the bands disappear.

If the shear bands form at the liquid–solid transition, then we can predict the amount of
shear available for the bands to release and compare it to what is observed. As described in
§2a, drag forces across this transition provide a compressive force on the colloidal dispersion,
which responds by increasing in volume fraction. Once the particles have formed a soft repulsive
solid, they can carry a shear stress or an anisotropic strain. To calculate the amount of shear strain
available to the shear bands, we assume that the dispersion is compressed uniaxially from the
critical volume fraction φc, where it first forms a soft solid (i.e. the first points in figure 7 where
γ > 0), to its final packing fraction φf. Since the material cannot expand in any other direction, the
compressive strain that is generated by this process is simply related to the volumetric strain,
εx = (φf − φc)/φc. This is equivalent to a shear strain of γ = εx/2 at ±45◦ to the direction of
compression—the directions along which the shear bands form. To determine γ , we thus need
to know the gelling concentration, φc, of the particles and its final φf.
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For the large Levasil silica particles, and generally for the high salt concentrations required
to control the shear banding instability, the osmotic compression experiments shown in figure 5
disagree with the PBC model used in the earlier sections of this paper. Thus we instead use here
a linearized DLVO pair potential of the colloidal silica particles at various salt concentrations and
volume fractions,

U = − Aa
12s

+ 8akT
LB

tanh2(ϕ0) e−κs, (4.1)

as in [17,19,35,40]. In equation (4.1) ϕ0, κ−1, and LB are the reduced surface electrostatic potential,
the Debye length and the Bjerrum length, as defined in §2b, while kT is the thermal energy,
a = 46 nm is the average radius of the particles, and A = 8 × 10−21J is the Hamaker constant
for silica [35]. The reduced surface potential ϕ0 is calculated as in [19,40], assuming a reduced
surface charge of 0.16 e nm−2 (which matches the zeta potential measurements in [59]). For various
colloids (silica and polystyrene) it was shown in [40] that the particles will gel into a soft repulsive
solid when U reaches a few times kT, while in [17] the structural anisotropy associated with
similar drying colloids was shown to begin at the same point. Finally, in [19] the presence of shear
bands in a dried film was shown to require a pair potential of approximately 5 kT, using the same
potential as equation (4.1). Using that approximation we then defined φc as the concentration
where the pair potential between two neighbouring particles reached 5 kT, and assumed that
φf = 0.64, or that the final aggregated state is one of random close-packed particles.

In figure 10b, we compare the accumulated shear strain γ following from this series
of approximations (and expressed as an engineering strain, in degrees), with the average
reorientation, φ, observed in dried Levasil films, for different salt concentrations. We fit γ to the
data by allowing for a single scaling factor in the magnitude of γ , of order one, and find that there
is good agreement between the strain that is generated across the liquid–solid transition and the
strain released by the formation of shear bands. The disappearance of the bands at higher salt
concentrations, as for the dispersions studied in [19], is also well captured by this model. In other
words, we found that the total distortion caused by the shear bands is simply proportional to the
total compression of the liquid–solid transition in the drying dispersion.

(b) Guiding cracks
As they dry, many colloidal dispersions also crack, due to capillary forces [60]. This is a concern for
coatings such as paints, and also presents a limit to the manufacture of photonic materials [61,62].
However, the control and guidance of cracks in thin films, for example in microfabrication
applications, has recently become a topic of some interest [63–66]. One can imagine such features
allowing for the directional control of the friction, conductivity or permeability of a surface
coating, for example.

For a drying colloidal film the direction of crack growth is usually noticed to be perpendicular
to the drying fronts (e.g. [24,25,40,57,67]), at least in simple geometries such as the flat liquid–solid
transitions sketched in figure 4. This involves growing from a region of high stress (near the edge
of the cell, where evaporation is occurring) to one of low stress (by the liquid–solid transition).
Fracture mechanics, however, requires that a growing crack tries to maximize the difference
between its local strain energy release rate and the cost of creating new crack surfaces (the critical
strain energy release rate) [68]. It is thus somewhat surprising that cracks are not more often
deflected back towards the edge of the drying layer, where the strain energies are highest. Here
we argue that, instead, cracks in dried colloidal materials are guided by the structural anisotropy
of the dried film, and hence the memory of the way in which they dried. If the packing of particles,
and particle–particle contacts, is direction-dependant, then the energy consumed in extending a
crack should also be direction-dependant. All else being equal, the crack will then preferentially
grow along the ‘easiest’ direction (i.e. where the critical strain energy release rate is smallest), just
as in crystalline materials a crack will often tend to grow along certain preferred crystal planes.

To demonstrate this we again dried Levasil 30 in Hele–Shaw cells. The appearance of cracks
in this dispersion is relatively delayed, and, in some cases, as shown in figure 11, will not take
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Figure 11. Guiding cracks in drying colloidal dispersions. (a) Colloidal silica (Levasil 30) is dried in a Hele–Shaw cell with a set of
small openings on the sides to allow evaporation. Subsequent images show how drying proceeds in 1-hour steps. The initially
liquid dispersion (milky off-white) dries into a darker solid deposit (translucent, on black background). The larger right-hand
panel shows how cracks, which appear at the end of drying, lie perpendicular to the superimposed drying profiles (black lines).
(b) The angle between a crack and the outward-pointing normal of the drying front profile,when it had been at that samepoint,
shows a distribution that is sharply peaked around 0◦ (mean of 463 measurements is 1 ± 1◦ and standard deviation 13 ± 1◦).
(c) Another experiment,where one side of the cell was sealed after 5 h. In this case the front positions are shown in 4-hour steps,
and one can see how the cracks bend to follow thememory of the drying. Videos of the drying process for both experiments are
provided in the electronic supplementary material.

place until the entire dispersion has fully solidified in the drying cell. By modifying the pattern of
evaporation during drying, we could thus guide the drying fronts in relatively arbitrary ways.
Here, as in the shear-band experiments above, we prepared cells from two glass microscope
slides (either 75 × 25 mm2 or 75 × 50 mm2). However, various arrangements of spacers and gaps
were made around the edges of the cells to allow for evaporation along different parts of the
cell perimeter. For example, in the experiment shown in figure 11a there are four small gaps of
5–10 mm along the sides of the cell, and both the top and the bottom of the cell have also been
left open. Changes to drying could also be made during an experiment by sealing any edge with
vacuum grease (Dow Corning silicon grease). At the start of any experiment aqueous dispersions
of Levasil 30 (as-received) were pipetted into the cells, which were initially inclined slightly to
allow the dispersion to settle to one side. After a solid layer of material had appeared around
the edges of the cell, they were then hung vertically, and time lapse photographs (typically taken
every 150 s) were taken of the drying process. The cells were refilled intermittently during drying
by pipetting additional dispersion into the top edge.

In each case we found that when cracks form, they are preferentially aligned with the direction
along which the dispersion had solidified. This was true for points throughout the film, even
if cracks appeared hours after that region had aggregated (figure 11a,b)) or if the drying front
had moved well on, and had subsequently changed shape (figure 11c). For one experiment,
figure 11a shows the drying cell at 1-hour intervals, with the position of the liquid–solid front
traced out in black. The final pattern of cracks, which occur after the entire film has solidified,
clearly reflects the pattern of drying, and in particular, the cracks are parallel to the direction of
compression of the material everywhere in the dry deposit. To confirm this effect quantitatively
we measured 463 intersections between cracks and the set of drying front profiles displayed in
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figure 11a, and determined the misalignment between the outward-pointing normal to the liquid–
solid transition at those points and the direction that a crack subsequently followed. As shown
in figure 11b, these two directions are, on average, very well aligned. Their difference is fit by a
simple Gaussian distribution with a mean of 1 ± 1◦ and a standard deviation of 13 ± 1◦. In other
words, the anisotropy in the film, formed in response to the drag forces of water flowing across
the liquid–solid transition region during drying, is generally found to share the same orientation
as the subsequent cracking. We suggest that the change in microstructure of the material changes
its fracture energy along different orientations, thus explaining the observed correlation.

The observations we describe here are similar to the memory effect studied by Nakahara and
co-workers (e.g. [21–23]), and which was shown in figure 1c. They showed how a wide variety of
cues, such as vibration, flow or standing Faraday waves, can be used to template crack patterns in
pastes and slurries. The common condition for all of their work is that the memory of some event
can influence later cracking in materials with a yield stress, by pre-conditioning the material with
an anisotropic pre-stress or strain. This memory effect appears to also hold true for dried colloidal
materials, and to reflect the yield-strain phase that the material temporarily passes through as it
changes from a liquid dispersion to a solid aggregated deposit.

5. Summary and conclusion
As they dry, colloidal materials can go through a series of mechanical instabilities including shear
band formation, wrinkling, buckling, cracking, delamination, etc. These responses are controlled
by forces that arise from microscopic interactions, between nearby particles and between particles
and the fluid that surrounds them. In order to be able to control these instabilities, one must first
understand these interactions, and how they scale up to cause a macroscopic effect.

We presented an advection–diffusion model of a drying colloidal dispersion in a regular
channel. This one-dimensional representation sought to test when a simple mean-field approach
to particle interactions was valid, and when additional details would need to be considered.
The model was fed by a PBC model of the electrostatic interactions between particles. This
was developed in such a way that it could predict the osmotic pressure and concentration (or
collective) diffusivity of a charged colloidal dispersion, and how that dispersion would behave
as it was dried. It had no free parameters, once the size and charge of the colloidal particles was
chosen, along with the salt concentration of the dispersant liquid.

The predictions of this pair of models were tested against observations of charged colloidal
silica nanoparticles, consisting of three different grades of Ludox dialysed against a variety of
salt solutions. We found that the PBC model accurately predicts the osmotic pressure of these
dispersions as they are slowly concentrated to intermediate volume fractions, but that some
discrepancies arose at higher salt concentrations (10–50 mM), where the model systematically
under-predicted the osmotic pressures of the dispersions.

Drying experiments were then conducted in Hele–Shaw cells, where SAXS techniques were
used to measure how the particle volume fraction changes across the liquid–solid transitions
of directionally drying colloidal dispersions. We found that the numerical model of the front
correctly captured much of the experimental detail, such as (i) the general shape of the drying
front, especially for the smaller particles, (ii) the fact that the concentration profiles across the
liquid–solid transition were stretched to be about an order of magnitude wider than would be
expected for particles with only hard-sphere interactions, and (iii) that this stretching of the front
was stronger for larger particles. However, many of the fine details of the concentration profiles
were missed. Most notably, when the drying profiles were used to infer an effective diffusivity
of the various dispersions, it was found that the colloidal particles showed a marked increase in
their collective diffusivity at intermediate-to-high volume fractions, where they were behaving
as a yield-stress material, like a paste or gel, rather than a simple fluid. This increase was not
captured by the model, and may represent non-DLVO interactions, or non-isotropic interactions.

As these colloids dry, they undergo a compression along the direction of drying. We explored
the macroscopic implications of these forces in the latter part of this paper, looking at shear
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bands and cracks. The shear bands release the uniaxial compression of the film by allowing
for slip at ±45◦ to the direction of compression. In particular, we showed that the amount of
slip accommodated by any of these bands was proportional to the total amount of deviatoric
strain that would have accumulated across the liquid–solid transition, had it not been relieved
by the shear bands. Both the appearance of shear bands, and the extent of their shear, can thus
be controlled by adjusting the chemistry of the starting dispersion before it dries. The cracks, in
turn, release strain energy by allowing the dispersion to shrink more as it dries. We demonstrated
that the appearance and paths of cracks could be guided by the structural anisotropy that the
liquid–solid transition leaves behind.
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