
Beyond Parrondo’s Paradox
Jian-Jun SHU & Qi-Wen WANG

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.

The Parrondo’s paradox is a counterintuitive phenomenon where individually-losing strategies can be
combined in producing a winning expectation. In this paper, the issues surrounding the Parrondo’s paradox
are investigated. The focus is lying on testifying whether the same paradoxical effect can be reproduced by
using a simple capital dependent game. The paradoxical effect generated by the Parrondo’s paradox can be
explained by placing all the parameters in one probability space. Based on this framework, it is able to
generate other possible paradoxical effects by manipulating the parameters in the probability space.

T
he Parrondo’s paradox describes the counterintuitive situation where combining two individually-losing
games could produce a winning expectation. The initial purpose of the Parrondo’s paradox was to simulate a
counterintuitive physical phenomenon generated by the flashing Brownian ratchet1 in terms of two gamb-

ling games2. Some studies were made to demonstrate the concept of the capital-dependent Parrondo’s paradox3,4,
to formulate the mathematical expressions of the Parrondo’s paradox5,6, and to extend the capital-dependent
Parrondo’s paradox to a history-dependent version7.

The Parrondo’s paradox has raised attention as it has tremendous potentials in describing the strategy of
turning two unfavorable situations into a favorable one. The concept has been scrutinized8,9 since its first
appearance and extended into other potential applications10–13.

In this paper, it begins with a short summarization of key concepts of the Parrondo’s paradox. It is further
ventured into the investigation on whether the analogous paradoxical effect can be reproduced by using a
relatively simple capital-dependent game as claimed before14. In reality, all the parameters that used in the
Parrondo’s paradox can be analyzed in a probability space, which reveals the working principle of the paradox.
Based upon this foundation, it is possible to generate other paradoxical effects by manipulating these parameters
inside the probability space. In the end, the issues associated with paradox are discussed.

There are totally two versions of the Parrondo’s paradox, which is referred to as capital- and history-dependent.
The Parrondo’s paradox consists of two games, namely, game A and game B. The only difference between these
two versions of paradox is lying on the corresponding switching mechanisms of game B. For both versions, game
A is exactly the same. It is a zero-order memoryless gambling game of winning probability of p1 and losing
probability of 1 2 p1. Game B is a condition-based game, also known as the second-order Markov game, which
consists of two scenarios – scenario 1 and scenario 2.

For the capital-dependent Parrondo’s paradox, choosing which scenario to be played merely depends upon
whether the instantaneous capital C(t) is a multiple of predefined integer M or not. If the capital C(t) is a multiple
of M (i.e. C(t) mod M 5 0), scenario 1 is chosen to be played, in which the winning probability p2 is much lower
than the losing probability 1 2 p2. If the capital C(t) is not a multiple of M (i.e. C(t) mod M ? 0), scenario 2 is
selected, in which the winning probability p3 is slightly higher than the losing probability 1 2 p3.

For the history-dependent Parrondo’s paradox, deciding which scenario to be played relies on the outcomes of
previous two games. As the outcome of each game is resulting in a win or loss, there are totally four different
combinations of results of previous two games: {lose, lose}, {lose, win}, {win, lose} and {win, win}. Therefore, there
are totally four different scenarios to be selected. Each scenario corresponds to one specific combination of results
of previous two games.

Three probabilities, p1, p2 and p3, are controlled by using one single biasing parameter e. The central idea is that,
by setting biasing parameter e . 0, both game A and game B are losing games (i.e. capital C(t) is decreasing with
the advancement of number t of games played) if played individually. The Parrondo’s games are illustrated in
Figure 1.

Based on the rules of games as specified in Figure 1 and by setting the value of biasing parameter e 5 0.005 and
predefined integer M 5 3, respectively, a simulation can be generated by averaging the outcomes of 10,000 trials
for each game, and totally 200 games are played, as shown in Figure 2.

Figure 2 reveals two essential information: for the capital-dependent Parrondo’s paradox, both game A (blue)
and game B (pink) are losing games if played individually; however, once these two games are played in a mixed
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manner, in which both game A and game B have equal chance to be
played (i.e. Probability(game A) 5 Probability(game B)), the result-
ant compound game (black) is a winning game.

Results
The counterintuitive phenomenon, which is generated by the com-
pound game, or randomly mixed game, of the capital-dependent
Parrondo’s paradox, can be analyzed by simply placing all the prob-
abilities in one single probability space15. Such a probability space, as
shown in Figure 3, consists of two elements: a straight line (red) and a
curve (black).

The curve is specified by the game rules of game B. In order to
make game B a fair game, the winning probability must equal to the

losing probability, that is, p2pM{1
3 ~ 1{p2

� �
1{p3

� �M{1
. In the

selected case of the capital-dependent Parrondo’s paradox, prede-
fined integer is selected to be M 5 3. Therefore, in order to make the
game B of the capital-dependent Parrondo’s paradox a fair game, the
probabilities of scenario 1 and scenario 2 of game B must satisfy
equation (1) as indicated below.

p2p2
3

1-p2

� �
1-p3

� �2
~1: ð1Þ

In addition, equation (1) can be modified by simply expressing the
winning probability of scenario 1, p2, in terms of the winning prob-
ability of scenario 2, p3. The resultant function is equation (2), which
is the curve (black) in Figure 3.

p2~
1{p3

� �2

1{p3

� �2
zp2

3

: ð2Þ

It divides the entire probability space into two separate regions: the
region above the curve is termed as winning region (grey) due to the
winning probability of game B is higher than the corresponding

losing probability, i.e., p2p2
3w 1{p2

� �
1{p3

� �2
; the region below

the curve is termed as losing region (yellow) due to the winning
probability of game B is lower than the corresponding losing prob-

ability, i.e., p2p2
3v 1{p2

� �
1{p3

� �2
.

In short, if the selected probabilities of game B, p2 and p3, are
falling into the winning region, game B is a winning game. On the
other hand, if the selected probabilities of game B, p2 and p3, are lying
inside the losing region, game B is a losing game.

Similarly, by setting probabilities p1 5 p2 5 p3, equation (1) can be
converted into equation (3) as stated below.

p3
1~ 1{p1

� �3
: ð3Þ

By solving equation (3), it returns with three solutions: one real

solution p1~
1

2
, and two imaginary solutions p1~

1

2
{

ffiffiffi
3
p

2
i and

p1~
1

2
z

ffiffiffi
3
p

2
i. The real solution implies the winning probabilities

equals to the losing probability of game A. Such a relationship can be
expressed in terms of a straight line (red) in the probability space, as
shown in Figure 3. The winning probability of game A, p1, is selected

along this straight line. If the winning probability of game A is p1v
1

2
,

the part of the straight line falls in the losing region and then game A
is a losing game. On the other hand, if the winning probability of

game A is larger than p1w
1

2
, the part of straight line falls into the

winning region and then game A is a winning game. If the winning

probability of game A is p1~
1

2
, the intersection point of the straight

line and the curve and then game A is a fair game.
As specified in the game rules of the original capital-dependent

Parrondo’s paradox, game A is a losing game. Therefore, the winning
probability p1 of game A is selected along the straight line (red) in the
losing region. In the original capital-dependent Parrondo’s paradox,
the winning probability of game A is p1 5 0.495. Game B is also a
losing game and therefore two winning probabilities of game B, p2

and p3, must be any single point, (p2, p3), located inside the losing
region. The selected probabilities of the original Parrondo’s paradox
are p2 5 0.095 and p3 5 0.745. Therefore, it is possible to plot these
two points, (p1, p1) 5 (0.495, 0.495) and (p2, p3) 5 (0.095, 0.745),
inside the probability space.

The compound game is formed as a convex linear combination of
two games, game A and game B, by introducing one additional
parameter, namely, mixing parameter, denoted by c. The parameter
c is defined as the probability of selecting game A. Analogous to the
game B of the capital-dependent Parrondo’s paradox, the compound
game is also a condition-based game. Suppose the capital C(t) is
divisible by M, the winning probability pc1 of compound game can
be expressed by equation (4).

pc1~c p1z 1{cð Þp2: ð4Þ
On the other hand, if the capital C(t) is not a multiple of M, the
winning probability pc2 of compound game can be expressed by
equation (5).

pc2~c p1z 1{cð Þp3: ð5Þ

As all these probabilities are fixed once they are selected, the only
method is to tweak the value of mixing parameter c. In order to make
the compound game a winning one, the selected mixing parameter
must satisfy equation (6), that is, the winning probabilities of com-
pound game is greater than the corresponding losing probabilities if
the predefined integer M 5 3.

Figure 1 | Parrondo’s games.
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pc1p2
c2

1{pc1

� �
1{pc2

� �2
w1: ð6Þ

Such a method can also be represented in the same probability space,
as shown in Figure 3, by linking these two points, (p1, p1) and (p2, p3),
using a straight connecting line (blue). It is able to observe there is a
certain region of the line falling inside the winning region. The prob-
abilities fall inside this region satisfy equation (6), which makes
compound game a winning one. By adjusting the value of mixing
parameter c, i.e., changing the location of the point along the straight
line, any selected points along this straight line falling into the win-
ning region are the keys in producing a winning expectation. In the
original capital-dependent Parrondo’s paradox, mixing parameter c

equals to
1

2
, which is the middle point of the straight line (blue). Such

a point is located inside the winning region. Therefore, the compound
game is a winning one.

Based upon the theoretical foundation, it is possible to construct
several alternative designs, which can be used to explain how

analogous paradoxical effect can be reproduced by simply manip-
ulating parameters in the probability space.

It is started by providing a relatively simple alternative design,
namely, the reversed Parrondo’s paradox, that is, two individual
winning games can also be combined in producing a losing
expectation.

The reversed Parrondo’s paradox is achieved by simply switching
the winning probabilities with its losing probabilities. Similarly, the
selected probabilities can be plotted inside the same probability
space, as shown in Figure 4.

In the case, both probabilities of game A and game B are falling

into the winning region. By setting the mixing parameter c to
1

2
, the

middle point (of connecting line) is falling into the losing region. In
the simple arrangement, it is to produce a totally reversed paradox-
ical effect.

The Parrondo’s paradox is a combination of two losing games in
producing one winning expectation. However, there are totally eight
different combinations of two winning and/or losing games, includ-
ing the Parrondo’s paradox, which are summarized in Table 1.

Figure 2 | Simulation of Parrondo’s paradox.
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Scheme #1 is the Parrondo’s paradox. Here the aim is to investigate
whether the remaining seven combinations, from scheme #2 to #8,
are capable of producing other possible paradoxical effects. In order
to preserve the consistence, the same value of biasing parameter e 5

0.005 and predefined integer M 5 3 is used for all simulations.
Analogous to the original version (scheme #1), a series of simulations
in Figure 5 are generated by averaging the outcomes of 10,000 trials
for each game, and totally 200 games are played.

Both schemes #4 (Figure 5(c)) and #5 (Figure 5(d)) are belonging
to trivial cases. In scheme #4 (Figure 5(c)), the winning probabilities,
p1, p2 and p3, are smaller than the corresponding losing probabilities,
1 2 p1, 1 2 p2 and 1 2 p3. Therefore, there is no doubt that both game

A and game B are losing games, and hence, the compound game is
also a losing game. The same situation occurs in scheme #5
(Figure 5(d)), both game A and game B are winning games. It is
intuitive to have the compound game a winning game. In short, these
two schemes, #4 and #5, are not producing any paradoxical effects.

Schemes #3 (Figure 5(b)) and #6 (Figure 5(e)) are also regarded as
trivial cases. In both schemes, game B is a complete either winning
(scheme #3) or losing (scheme #6) game in both scenarios – scenario 1
and scenario 2. The trend of compound game in each case is signifi-
cantly influenced by that of game B in both schemes. In both
schemes, #3 (Figure 5(b)) and #6 (Figure 5(e)), the instantaneous
capital C(t) at any number of games played is equal to half the sum

Figure 3 | Probability space of capital-dependent Parrondo’s paradox.

Figure 4 | Probability space of reversed Parrondo’s paradox.
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of game A and game B. The generated phenomenon in both schemes
is intuitive and, hence, they are not regarded as paradoxes.

On the other hand, schemes #2 (Figure 5(a)) and #7 (Figure 5(f))
produce relatively strong paradoxical effect. In scheme #2, game A is
slightly winning game, game B is a complete losing game. Intuitively,
the compound game should be a slightly losing game. However, as
shown in Figure 5(a), the compound game is definitely outperformed
game A, which results in a winning game. The identical situation also
occurs in scheme #7, the only difference is that playing the compound
game results in an obvious inferior position than game A alone.

Finally, the scheme #8 (Figure 5(g)) is a complete reverse
Parrondo’s paradox, which produces a very strong paradoxical effect.
In the original Parrondo’s paradox (scheme #1), both game A and
game B are losing games if played individually. The compound game
of game A and game B, however, produces a complete counterintui-
tive phenomenon, resulting in a winning game. Similarly, in scheme
#8, game A and game B are winning games if played individually. The
compound game, as shown in Figure 5(g), is capable of producing a
losing expectation.

Discussion
From the scrutiny of the Parrondo’s paradox8,9, there are several issues
surround the Parrondo’s paradox since its first appearance. Some of
these issues were responded by its initiators16. The objective of this
paper is to resolve the remaining issues associated with the Parrondo’s
paradox. It begins by focusing on testifying whether the identical para-
doxical effect can be simply reproduced by replacing a relatively simple
capital-dependent game as claimed before14, which also involves two
games – game A: player loses $2 if his capital C(t) is an odd number,
and loses $1 if C(t) is an even number; game B: the player gains $6 if
C(t) is an odd number, and loses $7 is C(t) is an even number.

At first glance, the proposed game seems to be plausible. In order
to verify whether the paradoxical effect could be generated by the
proposed simple capital-dependent game, a simulation is presented
in Figure 6. As indicated in Figure 6, game A is a losing game and the
compound game is a winning game. However, game B is a winning
game instead of a losing game as specified in the proposed game14.
Actually, the trick employed in game B is relatively simple – no
matter whether the starting capital for game B is an odd or even
number, the resultant capital is becoming and subsequently main-
taining as an odd number with the advancement of number of game
played. In order to demonstrate the idea, it begins the game by using
an odd number, for instance, $9, as starting capital for game B. With
the advancement of number of games played, the capital C(t)
becomes ‘‘9?15?21?27?33? � � �’’, resulting in a winning game.

If game B starts with an even-number starting capital, for instance,
$10, with the advancement of number of games played, the capital
C(t) becomes ‘‘10?3?9?15?21? � � �’’, which also results in a
winning game. Therefore, no matter the starting capital is an odd

Table 1 | Different combinations of two winning and/or losing
games

Scheme Game A Game B

#1 Lose Lose Scenario 1 Lose
Scenario 2 Win

#2 Win Lose Scenario 1 Lose
Scenario 2 Win

#3 Lose Win Scenario 1 Win
Scenario 2 Win

#4 Lose Lose Scenario 1 Lose
Scenario 2 Lose

#5 Win Win Scenario 1 Win
Scenario 2 Win

#6 Win Lose Scenario 1 Lose
Scenario 2 Lose

#7 Lose Win Scenario 1 Win
Scenario 2 Lose

#8 Win Win Scenario 1 Win
Scenario 2 Lose

Figure 5 | Game rule and simulation results.
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or even number, game B is always a winning game. There is no doubt
that playing game B alone offers higher returns than playing the
compound game, which is reflected in Figure 6.

The phenomenon generated by such a simple capital-dependent
game is much similar to that of scheme #3 (Figure 5(b)), which
should be treated as a trivial case. In other words, such an effect
cannot be treated as the paradoxical effect at all. Therefore, the
paradoxical effect cannot be simply created by replacing the ori-
ginal game with a primitive version. Unfortunately, the proposed

simple capital-dependent game14 is failed to reproduce the ana-
logous paradoxical effect. The Parrondo’s paradox is caused by
manipulating the probability distribution of individual losing
games to form a winning compound game17,18.

These eight different combinations of two winning and/or losing
games can be included into the same probability space, as shown in
Figure 7.

Due to the feature of point symmetry, the analysis can be simply
restricted to one side of the probability space, that is, schemes #1, #2,

Figure 6 | Simple capital-dependent game.

Figure 7 | Probability space containing all probabilities of eight combinations.
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#4 and #6, in which scheme #1 is the original capital-dependent
Parrondo’s paradox.

In scheme #2, game A is a winning game as its winning probability

is greater than
1

2
, and game B is a losing game, which is exactly the

same as that of scheme #1. In this case, the compound game is also a
winning game as the center point of the connecting line between
these two points is falling inside the winning region. In scheme #4,
game A is a losing game, which is the same as that of scheme #1, and
game B is also a losing game as the probabilities of both scenarios are
falling inside the losing region. There is no doubt that the compound
game is also a losing game. Finally, in scheme #6, game A is a winning
game as that of scheme #2, and game B is a strong losing game as that
of scheme #4. The resultant compound game is also a losing game.

Based on the one-sided analysis, it is able to determine the results
on the other side. The compound games of scheme #3 (reversed #6),
scheme #5 (reversed #4), scheme #7 (reversed #2), scheme #8 (reversed
#1) are winning, winning, losing and losing games, respectively. After
conducting a series of simulations (Figure 5), the results for various
schemes are summarized in Table 2. In summary, schemes #1 and #8
are able to produce very strong paradoxical effect. Schemes #2 and #7
are capable of producing relatively strong paradoxical effect. For the

remaining schemes, #3 to #6, are failed to generate any paradoxical
effects. These schemes can be regarded as trivial cases, labeled as
‘‘N/A’’.

Methods
Modified probability curve. It is able to observe the fact that the Parrondo’s paradox
can be reproduced as long as there exists a connecting line of two selected points of
probabilities across the curve boundary with two points located in the losing region
and the middle section of the connecting line falling in the winning region. Therefore,
it is possible to modify the probability curve based on this observation. The simplest
modification is done by changing the value of predefined integer number M 5 5.
After the modification, the resultant function becomes equation (7).

p2~
1{p3

� �4

1{p3

� �4
zp4

3

: ð7Þ

The modified probability curve (solid black line) and its original probability curve
(dash grey line) are shown in Figure 8.

Similarly, the curve divides the entire probability space into two regions, the
winning region (yellow-line shaded area) and losing region (grey-line shaded area).
The original and modified probability curves have one property in common, that is,
both of them are symmetric about the intersection point of curve boundary and
straight line that represents game A. Due to this specific property, the probability of
game A remains unchanged, that is, p1 5 0.495. On the opposite, the original prob-
abilities of game B, (p2, p3) 5 (0.095, 0.745), is no longer feasible as it is falling inside
the winning region. By adjusting the point to the new location, (p2, p3) 5 (0.095,
0.625), the paradoxical effect can be reproduced for this modified case. As shown in
Figure 8, the probability of game A is falling in the losing region as usual; the prob-
ability of game B is also falling inside the losing region. However, there is a certain
region of connecting line located in the winning region. By manually controlling the
location of compound game, i.e., modify the value of mixing parameter, the resultant
compound game can also be a winning game. Based on these data, and keeping the
remaining parameters unchanged, the simulation of this case can be produced as
shown in Figure 9.

Non-linear combination of two games. In previous cases, the compound game is
formed in terms of a convex linear combination of two individual games. In reality,
the combination of these two individual games, game A and game B, can also be non-
linear. In the following case, the concept of non-linear combination of two individual
games is demonstrated to be outperformed the original linear combination of two
games. The previous case, whereas predefined integer M 5 5, is used in this

Table 2 | Summary of results corresponding to different schemes

Scheme Description Paradoxical effect

#1 Lose 1 Lose 5 Win Very strong
#2 Win 1 Lose 5 Win Strong
#3 Lose 1 Win 5 Win N/A
#4 Lose 1 Lose 5 Lose N/A
#5 Win 1 Win 5 Win N/A
#6 Win 1 Lose 5 Lose N/A
#7 Lose 1 Win 5 Lose Strong
#8 Win 1 Win 5 Lose Very strong

Figure 8 | Probability space of original and modified Parrondo’s paradox.
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demonstration. All these three non-linear combinations together with the linear
combination are shown in Figure 10.

The original linear combination of two games is represented by a green solid line.
By introducing one mixing parameter c, it is possible to control the probability of the
compound game along the line (also mentioned in previous section). The non-linear
combinations of these two games are expressed in terms of dash lines in Figure 10.
The functions of these lines are determined based upon these two probability points.
Finally, only the middle points of these functions are selected as the probabilities of
the compound game.

The simulation is produced based upon the same parameters as previous case. Only
in this case, deciding which game to be played is no longer depending on the mixing
parameter c. Instead, two probabilities of compound game, pc1 and pc2, are firstly
determined. As both compound game and game B of the capital-dependent
Parrondo’s paradox are condition-based game, it is possible to directly employ the
probabilities of compound game under the paradigm of game B. As shown in
Figure 11, the similar paradoxical effects can be reproduced even the compound game
is formed in a way of non-linear combination. Furthermore, one additional intriguing
feature can be observed from the simulation result, that is, the capital is proportional

Figure 9 | Modified capital-dependent Parrondo’s paradox.

Figure 10 | Linear/non-linear combinations in probability space.
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to the distance between the selected probabilities of compound game and the curve
boundary.

Concluding remarks. The paper investigates whether the combinations of two
winning and/or losing games are capable of generating possible paradoxical effects. It
is shown that the identical paradoxical effect cannot be simply reproduced by
employing a relative simple capital-dependent game. In reality, the phenomenon
generated by the Parrondo’s paradox, can be explained by placing all probabilities in a
probability space. The paradoxical effect can be produced by either modifying the
probability boundary or arranging two winning and/or losing games in a way of
linear/non-linear combination.
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