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Constitutive photomorphogenesis 9 (COP9) signalosome 5 (CSN5),
an isopeptidase that removes neural precursor cell-expressed,
developmentally down-regulated 8 (NEDD8) moieties from cullins
(thus termed “deNEDDylase”) and a subunit of the cullin-RING E3
ligase-regulating COP9 signalosome complex, attenuates proin-
flammatory NF-κB signaling. We previously showed that CSN5 is
up-regulated in human atherosclerotic arteries. Here, we investigated
the role of CSN5 in atherogenesis in vivo by using mice with myeloid-
specific Csn5 deletion. Genetic deletion of Csn5 in Apoe−/− mice mark-
edly exacerbated atherosclerotic lesion formation. This was broadly
observed in aortic root, arch, and total aorta of male mice, whereas
the effect was less pronounced and site-specific in females. Mechanis-
tically, Csn5 KO potentiated NF-κB signaling and proinflammatory cy-
tokine expression in macrophages, whereas HIF-1α levels were
reduced. Inversely, inhibition of NEDDylation by MLN4924 blocked
proinflammatory gene expression and NF-κB activation while enhanc-
ing HIF-1α levels and the expression of M2 marker Arginase 1 in
inflammatory-elicited macrophages. MLN4924 further attenuated the
expression of chemokines and adhesion molecules in endothelial cells
and reduced NF-κB activation and monocyte arrest on activated endo-
thelium in vitro. In vivo, MLN4924 reduced LPS-induced inflammation,
favored an antiinflammatory macrophage phenotype, and decreased
the progression of early atherosclerotic lesions in mice. On the con-
trary, MLN4924 treatment increased neutrophil and monocyte counts
in blood and had no net effect on the progression of more advanced
lesions. Our data show that CSN5 is atheroprotective. We conclude
that MLN4924 may be useful in preventing early atherogenesis,
whereas selectively promoting CSN5-mediated deNEDDylation may
be beneficial in all stages of atherosclerosis.
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Atherosclerosis is the primary cause of cardiovascular dis-
eases. As a chronic inflammatory condition of the vessel

wall, atherosclerosis is characterized by endothelial cell activa-
tion resulting in the secretion of chemoattractant proteins such
as CCL2 and macrophage migration inhibitory factor (MIF) and
by increased expression of adhesion molecules such as in-
tercellular adhesion molecule-1 (ICAM-1) and vascular cell ad-
hesion molecule-1 (VCAM-1). These molecules synergize to
sequentially recruit inflammatory cells such as monocytes and T
lymphocytes into the vessel wall (1–3).
The transcription factor NF-κB plays a crucial role in vascular

inflammation and atherogenesis, e.g., by controlling the expres-
sion of inflammatory cytokines, chemokines, and adhesion

molecules that orchestrate the recruitment and adhesion of
leukocytes. Also, numerous genes that regulate differentiation,
survival, and proliferation of vascular and immune cells involved
in the inflammatory response are targets of NF-κB (4). In resting
cells, the NF-κB dimer, p65 and p50, is inactivated by binding to
the inhibitor of κB (IκB)-α protein. Inflammatory challenges such
as LPS or TNF-α exposure trigger the phosphorylation of IκB-α by
the IKK complex (5) and its polyubiquitination by the cullin-
RING E3 ubiquitin ligase (CRL) S-phase kinase-associated pro-
tein 1 (SKP1)-CUL1/RBX1-βTrCP CRL (SCFβTrCP), containing
cullin-1 (CUL-1) and RING protein ring-box 1 (RBX1) as the
enzymatic core, SKP1 as an adaptor, and the β-transducin repeat-
containing protein (βTrCP) as substrate-binding F-box protein (6).
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Ubiquitinated IκB-α is degraded, releasing the NF-κB dimer to
drive gene transcription.
By using KO and transgenic models, differential roles of NF-

κB at several stages in the atherogenic process have been dem-
onstrated (7, 8), suggesting that there is a complex and cell type-
specific role of the canonical NF-κB pathway in atherosclerosis,
which needs further investigation.
Activation of NF-κB depends on a number of control mech-

anisms, e.g., at the level of its inhibitor ΙκB-α. CRL-driven ΙκB-α
ubiquitination is controlled by the constitutive photomorpho-
genesis 9 (COP9) signalosome complex (CSN). The CSN is a
highly conserved, multifunctional protein complex of eight sub-
units (CSN1–CSN8), the 3D structure of which has recently been
solved and which has sequence and structural homologies to the
19S lid subcomplex of the 26S proteasome (9, 10). The CSN is
involved in various cellular processes such as cell cycle control,
DNA repair, and gene expression (11). Catalyzed by the JAMM
(JAB1-MPN-domain metalloenzyme) motif of CSN5 [also
known as c-Jun activation domain binding protein-1 (JAB1)], a
well-described enzymatic activity of the CSN is the cleavage of
ubiquitin-like neural precursor cell-expressed developmentally down-
regulated 8 (NEDD8) conjugates from the cullin subunit of
CRLs, including SCF-type CRLs (12, 13). CSN5 is the only CSN
subunit with catalytic activity and acts as part of the holo-
complex and independently of the CSN (11). Importantly,
CSN5 has also been linked to inflammatory regulation (14–16).
Whereas the conjugation of NEDD8 to cullins, termed NEDD-
ylation, is required for an optimal ubiquitin ligase activity of the
SCFs (17–20), CSN-mediated deNEDDylation has been linked
with the dissociation of the substrate-binding module from the
SCF complex and with inhibition of SCF-mediated substrate ubiq-
uitination in vitro (21, 22). A multistep enzymatic process, involving
the transfer of matured NEDD8 from a NEDD8-activating E1 onto
a NEDD8-conjugating E2 enzyme and finally onto target proteins
via an E3 ligase, governs NEDDylation (23).
Inhibition of NEDDylation by the pharmacological agent

MLN4924, which blocks E1 activity (24), results in an increase
of phosphorylated IκB-α (p-IκB-α) and consequently reduced

NF-κB activation in B-cells, myeloid leukemia cells, macro-
phages, and endothelial cells (25–28). Similarly, signal-induced
turnover of IκB-α was shown to be reduced by the deNEDDylating
protein CSN5 in endothelial cells (29) and cervical cancer cells (30),
reducing NF-κB activation (29). This stabilizing effect of
CSN5 toward IκB-α in stimulated cells was explained by the
association of the CSN with the deubiquitinase USP15 (30) and
by CSN5-mediated deNEDDylation of cullins, controlling SCF ac-
tivity (11). Overall, MLN4924 and CSN5 both reduce NEDDylation
and are involved in the regulation of NF-κB activation.
We recently observed that CSN5 is overexpressed in human

atherosclerotic lesions, particularly in the endothelium, as well as
in macrophage foam cells, upon atheroprogression (29). We also
reported that CSN5 negatively affected inflammatory processes
in endothelial cells in vitro (29), prompting us to speculate that
CSN5 and deNEDDylation might have an atheroprotective
function in vivo. Here, we tested this hypothesis and examined
whether myeloid-born CSN5 and the cullin NEDDylation in-
hibitor MLN4924 were able to reduce atherosclerosis in vivo.

Results
Myeloid-Specific Deletion of Csn5 Exacerbates Atherosclerosis. To
test the hypothesis that CSN5 confers atheroprotection in vivo,
LysM-Cre/Csn5floxflox/Apoe−/− mice, referred to hereafter as
Csn5Δmyeloid/Apoe−/−, with myeloid-specific deletion of the Csn5
gene (SI Appendix, Fig. S1), and control Csn5floxflox/Apoe−/− lit-
termate mice, referred to hereafter as Csn5wt/Apoe−/−, were fed a
high-fat diet for 12 wk. All mice appeared healthy with no ab-
normalities. Serum cholesterol, triglyceride levels, leukocyte
counts, and weight of mice did not differ between groups (SI
Appendix, Tables S1 and S2).
Myeloid-specific deletion of Csn5 in male mice resulted in

markedly larger atherosclerotic lesions in the aortic root (Fig.
1A), the aorta (Fig. 1B), and the aortic arch (Fig. 1C) compared
with corresponding controls. Analysis of plaque cellular com-
position in the aortic root revealed comparable content of
macrophages, neutrophils, and smooth muscle cells (SMCs);
collagen content was also unaltered (SI Appendix, Fig. S2 A–D).
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Fig. 1. Myeloid-specific deletion of Csn5 increases ath-
erosclerosis. Male Csn5wt/Apoe−/−and Csn5Δmyeloid/Apoe−/−

mice consumed a high-fat diet for 12 wk. Lesion size
in aortic root (A) and aorta (B), as well as aortic arch
(C), was quantified. Data are means ± SD of n ≥
8 mice and representative stainings. Two-tailed t test
was performed for comparison of Csn5wt/Apoe−/− vs.
Csn5Δmyeloid/Apoe−/−; *P < 0.05).
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No differences were observed in apoptosis, although the plaque
necrotic core was significantly larger in the absence of Csn5 in
myeloid cells (SI Appendix, Fig. S2 E and F). Also, the number of
proliferating macrophages per plaque area was not changed
upon myeloid Csn5 deficiency (SI Appendix, Fig. S2G). An in-
crease in plaque size was also observed in the aorta, mainly in the
abdominal aorta, of female Csn5Δmyeloid/Apoe−/− mice, although
it was less pronounced than in male mice (SI Appendix, Fig.
S3A). Root lesions in female mice were not altered in size (SI
Appendix, Fig. S3B), indicating site-specific effects.
In conclusion, the atherosclerotic phenotype of the Csn5 gene-

deficient mice suggests that Csn5 attenuates atherosclerotic le-
sion formation in vivo.

Deficiency of Csn5 Promotes a Proinflammatory Profile in Macrophages.
As Csn5 deficiency increased the size of atherosclerotic lesions
without affecting the lesional inflammatory cell content, we exam-
ined the effect of Csn5 deletion on the gene-expression profile
of macrophages by using bone marrow-derived macrophages
(BMDMs) from Csn5Δmyeloid/Apoe−/− vs. Csn5wt/Apoe−/− mice.
There was an appreciable deletion of Csn5 (60–70%) on an mRNA
and protein level (SI Appendix, Fig. S1 B and C), as reported for
other LysM-Cre–driven deleted genes (31). Csn5 deletion also af-
fected levels of the CSN3 and CSN8 subunits of the CSN complex
(SI Appendix, Fig. S1D), indicating inactivation of the entire CSN
complex. Surface expression of the macrophage marker F4/80 was
not significantly changed upon Csn5 deficiency (SI Appendix,
Fig. S1E).
Csn5-deficient macrophages and WT controls were stimulated

with the inflammatory reagent LPS for 0–24 h. Csn5 deletion led
to a significant increase in Il-12 and Il-6 mRNA levels 6 and/or
24 h after LPS stimulation (Fig. 2A). Also, after 24 h, LPS-
induced secretion of bioactive Il-12p70 was increased upon
Csn5 deletion (Fig. 2B, Left). Given our recent observation that
CSN5 regulates the stability of IκB-α in human endothelial cells
(29), and as NF-κB activation is a trigger of inflammatory cyto-

kine production in atherogenesis, we examined whether the ef-
fect on gene expression was associated with the NF-κB pathway.
We noted a significant decrease in basal IκB-α levels upon Csn5
deletion. Also, the strong LPS-induced degradation rate of IκB-α
was further enhanced by Csn5 deficiency at early time points
(Fig. 2C), indicating an increase in NF-κB activation in response
to Csn5 deletion. Similar results were obtained when macrophages
were treated with TNF-α, a relevant inflammatory stimulus in
atherogenesis, with Csn5 deficiency enhancing TNF-α–induced Il-
12p70 secretion (Fig. 2B, Right) and NF-κB activation (Fig. 2D).
Furthermore, the NF-κB–regulating micro-RNAs (miRs) miR-
146a and mi-R21, both induced in macrophages upon LPS treat-
ment, failed to be up-regulated in Csn5Δmyeloid/Apoe−/− cells,
with miR-21 significantly reduced in Csn5Δmyeloid/Apoe−/− cells
at 6 and 24 h after LPS stimulation compared with control.
Csn5 deficiency did not ablate the induction of miR-155a upon
LPS stimulation, while up-regulation was only slightly reduced
compared with Csn5wt/Apoe−/− controls (Fig. 2E). The NF-κB–
inhibitory protein A20 was not differentially regulated in WT
and Csn5-deficient macrophages (SI Appendix, Fig. S4). These
data suggest that, under inflammatory conditions, CSN5-
regulated NF-κB activity is a critical mechanism contributing
to the inhibitory effects of CSN5 on proinflammatory cytokine
production in macrophages.
To further study the effect of Csn5 on proinflammatory

macrophage cytokine profiles, we examined the chemokine-like
cytokine MIF, which has been shown to drive atherosclerosis (3)
and whose secretion is inhibited by CSN5 in endothelial and
tumor cells (29, 32). We observed an increased secretion of MIF
in Csn5-deleted macrophages (Fig. 2F). Moreover, in accord
with prior observations that CSN5 stabilizes the transcription
factor HIF-1α under normoxic and hypoxic conditions (33), Csn5
deletion led to significantly decreased nuclear levels of HIF-1α
upon LPS treatment (Fig. 2G). A significant reduction was ob-
served for the HIF-1α target genes (34) Edn1 and Opn1 upon
Csn5-deletion in LPS-stimulated macrophages, whereas c-Met
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and Ets1 were not significantly affected. Mmp9, which also is
prominently controlled by NF-κB, was up-regulated in Csn5-KO
inflammatory macrophages (SI Appendix, Fig. S5). In line with
the lack of effect of Csn5 deficiency on plaque macrophage
proliferation, BMDM proliferation in vitro was not significantly
changed upon Csn5 deficiency (SI Appendix, Fig. S6A). In con-
clusion, the deNEDDylating enzyme CSN5 represses in-
flammatory NF-κB activation and proinflammatory cytokine
production in inflammatory macrophages, but also influences the
HIF-1α pathway.

Inhibition of NEDDylation by MLN4924 Inhibits Macrophage Inflammatory
Responses. Whereas CSN5 induces deNEDDylation by cleaving
NEDD8 conjugates from the cullin subunit of CRLs (13), the
pharmacological inhibitor MLN4924 inhibits NEDDylation by
inhibiting the NEDD8-activating enzyme E1 (NAE) (24). Hence,
MLN4924 activity, at least in part, mirrors effects afforded by the
overexpression or up-regulation of CSN5, although additional
MLN4924 effects may be expected as a result of non-cullin

NEDDylation target proteins. Of note, MLN4924 was shown to be
generally well tolerated in physiologically active doses in phase I
clinical trials in patients with advanced nonhematological malig-
nancies (35) and acute myeloid leukemia and myelodysplastic
syndromes (28).
We reasoned that MLN4924-treated macrophages would pro-

duce less proinflammatory cytokines in inflammation. BMDMs
were isolated from Apoe−/− mice and treated with MLN4924 or
DMSO control solution. Differentiation of macrophages was not
affected by MLN4924, as indicated by similar surface expression of
the macrophage marker F4/80 (SI Appendix, Fig. S7A). Treatment
with MLN4924 inhibited cullin-1 NEDDylation (Fig. 3A and SI
Appendix, Fig. S7B) and resulted in a significant decrease of LPS-
induced proinflammatory gene expression, attenuating the levels
of Tnf-α, Il-6, and Il-12 after 6 h and those of Tnf-α, Il-6, Il-12, and
Ccl2 after 24 h LPS stimulation (Fig. 3B). Also, MLN4924 was
able to inhibit basal gene expression of Tnf-α and Il-12 (Fig. 3B).
On a secreted protein level, LPS-induced production of TNF-α
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Fig. 3. MLN4924 inhibits proinflammatory cytokine expression and skews macrophage polarization toward M2: involvement of NF-κB, HIF-1α, and ERK
signaling. Apoe−/− BMDMs were exposed to MLN4924 or DMSO control solution and treated with LPS (100 ng/mL) or left untreated. (A) Inhibition of Cullin
1-NEDD8 by MLN4924. (B) Proinflammatory gene expression at baseline (Left) and 6 h (Middle) or 24 h (Right) of LPS stimulation, quantified by RT-PCR
(normalized to Gapdh). (C) Effect of MLN4924 or DMSO control on LPS-induced secretion of TNF-α and IL-10 from Apoe−/− BMDMs as measured by ELISA.
(D) Inhibition of LPS (100 ng/mL)-induced p65 DNA binding activity by MLN4924; quantification relative to DMSO control and untreated.
(E) MLN4924 stabilizes nuclear HIF-1α levels in LPS-treated BMDMs. YY1 was used as nuclear loading control. (F) Inhibition of LPS (100 ng/mL)-triggered ERK1/
2 MAPK phosphorylation by MLN4924 pretreatment (Left, quantification; Right, representative Western blot); time course from 0 to 120 min relative to
DMSO control and untreated. Total ERK1/2 and tubulin were used as loading control. (G) MLN4924 induces gene expression of M2 markers in LPS-stimulated
BMDMs. Baseline (Left), 6 h LPS (Middle), and 24 h LPS (Right) normalized to Gapdh. (B–G) Graphs represent means ± SD of n = 7 (F) or n = 3 (B–E and G)
independent experiments. Two-way ANOVA with Bonferroni posttest was performed for comparison of DMSO vs. MLN4924-treated cells (asterisks) and
stimulated vs. nonstimulated conditions within DMSO- or MLN-treated group (§; */§P < 0.05; **/§§P < 0.01; ***/§§§P < 0.001).
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was repressed by MLN4924, whereas IL-10 production was un-
affected (Fig. 3C). LPS-induced activation of NF-κB was markedly
inhibited by MLN4924, although basal NF-κB activation was not
affected (Fig. 3D). Although this is in line with MLN4924 targeting
the NF-κB pathway, we also found that MLN4924 increased nu-
clear HIF-1α levels in inflammatory-elicited macrophages (Fig. 3E),
confirming the opposite effect seen in Csn5-deficient macrophages,
and regulated MAPK signaling. MLN4924 decreased ERK1/2 and
(in part) p38 phosphorylation in macrophages stimulated with LPS
or TNF-α (Fig. 3F and SI Appendix, Fig. S8). Macrophage pro-
liferation, similar to what we observed upon Csn5 deficiency, was
not influenced by MLN4924 (SI Appendix, Fig. S6B).
Together, these data indicate that inhibition of NEDDylation

by MLN4924 inhibits the proinflammatory cytokine milieu in
macrophages and interferes with NF-κB, HIF-1α, and MAPK
signaling in these cells.

MLN4924 Polarizes Macrophages Toward an M2 Phenotype. Athero-
sclerotic plaques in humans and mice contain M1 and M2 mac-
rophages (36, 37). These subsets of macrophages have been studied
extensively in vitro and in various mouse atherosclerosis models,
leading to the simplified notion that M1 macrophages, as a re-
sult of their inflammatory characteristics, promote plaque in-
flammation, whereas M2 macrophages resolve it (38). Our
observation that MLN4924-treated macrophages expressed
lower levels of the classical M1 cytokines (39) Tnf-α, Il-12, and
Il-6, prompted us to consider a possible MLN4924-elicited
macrophage switch from M1 to M2. To examine this, BMDMs
isolated from Apoe−/− mice were treated with MLN4924 or
DMSO control solvent and challenged with LPS as a surrogate
inflammatory stimulus. In addition to the reduced expression of
the M1 cytokines observed upon MLN4924 treatment (Fig. 3 B
and C), the antiinflammatory, M2-polarizing cytokine Il-13 and
the M2 marker Arginase-1 were significantly up-regulated after
24 h of LPS exposure without significantly affecting the
M1 marker iNos (Fig. 3G). This indicates that MLN4924 skews
macrophage polarization toward an antiinflammatory M2 state,

even in the absence of exogenous, M2 polarizing cytokines such
as IL-4.

MLN4924 Inhibits Proatherogenic Gene Expression, Monocyte Arrest,
and NF-κB Activation in Inflammatory-Elicited Endothelial Cells. To
investigate whether MLN4924 would also affect inflammatory
processes in other cell types important in atherosclerosis, we
tested its effect on the expression of proatherosclerotic proteins
in primary endothelial cells. TNF-α strongly induced the gene
expression of the chemokine CCL2 and the adhesion molecules
VCAM-1 and ICAM-1 in human umbilical vein endothelial cells
(HUVECs), human aortic endothelial cells (HAoECs), and mouse
aortic endothelial cells (MAoECs), and MLN4924 treatment es-
sentially completely inhibited these responses, except for CCL2 in
MAoECs (Fig. 4A and SI Appendix, Fig. S9 A and B). The adhesion
molecule P-selectin was only moderately up-regulated in MAoECs
(SI Appendix, Fig. S9B), and was not at all up-regulated upon 4 or
8 h of TNF-α stimulation in HUVECs or HAoECs, yet
MLN4924 further lowered P-selectin expression in both human
endothelial cell types after 4 h of TNF-α treatment (Fig. 4A and
SI Appendix, Fig. S9 A and B), possibly implying an NF-κB–
independent mechanism. Adhesion molecules and chemokines act
in concert to mediate the arrest of monocytes on activated endo-
thelium of an atherogenic vessel. We performed laminar flow ad-
hesion assays applying resting and TNF-α–activated HUVECs.
TNF-α–stimulated HUVECs showed a significant increase in the
number of arrested monocytes, and this effect was completely ab-
lated by MLN4924 treatment (Fig. 4B).
We next directly tested whether the inhibitory effect of

MLN4924 on atherogenic gene expression in primary endothelial
cells was at least partly associated with reduced NF-κB signaling.
MLN4924 treatment completely inhibited cullin-1 NEDDylation
(SI Appendix, Fig. S7C), and this coincided with the accumula-
tion of phosphorylated IκB-α in HUVECs (Fig. 4C) as well as in
HAoECs (SI Appendix, Fig. S9C), indicating that inhibition of
cullin-1 NEDDylation impairs the activity of SCF-driven ubiq-
uitination processes. Next, we examined the activation of NF-κB
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upon MLN4924 preexposure. MLN4924-treated endothelial
cells showed a complete inhibition in TNF-α– or LPS-induced
NF-κB activation as determined by reporter gene assay (Fig. 4D
and SI Appendix, Fig. S10). As seen in macrophages, MLN4924
also strongly enhanced nuclear HIF-1α levels in LPS-stimulated
endothelial cells (Fig. 4E).
Together, this indicates that MLN4924 interferes with in-

flammatory and atherogenic processes in endothelial cells, reflected
in reduced atherogenic gene expression, NF-κB activation, and
monocyte arrest, and accompanied by HIF-1α stabilization.

Inhibition of NEDDylation by MLN4924 Interferes with Early
Atherosclerotic Lesion Formation in Aorta and Root. We next in-
vestigated whether MLN4924 would reduce atherosclerosis in
vivo, i.e., affecting atherosclerosis pathology opposite to the effect
seen upon genetic deletion of the deNEDDylating enzyme Csn5.
To probe the effect of MLN4924 on existent atherosclerotic

lesions, male Apoe−/− mice were exposed to a high-fat diet. After
6 wk, i.e., when early lesions had developed, thus representing a
clinically relevant situation, mice were injected s.c. with 60 mg/kg
MLN4924 or with a solvent control solution twice per day on 2 d
per week for another 6 wk under continued diet. After a total of
12 wk of high-fat diet, the body weight of the mice, serum cho-
lesterol, triglyceride, and alanine aminotransferase levels, the
latter indicating the effect of the inhibitor on the liver, were
analyzed and found to be comparable for both groups (SI Ap-
pendix, Table S3). Analysis of leukocyte subpopulations in blood
revealed an increase in thrombocytes and innate immune cells,
i.e., neutrophils and monocytes, in the MLN4924-treated group.
Among the latter, Gr1hi monocytes were significantly elevated,
whereas the increase in the Gr1low subpopulation in the
MLN4924-treated group failed to reach statistical significance by
a slight margin (Fig. 5A and SI Appendix, Table S3). At the same
time, B-cell numbers were decreased, resulting in overall com-
parable total leukocyte counts (Fig. 5A).
Quantification of lesions showed a significantly reduced lesion

area in the descending aorta in the MLN4924-treated group,
with MLN4924 treatment reversing atherosclerosis development
in the aorta back to baseline levels (Fig. 5B). In aortic root,
MLN4924 treatment did not influence overall lesion size (Fig.
5C). However, lesion classification (SI Appendix, Fig. S11A)
revealed that MLN4924 specifically reduced the size of early- to
intermediate-stage lesions but not advanced lesions (Fig. 5D and
SI Appendix, Fig. S11A). No significant differences were ob-
served in aortic arch (SI Appendix, Fig. S11 B-D). Plaque char-
acteristics in aortic root were examined next. Although no
significant differences were observed in plaque macrophage and
smooth muscle cell content, as well as necrotic core area or

TUNEL+ cell content, between MLN4924- vs. DMSO-treated
animals (SI Appendix, Fig. S11 E and G–I), collagen content of
root lesions was significantly reduced in the MLN4924-treated
group (SI Appendix, Fig. S11F).
In summary, our results indicate that treatment with

MLN4924 attenuates the formation of early atherosclerotic le-
sions in descending aorta and aortic root, whereas more ad-
vanced lesions in aortic root or arch were not affected.

MLN4924 Reduces Inflammation in Vivo. We then wished to further
study the effect of MLN4924 on the inflammatory response in vivo.
We first asked whether our in vitro finding that MLN4924 inhibits
atherogenic protein expression in inflammatory endothelial cells
and macrophages (Figs. 3 and 4) would be reflected in an in vivo
setting. Apoe−/− mice fed a high-fat diet for 12 wk were s.c. injected,
at halftime of the diet, with 60 mg/kg MLN4924 vs. control solvent
twice per day on 2 d per week for 6 wk under continued diet. Serum
levels of TNF-α (Fig. 6A) were significantly reduced in MLN4924-
treated mice, whereas circulating antiinflammatory IL-10 (Fig. 6A)
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Fig. 5. MLN4924 treatment in vivo reduces the size
of early atherosclerotic lesions in aorta and aortic
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oil red O stainings shown. (C) MLN4924 reduces early
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(Middle) vs. advanced lesions (Right). Shown are rep-
resentative oil red O stainings. (A–C) Data represent
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and aortic Cxcl1 (P = 0.08) or aortic adhesion proteins were un-
affected (SI Appendix, Fig. S12A). We finally studied the in vivo
effect of MLN4924 on the inflammatory response by interrogating
its antiinflammatory capacity in LPS-induced inflammation in mice.
MLN4924 pretreatment of mice injected i.p. with LPS strongly re-
duced serum levels of the inflammatory marker IL-6 (Fig. 6 B and
C), but not TNF-α and CCL2 (SI Appendix, Fig. S12B). Peritoneal
macrophages prepared from LPS-injected mice exhibited signifi-
cantly decreased expression levels of Il-6 and Cxcl1 when isolated
from MLN4924-treated vs. control mice, whereas antiinflammatory
Il-10 was increased (Fig. 6D). No significant differences were ob-
served for Tnf-α, Ccl2, Il-12, or Arg-1 (Fig. 6D).
In conclusion, these studies demonstrate that MLN4924 not

only blocks early atherogenic lesion formation but also various
inflammatory mediators known to govern inflammatory pro-
cesses in vivo.

Discussion
We report on a role of the COP9 signalosome subunit 5 (i.e.,
CSN5) in attenuating atherogenesis in vivo. We also demonstrate
that the pharmacological inhibitor MLN4924, a compound in phase
I clinical trials for cancer and known to reduce protein NEDDyla-
tion, thereby mimicking CSN5 overexpression, inhibits early ath-
erosclerotic lesion formation in aorta and aortic root as well as
acute inflammation in vivo. Both CSN5 and MLN4924 inhibit in-
flammatory and proatherogenic gene expression through attenua-
tion of NEDD8 conjugation to cullins, and our data suggest that this
is, at least partly, the result of a marked negative regulation of the
NF-κB pathway (SI Appendix, Fig. S13), with additional roles for
MAPK signaling and modulation by HIF-1α.
Previous studies described the participation of CSN5 in NF-κB

activation in epithelial and T cells (30, 40). We recently extended
this to endothelial cells and found CSN5 to attenuate TNF-
α–triggered monocyte adhesion on endothelium in vitro. Addi-
tionally, we observed an overexpression of CSN5 and two other
CSN subunits in atherosclerotic lesions of human carotid arteries
upon atheroprogression, a first hint that the CSN may have a
functional role in atherogenesis in vivo (29). However, descrip-
tive correlations and in vitro studies frequently cannot predict
effects in a complex disease situation in vivo or exclude a
bystander role.
Our study clearly reveals enhanced atherosclerotic lesion

formation in hyperlipidemic mice lacking Csn5 in myeloid cells.
The antiatherogenic role of CSN5 was more pronounced in male
compared with female mice. Whereas Csn5 deficiency in males
led to a broad increase in atherosclerotic lesions in aorta, root,
and arch, strong lesion exacerbation in female mice was seen in
only the abdominal aorta, with trends in thoracic aorta and aortic
arch, whereas no effect was seen in root. Such sex-specific “in-
tensity” effects on atherosclerosis have been reported before.
For example, Cx3cl1 deficiency reduced aortic root lesion size in
12-wk-old female but not male mice, whereas Pctp deficiency
increased atherosclerosis in male but not female mice (41–45).
Various molecular parameters including differences in lipid
profiles, cellular responses to oxidized LDL, or NO-dependent
endothelial dysfunction have been associated with sex-specific
effects in atherosclerosis, but the mechanism has remained un-
clear in the majority of cases. Atherosclerotic lesions in our study
were generally larger in female compared with male Apoe−/−

mice, consistent with prior reports (46). The more advanced
plaques in females may partly confound atheroprotection by
CSN5 in female mice. Also, there may be a CSN5-specific mo-
lecular basis for the less pronounced protective effect of CSN5 in
females. CSN5/JAB1 was shown to interact with nuclear recep-
tors, preferably progesterone, glucocorticoid, and estrogen re-
ceptor, and partially promotes the transactivation activity of
these receptors (47).

Exacerbated atherosclerotic lesion formation upon Csn5 de-
ficiency was not associated with a mere effect on lesional mac-
rophage content, but was linked to inflammatory cytokine
production in macrophages. Csn5-deficient macrophages exhibi-
ted an enhanced expression of inflammatory target genes such as
Il-12 and Il-6. The role of IL-6 in atherosclerosis is ambivalent. In
early atherosclerosis, IL-6 was found to augment the disease (48),
whereas Il-6–deficient mice developed more atherosclerosis in
advanced stages (49). In conjunction with our MLN4924 in vitro
and in vivo data, these findings are in line with the preferential
impairment of early vs. advanced atherogenic lesions by CSN5.
IL-12 has a more unanimous role in atherosclerosis, with both
gene targeting and blockade of IL-12 resulting in reduced ath-
erosclerotic lesions in hyperlipidemic mice (50, 51). Therefore, our
observation that Csn5-deficient macrophages show an increased
production of IL-12 may in part explain exacerbated atheroscle-
rosis development in Csn5-KO mice.
As one possible underlying mechanism, Csn5-deficient mac-

rophages exhibited a significant decrease in IκB-α levels and an
increase in p65 activation, which is in line with reports using
epithelial and endothelial cells (29, 30). In support of this no-
tion, Csn5-deficiency impaired LPS-induced up-regulation of
the NF-κB–regulating miRs miR-146a and miR-21 in macro-
phages. MiR-146a targets TLR4, TRAF6, and IRAK1, thereby
antagonizing NF-κB activation (52, 53), and miR-21 was shown
to negatively regulate NF-κB activity through PDCD4 (54).
Thus, decreased expression of these miRs contributes to the
observed increase in LPS-induced NF-κB activation upon
Csn5 deficiency. In accord, Csn5 deficiency decreased and
MLN4924 stabilized HIF-1α in LPS-elicited macrophages (and
endothelial cells). Both miR-146a and -21a expression levels are
coregulated by HIF-1α (55, 56). Decreased miR-21 and -146a
levels in Csn5-deficient macrophages might thus in part be
explained by reduced HIF-1α transcriptional activity. This fur-
thers the conclusion that pathways other than NF-κB contribute
to the phenotype seen in Csn5-deficient cells. Accordingly, not all
genes analyzed in this study were up-regulated even though most
are targets of NF-κB. This is in agreement with a prior study in
which inhibition of NF-κB did not affect several well-described
targets of NF-κB (31). Also, some of the targets, i.e., CCL2, are
additionally controlled by other promoter elements such as AP-1.
Similarly, pathways influenced by alternative CRL substrates
other than IκB-α may contribute to the observed effects in Csn5-
deficient macrophages.
CSN5 leads to an enhancement of HIF-1α levels in inflam-

matory macrophages and endothelial cells, in accord with a role
for CSN5 and NEDDylation in HIF-1α stabilization (33, 57, 58).
Although CSN5 has been suggested to stabilize HIF-1α in a
CSN complex-, and thus NEDDylation-, independent manner,
MLN4924 was proposed to stabilize HIF-1α, at least in mucosal
inflammatory cells, via inhibition of NEDDylation of CUL2, the
cullin component present within HIF-1α–ubiquitylating pVHL
E3 ligase (59). Given the role for HIF-1α in inflammatory gene
expression (60), reduced nuclear HIF-1α may partly explain our
finding that not all of the inflammatory genes studied were up-
regulated upon Csn5-deficiency. Similarly, the observation that
not all HIF-responsive genes were decreased upon Csn5 KO in
inflammatory macrophages may be partly explained by coun-
teracting effects of NF-κB activation, e.g., for c-Met and Mmp9,
which are regulated by HIF-1α as well as NF-κB (61).
CSN5 has been reported to regulate the secretion of the in-

flammatory cytokine MIF (32), which is strongly implicated in ath-
erogenesis (3, 29). Accordingly, Csn5-deficient macrophages
secreted significant amounts of MIF compared with WT macro-
phages, despite unaltered Mif RNA levels, as expected for this
nonclassically secreted mediator. This mechanism may further
contribute to increased atherosclerosis in Csn5Δmyeloid/Apoe−/− mice.
Together, CSN5 inhibits atherosclerosis by broadly attenuating the
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production of proinflammatory and proatherogenic cytokines in
macrophages. These processes involve regulation of NF-κB and
HIF-1α signaling.
Recent reports described the NAE blocker MLN4924 as a

potent inhibitor of NEDD8 conjugation of cullins (24). We con-
firmed that MLN4924 treatment of macrophages and endothelial
cells predominantly reduced NEDDylation of a cullin protein
band. Cullin deNEDDylation reduces ubiquitin ligase activity of
CRLs, consequently increasing the stability and transcriptional
activity of CRL substrates such as IκB-α or HIF-1α (25, 59). Be-
cause of its potential to fine-tune the NF-κB response, and also
processes related to cell cycle control or DNA repair by regulating
additional CRL targets such as β-catenin, p27, or CDT1,
MLN4924 has been successfully used in animal tumor models and
is in clinical trials for treatment of leukemia (24, 27, 62). It was
shown to be well tolerated in physiologically active doses in phase
I clinical trials in patients with advanced nonhematological ma-
lignancies (35), acute myeloid leukemia, and myelodysplastic
syndromes (28).
Here, we examined the effect of MLN4924 treatment on

atherosclerosis in a relevant in vivo mouse model and observed a
significant reduction in atherosclerotic lesion size in the aorta
and early lesions of aortic root in response to this inhibitor. This
was associated with a switch in monocyte-derived macrophages
from a pro- to an antiinflammatory phenotype, as indicated by an
increase in expression of the M2 macrophage marker Arginase-1
and the M2-polarizing cytokine Il-13 in MLN4924-treated mac-
rophages isolated from Apoe−/− mice (63). In addition Tnf-α,
Il-12, Il-6, and Ccl2 expression levels were strongly reduced, in-
dicating that macrophages in the MLN4924-treated group pro-
duce less inflammatory cytokines. A similar although not
identical antiinflammatory phenotype was observed in an in vivo
setting when studying macrophages prepared from LPS-injected
mice cotreated with MLN4924, with antiinflammatory Il-10
strongly elevated and proinflammatory cytokines Il-6 and Cxcl1
attenuated, whereas markers such as Tnf-α and Il-12 were un-
changed. An overall M2/antiinflammatory-polarizing role for
MLN4924 is in accord with a recent study revealing that
MLN4924 reduces inflammasome-dependent caspase-1 activa-
tion in macrophages (64). The inflammasome controls IL-1β
secretion, a process typical for M1 (65) but not M2 macrophages
(66). Atherosclerotic plaques in humans and mice contain
M1 and M2 macrophages (36, 37), and numerous atherosclerosis
studies have led to the notion that M1 macrophages promote,
whereas M2 macrophages resolve, plaque inflammation (38).
Thus, our observation that MLN4924 skews macrophages toward
an antiinflammatory/M2 state in vitro and in vivo may at least
partially explain the reduced atherosclerotic lesion size in aorta
and early root lesions in MLN-treated mice.
MLN4924 inhibited basal gene expression of Tnf-α and Il-12 in

macrophages even though basal NF-κB was not affected. This
may indicate the involvement of other transcription factors and
pathways regulating Tnf-α and Il-12 expression, which may also
be regulated by NEDDylation and/or MLN4924. In fact, we
found that MLN4924 stabilizes LPS-induced HIF-1α levels, and
this effect was in line with observed decreased HIF-1α levels in
Csn5-deficient cells. Also, MLN4924 reduced MAPK signaling in
inflammatory-elicited macrophages. These data are in accord
with reports of MLN4924 effects on HIF-1α stabilization in mi-
crovascular endothelial cells (26) and MAPK activation in
T cells, the latter linked to MLN-induced stabilization of SHC, a
negative regulator of ERK signaling that was identified as a
target for NEDDylation (67). Interestingly, the pathways iden-
tified in our study to be affected by MLN are linked with each
other, e.g., reduced NF-κB activity, as observed upon MLN4924,
was inversely linked with M2 polarization (68), and Arginase-1
has been reported to be regulated by HIF-2α (69), which is
stabilized by NEDDylation (58).

Our in vitro data add further mechanistic evidence. MLN4924-
treated TNF-α–activated endothelial cells express overwhelmingly
less CCL2, ICAM-1, and VCAM-1, which may at least partly be
explained by reduced NF-κB activation. Interestingly, P-selectin
was found to be reduced in MLN4924-treated human endo-
thelial cells following 4 h of TNF-α stimulation, although up-
regulation by TNF-α per se did not reach significance. This is in
line with previous reports showing that human P-selectin lacks
canonical NF-κB binding sites and is not up-regulated in in-
flammation (70, 71). A preference for MLN4924 to reduce
ICAM-1 and VCAM-1 but not P-selectin levels is consistent
with our observation that it markedly reduced monocyte arrest
on endothelium. As mentioned, MLN4924 increases LPS-
induced HIF-1α levels in endothelial cells, which corresponds
with a previous observation of increased HIF activity in the
kidney of LPS-treated mice (26). Interestingly, endothelial HIF-
1α had been found to promote atherosclerosis and enhance
leukocyte adhesion, and myeloid HIF-1α was seen to promote
or not affect atherosclerotic lesion formation (60, 72, 73). With
respect to our study, this could imply that increased HIF-1α may
begin to counteract initial NF-κB–associated atheroprotective
effects of MLN4924 implicated in early atherosclerosis and ex-
plain the absence of atheroprotection in more advanced lesions.
A protective role for MLN4924 in early atherogenesis and en-
dothelial dysfunction is supported by the notion that this com-
pound improves endothelial barrier integrity and disturbed flow/
oxidized lipoprotein-elicited NEDDylation-dependent endo-
thelial dysfunction (26, 74).
Importantly, the observed antiinflammatory/antiatherogenic

effect of MLN4924 on macrophages and endothelial cells cor-
responds to its function in vivo. MLN reduced the expression of
proinflammatory cytokines in serum of hyperlipidemic and LPS-
treated mice. Moreover, MLN reduced the proinflammatory
markers Il-6 and Cxcl1 in LPS-induced peritoneal macrophages
in vivo, whereas Il-10 was increased. The observation that
MLN4924-treated mice only showed a trend toward down-
regulation of the arrest chemokine Cxcl1 or adhesion markers
in aortic tissue after 12 wk of high-fat diet might be explained by
a counteracting, inducing, effect of endothelial HIF-1α on Cxcl1
(and other genes), as observed previously in the context of
atherosclerosis (73). In fact, our aortic gene expression analysis
was performed in late-stage atherosclerosis, when HIF-1α ef-
fects may have penetrated to partially override the reduction of
NF-κB activation by MLN4924. This notion is supported by our
finding that MLN4924 reduced only early atherosclerotic le-
sions in the aorta and aortic root, but not advanced lesions.
Predominant antiatherogenic activity by MLN4924 in early le-
sions may be the result of disease stage or site specificity, as
induced by differences in flow stress at distinct anatomical lo-
cations (41). Also, endothelial permeability changes are among
the earliest hallmarks of atherosclerosis (2). Thus, barrier
function may have already been compromised when MLN
treatment was started after 6 wk of Western diet. This might
facilitate the influence of circulating Gr1high monocytes or
neutrophils, which were elevated upon MLN4924 treatment and
may have overcompensated for the early-stage antiinflammatory
effects of MLN4924 on endothelium. Such a scenario would be
in line with data showing that atherosclerotic lesion size cor-
relates with the number of circulating monocytes (75) and
neutrophils (76). Moreover, a selective expansion of myeloid
cells paralleled by a decrease in lymphocytes as observed upon
MLN treatment of hypercholesterolemic Apoe−/− mice was
observed before in the context of atherosclerosis and inflam-
mation (77), and may be explained by a competition between
granulo- and lymphopoiesis in a common bone marrow niche
(78) or by PU1 activity, which is up-regulated by MLN and
drives monocyte differentiation (79).
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One reason that Csn5 deficiency does not fully inversely
phenocopy effects obtained by MLN4924 treatment might be
because the drug was only administered for the last 6 wk of the
diet whereas Csn5Δmyeloid/Apoe−/− mice carried a constitutive
deletion of Csn5 in myeloid cells throughout the entire period.
MLN might also have effects independent of CSN-mediated
pathways. For example, the target spectrum affected by MLN-
induced hypoNEDDylation could be broader than that targeted
by selective inhibition of CSN5. Such a notion is supported by the
broader spectrum of genes affected by MLN4924 treatment
compared with Csn5Δmyeloid deficiency. It is also conceivable that
the spectrum of NEDDylated cullins targeted by MLN4924 and
CSN5 differs in relevant atherogenic cell types, affecting differ-
ent CRL complexes. On the contrary, it is intriguing that
MLN4924 treatment (inducing cullin hypoNEDDylation) and
CSN inactivation by Csn5-gene deficiency (inducing cullin
hyperNEDDylation) show the expected opposite effects on NF-
κB activity. Previous results indicated in vivo SCF activity to be
decreased by CSN overactivation and by complete CSN in-
activation, both representing scenarios in which the activity of
CRL complexes is compromised (11) (SI Appendix, Fig. S13).
This may explain why Csn5-deficient thymocytes showed reduced
steady-state NF-κB activity (40).
With respect to CSN5, the clearness of the identified anti-

atherogenic (and antiinflammatory) effects is remarkable, as
previous studies have also linked CSN5 to proinflammatory JNK/
AP1 signaling and proatherogenic LFA-1 integrin activation
while counteracting inflammatory MIF activity (14–16). This
may be the result of COP9 complex-associated vs. complex-
independent activities.
Together, our findings suggest a marked antiatherogenic effect

of the deNEDDylation factor CSN5 in myeloid cells in vivo, as
well as for the NEDDylation inhibitor MLN4924 in early ath-
erosclerosis, by attenuating inflammatory mechanisms driving
atherogenesis. This may argue for novel CSN-related therapies
to specifically enhance CSN5 activation, e.g., based on a recently
identified molecular trigger implicated in the active/inactive
switch of CSN5’s isopeptidase activity (80). The observed athe-
roprotective effect of MLN4924 in early atherosclerosis should
stimulate studies to investigate its impact in injury-induced
restenosis, in which reendothelialization is a key mechanism to
reduce neointimal hyperplasia.

Materials and Methods
Detailed study methods are provided in SI Appendix.

Animal Models. C57BL/6 LysM-Cre/Csn5flox/flox mice were crossed with
atherosclerosis-prone C57BL/6 Apoe−/− mice to obtain a myeloid-specific
deletion of Csn5 on Apoe−/− background. To study effects on atheroscle-
rosis, male and female mice were given a high-fat diet for 12 wk, and size
and composition of atherosclerotic lesions were assessed by histology and
immunofluorescence. To examine the effect of MLN4924 on atherosclero-
sis, male Apoe−/− mice were fed a high-fat diet for 12 wk. After 6 wk, mice
were injected s.c. with 60 mg/kg MLN4924 or control solvent twice per day
on two days per week for another 6 wk under continued diet. After a total
of 12 wk of diet, mice were killed for analysis of atherosclerosis and gene

expression. Furthermore, Apoe−/− mice were injected i.p. with 15 mg/kg
MLN4924 vs. control solvent twice per day for a total of 2 d. After 24 h, mice
received an i.p. LPS injection (1 μg/mL). After 48 h, mice were killed, and
peritoneal macrophages were isolated, adhered for 1 h, and subjected to
gene expression analysis.

Cell Culture. HUVECs, HAoECs, MAoECs, and BMDMs were stimulated with
20 ng/mL human or mouse TNF-α or 100 ng/mL LPS as indicated.
MLN4924 was dissolved as established (81) and used at a concentration of
500 nmol/L for 2–4 h in all experiments.

Analysis of NF-κB p65 Activity and ELISA. NF-κB p65 DNA binding activity was
quantified by using the TransAM NF-κB p65 ELISA (Active Motif) according
to the supplier’s instructions. NF-κB reporter assays were performed by
transfecting an NF-κB luciferase reporter and a β-gal expression construct.
After 48 h, cells were exposed to MLN4924 or DMSO control for 16 h,
followed by stimulation with TNF-α. Luciferase and β-gal activities
were assessed by using Bright-Glo luciferase system and β-gal enzyme
assay (Promega).

Cytokine levels of TNF-α, IL-10, IL-12p70, and MIF in serum and/or cell
culture supernatant were measured by using commercially available kits.

Macrophage Proliferation and Adhesion Under Laminar Flow. Macrophage
proliferation was quantified by using a BrdU-based colorimetric immuno-
assay (Roche Diagnostics). Adhesion of Calcein-AM–labeled THP1 monocytes
on confluent HUVEC monolayers, pretreated with MLN4924 or DMSO con-
trol and stimulated with 20 ng/mL human TNF-α as indicated, was quantified
in parallel wall chambers under flow (1.5 dyn/cm2, 4 min) (3).

Quantitative Real-Time PCR and Western Blot Analysis. Quantitative real-time
PCR analysis was performed with primers as listed in SI Appendix. miRs were
isolated by using the miRVana miRNA isolation kit (Thermo Fisher). Quantitative
PCR was performed by using the TaqMan MicroRNA Reverse Transcription Kit,
TaqMan Gene Expression Master Mix, and predeveloped TaqMan miR assays (5p
strands; all Thermo Fisher). U6 snRNA was used as reference miRNA.

Total cell lysates were prepared by lysis in RIPA buffer (Pierce) containing
protease and phosphatase inhibitors or alternatively in 1× NuPAGE-LDS-
sample buffer containing 1 mmol/L DTT. Nuclear extracts were isolated by
using a subcellular fractionation kit according to the manufacturer’s pro-
tocol (Active Motif) or as described previously (82).

Statistical Analysis. Statistical analysis was performed by using GraphPad
Prism software (version 5; GraphPad). Data are represented as means ± SD.
After testing for normality, data were analyzed by two-tailed Student’s t test
or Mann–Whitney test, one-way ANOVA with Newman–Keuls or Dunn’s
posttest, or two-way ANOVA with Bonferroni posttest as appropriate. Dif-
ferences with P < 0.05 were considered to be statistically significant.
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