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Cyanogenesis denotes a chemical defensive strategy where hydrogen
cyanide (HCN, hydrocyanic or prussic acid) is produced, stored, and
released toward an attacking enemy. The high toxicity and volatility
of HCN requires both chemical stabilization for storage and pre-
vention of accidental self-poisoning. The few known cyanogenic
animals are exclusively mandibulate arthropods (certain myriapods
and insects) that store HCN as cyanogenic glycosides, lipids, or
cyanohydrins. Here, we show that cyanogenesis has also evolved in
the speciose Chelicerata. The oribatid mite Oribatula tibialis uses the
cyanogenic aromatic ester mandelonitrile hexanoate (MNH) for HCN
storage, which degrades via two different pathways, both of which
release HCN. MNH is emitted from exocrine opisthonotal oil glands,
which are potent organs for chemical defense in most oribatid mites.

chemical defense | cyanogenesis | Oribatida | Oribatula tibialis | toxin

Chemical substances are of utmost importance in biotic in-
teractions among plants and their herbivores/pathogens as

well as among animals and their predators/parasites (1, 2). Many
of these semiochemicals are emitted for defense, and one of the
most deterring and toxic biogenic substances known is hydrogen
cyanide (HCN, also known as hydrocyanic or prussic acid). This
asphyxiant poison inhibits the cytochrome oxidase enzyme,
resulting in the inability of organisms to use oxygen (3).
Biosynthesis and liberation of HCN (known as cyanogenesis)

is widespread among plants, but in animals it is relatively rare.
Whereas the earliest reports of HCN in arthropods are from the
late 19th century (4), it was only in the early 1960s (5–8) that
comprehensive chemical ecology studies began to reveal cyano-
genesis as a defensive strategy of a few mandibulate arthropods,
including certain species of myriapods, beetles, true bugs, and
butterflies (2, 9–12). More recently, the genomic basis of cya-
nogenesis has been explored (13, 14).
The rarity of cyanogenesis in mandibulate arthropods (2) and

its supposed absence in the other speciose arthropod subphylum,
Chelicerata, may relate to the evolutionary challenge posed by
using a universal toxin in defense: self-poisoning must be prevented
by storing the highly volatile HCN as a safe carrier molecule or
storage molecule. In case of threat or attack, the cyanogenic com-
pounds are discharged and must be quickly degradable to release
HCN. Known HCN storage compounds of mandibulate arthro-
pods include aromatic or aliphatic glycosides, lipids, and cya-
nohydrins (e.g., mandelonitrile) (2, 12, 15).
Although no cyanogenic species has been known among Cheli-

cerata, chemical defense is widespread in the group, particularly
among arachnids such as whip scorpions (16, 17), harvestmen (18,
19), certain spiders (20), and mites (21, 22). Here, we demonstrate
cyanogenesis in a mite of the order Oribatida, a diverse and mostly
soil-dwelling group of decomposers that discharge myriad defense-
related semiochemicals from a pair of large exocrine opisthonotal
oil glands (22–28). The common and widespread species Oribatula
tibialis stores HCN as the natural product mandelonitrile hex-
anoate (MNH) and releases HCN upon disturbance via two
different chemical pathways.

Results and Discussion
Oil gland secretions of undisturbed O. tibialis contained
β-pinene, octanoyl hexanoate, MNH, and an unknown compound
of molecular weight Mr = 162 g/mol (Fig. 1A). Of these com-
pounds, only the aromatic ester MNH is involved in cyanogenesis.
After gentle mechanical disturbance, specimens of O. tibialis
showed a reduced amount of MNH and the presence of an ad-
ditional compound, not detected in undisturbed mites: benzoyl
cyanide (Fig. 1A). In intensely disturbed specimens, only traces of
MNH were measured, but equimolar amounts of benzoyl cyanide
and a mixture of benzoic acid and hexanoic acid were detected.
Direct contact with moisture resulted in hydrolysis of MNH to
hexanoic acid, benzaldehyde, and HCN (Fig. 1B).

Release of Hydrogen Cyanide by MNH Degradation. The detected
compounds indicate that HCN is released, and we propose the fol-
lowing two degradation pathways of mandelonitrile hexanoate (Fig. 2).
Pathway 1. Mechanical disturbance of O. tibialis results in the
active expulsion of oil gland contents, including MNH. MNH is
cleaved and catalytically oxidized to benzoyl cyanide and hex-
anoic acid on the mite’s body surface. These two products are
measurable quickly after disturbance in mite whole-body ex-
tracts, indicating rapid and spontaneous chemical reactions. The
mechanism of this breakdown is unknown, but it has been shown
that mites possess surface-associated enzymes that contribute
to previously unsuspected chemical reactions (29–31). Finally,
when exposed to water in the humid environment, benzoyl cya-
nide hydrolyzes to benzoic acid and HCN (32, 33).

Significance

Hydrogen cyanide (HCN) is highly volatile and among the most
toxic substances known, being lethal to humans at a dosage of
1–2 mg/kg body weight. HCN blocks the respiratory chain and
prevents aerobic organisms from using oxygen. In nature, HCN
is produced by numerous plants that store it mainly as glyco-
sides. Among animals, cyanogenesis is a defensive strategy
that has seemed restricted to a few mandibulate arthropods
(certain insects, millipedes, and centipedes), which evolved
ways to store HCN in the form of stable and less volatile mol-
ecules. We found an instance of cyanogenesis in the phyloge-
netically distant group Chelicerata (“spider-like” arthropods),
involving an aromatic ester for stable HCN storage and two
degradation pathways that release HCN.
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Pathway 2. A second breakdown reaction directly releases HCN
from MNH and is based on the hydrolysis of the ester bond in
MNH in the presence of moisture without oxidation. MNH is
spontaneously cleaved by an addition–elimination reaction
resulting in the release of HCN and the residual products
benzaldehyde and hexanoic acid. Compared with pathway 1 the
reaction is slower, but MNH is continuously hydrolyzed to HCN
and the byproducts (Fig. 1).
These results demonstrate that O. tibialis solved the problem

of storing and releasing HCN in a previously unknown manner,
using the natural cyanogenic compound MNH, which shows both
low volatility and high stability in the water-free chemical envi-
ronment of the oil gland reservoirs. The major constituents of
this ester are mandelonitrile and hexanoic acid. Mandelonitrile
(or its oxygenated form benzoyl cyanide) is probably derived
from the aromatic amino acid phenylalanine (34, 35), whereas
hexanoic acid is most probably synthesized de novo using acetyl–
CoA in a Claisen condensation (36, 37).

HCN in Predator Defense. The large oil glands, which represent the
major exocrine system in oribatid mites and which secrete MNH
in O. tibialis, are potent organs for chemical defense, thus playing
an important role in the structuring of feeding interactions
in soil food webs (24–26). As with arthropod defensive com-
pounds in general, most known oil gland secretions of oribatid
mites—mainly hydrocarbons, terpenes, aromatics, esters, and
alkaloids—are probably “class II compounds” (38); i.e., they ir-
ritate or repel potential predators without substantial harm
(22–28). By contrast, benzoyl cyanide and HCN are “class I

compounds” (38), true and harmful toxins (3, 6, 39, 40). The
amount of MNH produced by O. tibialis is about 1.0–1.5 ng
per individual mite (estimated by GC/MS), resulting in
0.1–0.15 ng HCN, if MNH is completely degraded (LD50, rat,
oral: 5 ng/mg (41)).
Because mites are highly derived chelicerates, and because

O. tibialis is a member of the highly derived oribatid mite family
Oribatulidae (42, 43), we believe cyanogenesis is a relatively recent
defense in Chelicerata. Considering its scattered phylogenetic
distribution, HCN-based chemical defense obviously evolved
multiple times in arthropods. Our findings highlight how conver-
gence on a simple, yet particularly effective, chemical defense has
taken different evolutionary pathways, leaving as footprints a di-
versity of storage compounds for this simple, well-known poison.

Materials and Methods
Adult specimens of Oribatula tibialis (Nicolet) were collected from moss and
litter taken from a mixed forest stand near Groß-Gerau, Hesse, Germany,
using a thermal-gradient extractor over 24 h (for further methods and
habitat characterization, see 44).

Oil glandexudateswere extractedby submersinggroups of 15–45 livingmites in
20–50 μL solvent (hexane or water), a well-established method to obtain oil gland
components (21, 28, 29, 45). After 3min the solvent was separated from themites.
The two extraction solvents related to tests of two potential defense reactions—in
water-free or humid conditions—and their corresponding MNH breakdown
pathways. (i) To simulate predator attacks, without aqueous saliva contact, mites
were mechanically stressed using a fine brush (equals slight disturbance) or
briefly shaken in an otherwise empty GC vial using a vortex mixer (equals
strong disturbance) before hexane extraction. (ii) To simulate a predator at-
tack with aqueous saliva contact, mites were submerged in water. As a control,
mites were directly immersed in hexane without mechanical stimulation.
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Fig. 1. GC/MS (A) chromatograms of oil gland secretions of Oribatula tibialis and HPLC (B) chromatograms of mandelonitrile hexanoate (MNH) hydrolysis. (A) Black:
profile of secretions from undisturbed mites; orange: profile of slightly disturbed mites (brush stimulus); green: profile of strongly disturbed mites (vortex mixer).
(B) Lilac: synthetic MNH; blue: in vitro hydrolysis of synthetic MNH; red: in vivo hydrolysis of natural MNH. Yellow bands highlight compounds involved in cyanogenesis.
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In addition, synthetic MNH (see below) was directly hydrolyzed in water as an
in vitro control (Fig. 1). Crude hexane sample aliquots (2–5 μL) were analyzed
with a GC/MS-QP2010 Ultra gas-chromatography mass-spectrometry system
(Shimadzu) equipped with a ZB-5MS column (Phenomenex) according to a
protocol given elsewhere (45). Electron ionization mass spectra were
recorded at 70 eV from m/z = 40–400. Crude aqueous extracts of the mites
(in vivo) and 1 μL synthetic MNH (in 50 μL water; in vitro) were further
hydrolyzed from 30 min up to 1 h. The breakdown of MNH was monitored
using an Agilent 1100 HPLC system (Agilent Technologies; Fig. 1). The sep-
aration of 20-μL sample aliquots was performed using an isocratic elution
with 40% phosphate-buffer (pH = 3.2) and 60% methanol:water mixture
(85:15; vol/vol) for 10 min with a flow rate of 1 mL/min, on a Discovery HS C18
(15 cm × 4 mm, 5 μm) column (Sigma-Aldrich), at 25 °C. Chromatograms were
recorded using a VWD-UV/VIS detector at λ = 245 nm (0–5 min) and at λ =
490 nm (5–10 min). Retention indices (46) and literature mass spectra (47, 48)
for GC, as well as authentic standards for GC and HPLC, were used for
compound identification.

Mandelonitrile hexanoate (MNH; IUPAC name is Cyano-(phenyl)-methyl
hexanoate) was synthesized from mandelonitrile (2-hydroxy–2-phenyl-
acetonitrile) and hexanoyl chloride by an Einhorn acylation (49): 1 g (0.9 mL,
7.5 mmol, 1 eq) mandelontrile was dissolved in 6 mL pyridine. Two grams
(4.2 mL, 15 mmol, 2 eq) hexanoyl chloride were added drop-wise while
stirring at 0 °C. After heating the mixture for 10 min to 50 °C under exclusion
of moisture (using a drying tube filled with anhydrous CaCl2), the reaction
was terminated with ice water. HCl was added, and the mixture was
extracted with hexane. The organic phase was washed three times with
saturated sodium bicarbonate solution and dried with sodium sulfate. Fi-
nally, hexane was removed under a nitrogen atmosphere, resulting in 1.2 g
crude, unpurified product (yield of ∼50%, containing hexane and carboxylic
acid derivatives as byproducts, calculated based on NMR data; see Figs. S3

and S4). This residual product was partly redissolved in hexane and stored at
‒28 °C until GC/MS or HPLC analyses and further experiments. For NMR
spectroscopy the product was redissolved in CDCl3 and measured directly
afterward. All chemicals used for synthesis were analytical GC/MS grade
(≥99.9%) purchased from Merck KGaA.

MNHwas characterized by combining electron ionizationmass spectrometry
(EI-MS; for conditions, see above) and NMR spectroscopy. NMR spectroscopy
was performed on a Bruker Avance DRX 500 spectrometer (Bruker Biospin). All
1H and 13C -NMR experiments were performed with standard conditions, using
CDCl3 as solvent. The chloroform signals were used as internal standard for
1H- (7.20 ppm) and 13C-NMR (77.20 ppm) spectra. The reliable assignment of all 1H
and 13C-signals was ascertained from 2D NMR measurements (13C-DEPT,
13C-HMBC und 13C-HSQC spectra). (Figs. S5 and S6) Raw data were processed
with the MestReNova vers. 8.0 software (Mestrelab Research).

Mass spectrometric investigation resulted in the following mass signals (and
their relative abundances): 231 (M+, 9), 133 (53), 117 (46), 116 (93), 115 (36), 105
(36), 99 (100), 89 (39), 71 (55), 43 (68). The linear retention index (46) was 1730.
The 1H and 13C NMR gave the following chemical shifts: 1H 500 MHz, CDCl3:
7.44 (2H, m), 7.38 (2H, m), 7.37 (1H, m), 6.36 (1H, s), 2.32 (2H, t), 1.58 (2H, quin),
1.22 (4H, m), 0.81 (3H, t); 13C 125 MHz, CDCl3: 171.9 (C), 132.1 (C), 130.4 (CH),
129.4 (2CH), 127.9 (2CH), 116.3 (C), 62.8 (CH), 33.8 (CH2), 31.2 (CH2), 24.5 (CH2),
22.3 (CH2), 14.0 (CH3). Detailed mass spectrometric data of natural and syn-
thetic MNH, as well as NMR data of synthetic MNH, are published as sup-
porting information (Figs. S1–S6). Synthetic MNH (equals in vitro) dissolved in
water for 30–60 min readily hydrolyzed to hexanoic acid, benzaldehyde, and
HCN (Fig. 1).
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