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Marriage in many traditional societies often concerns the insti-
tutionalized exchange of reproductive partners among groups of
kin. Such exchanges most often involve cross-cousins—marriage
with the child of a parent’s opposite-sex sibling—but it is unclear
who benefits from these exchanges. Here we analyze the fit-
ness consequences of marrying relatives among the Yanomamö
from the Amazon. When individuals marry close kin, we find that
(i) both husbands and wives have slightly lower fertility; (ii) off-
spring suffer from inbreeding depression; (iii) parents have more
grandchildren; and (iv) siblings, especially brothers, benefit when
their opposite-sex siblings marry relatives but not when their
same-sex siblings do. Therefore, individuals seem to benefit when
their children or opposite-sex siblings marry relatives but suffer
costs when they, their parents, or same-sex siblings do. These
asymmetric fitness outcomes suggest conflicts between parents
and offspring and among siblings over optimal mating strate-
gies. Parental control of marriages is reinforced by cultural norms
prescribing cross-cousin marriage. We posit that local mate com-
petition combined with parental control over marriages may esca-
late conflict between same-sex siblings who compete over mates,
while simultaneously forging alliances between opposite-sex sib-
lings. If these relationships are carried forward to subsequent gen-
erations, they may drive bilateral cross-cousin marriage rules. This
study provides insights into the evolutionary importance of how
kinship and reciprocity underlie conflicts over who controls mate
choice and the origins of cross-cousin marriage prescriptions.
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Bonds between married partners establish ties between both
extended kin and nonkin who become in-laws (1). Together

these relationships form families—the foundation upon which
human social structures are built. Several notable anthropolo-
gists have depicted marriage as a competition for sexual access
to females by male coalitions (2–4) whereas others have viewed
it as a reciprocal arrangement between parties whereby offering
someone in marriage obligates the receiving family to recipro-
cate through political support or future spouses (5, 6). In accord
with these characterizations, exchanging offspring with close rel-
atives may be a way to ensure that these transactions are eventu-
ally reciprocated (7, 8).

Parental Control of Mate Choice Generates Parent–Offspring
Conflict
Human mating is unique because parents often exert consider-
able control over the mate choices of their offspring (9). For
example, a cross-cultural survey of hunting and gathering soci-
eties found that parents have a strong influence over the mar-
riages of their sons and daughters (10). The basic properties of
arranged marriages are (i) the spouses have high exchange value
[females are likely to have higher value than males as measured
by bride prices, bride service (bride service—sometimes called
groom service—is the service rendered by the bridegroom to a
bride’s family as a bride price), and “marriage by capture” in
egalitarian societies like the Yanomamö] (6); (ii) the individ-

uals doing the arranging and those whose marriages are being
arranged are close kin; (iii) the arrangers are usually older and
therefore typically have more social and political power; and
(iv) the arranger (e.g., parent or sibling) and spouse become in-
laws who maintain long-lasting ties that are often driven by con-
tingent reciprocity [i.e., reciprocal altruism (8)] (1, 9, 11). An
analysis of hunter-gatherer marriage practices using mitochon-
drial DNA suggests a long history of marriages based on reci-
procity between the families of the spouses (12).

Exchanges of children—especially daughters—by kin groups
forms one of the most basic structures of arranged marriages
(5). (Marriage “exchanges” are not always reciprocal transac-
tions of offspring and are often exchanges of offspring for politi-
cal support, bride price, or bride service.) This system is likely to
have emerged from a combination of parental control over mate
choice and contingent reciprocity (9). If cultural rules and taboos
began to exclude exchanges between same-sex siblings, we would
arrive at the most widespread and common prescriptive mar-
riage practice described by anthropologists—cross-cousin mar-
riage (5, 13, 14). Cross-cousin marriage is the natural outgrowth
of using one’s own [or one’s spouse’s] opposite-sex siblings to
exchange children. These practices may start out as mere social
patterns and regularities before they achieve a moral character
and ultimately become a cultural rule or norm (9).

Parental influence over marriage is expected to generate con-
flict between the interests of parents and offspring. Trivers’
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theory of parent–offspring conflict (15) provides a framework
for understanding these tensions. Because mate preferences of
offspring may not maximize the fitness of their parents, con-
flict is expected. For example, children are more likely to value
signs of genetic quality of a potential spouse, whereas parents
are more likely to value the family background of a poten-
tial in-law (16). Parents are also expected to be more toler-
ant of inbreeding (Inbreeding) than their offspring. These dis-
agreements are the outcome of inclusive fitness (7) differences
between parents and offspring and parents are expected to
benefit more when their offspring marry relatives (to whom the
parents are more closely related). These asymmetric fitness inter-
ests are also expected to generate conflict between siblings. This
is because parents are equally related to all of their offspring
and are therefore expected to value and hence invest in them
all equally, whereas offspring are fully related to themselves but
only related by a half, or a quarter, to their full and half siblings,
respectively (15).

Mate Competition Between Siblings. Local mate competition
(Inbreeding Local Mate Competition) between siblings is com-
mon in a variety of taxa (17), and fights to the death over mating
can occur between same-sex siblings (18, 19). In many species of
insect these conflicts are resolved by the production of female-
biased sex ratios (17, 20). In mammals, local mate competition
may result in sex-biased dispersal—one sex remains in its natal
territory and the other disperses (Inbreeding Sex-Biased Disper-
sal) (21–23). Sex-biased dispersal provides a way to balance the
costs of inbreeding load (24) and local mate competition with the
cooperative activities among siblings that lead to local resource
enhancement (25).

Once parental control over mating evolved in humans, how-
ever, conflicts and cooperation among siblings could also be
generated through parent–offspring conflict. This is because
marriage exchanges that are under the control of parents are
likely to produce uneven fitness benefits across offspring. These
unequal outcomes are, in turn, expected to induce sibling com-
petition over spouses. In polygynous and patrilocal societies like
the Yanomamö, brothers in particular are expected to vie for
wives. At the same time, marriage exchanges may produce bene-
fits for opposite-sex siblings (e.g., a brother receives a wife that is
exchanged for his sister). Overall, parental control over marriage
generates parent–offspring conflict over mating that can lead to
asymmetric fitness consequences for offspring. These discordant
outcomes can in turn produce antagonistic interests between
same-sex siblings while providing opportunities for opposite-sex
siblings to build cooperative alliances.

Predictions. In this study, we used genealogical data from the
Yanomamö, a traditional society of South American horticul-
turalists, to analyze the effect that spousal relatedness has on
the reproductive success of offspring, spouses, parents, and sib-
lings. We test the following predictions (P): P1, offspring of
more related parents will have fewer children due to inbreeding
depression; P2, spouses who are more closely related will have
fewer children due to mechanisms to avoid incest; P3, parents
will have more grandchildren when their children marry close rel-
atives because close kin are expected to be more likely to recip-
rocate promised spousal exchanges and engage in other forms
of cooperation; and P4, siblings will have more children when
their opposite-sex siblings marry relatives and fewer children
when their same-sex siblings do. This is because siblings of the
same sex, especially brothers, will compete over marriage part-
ners whereas opposite-sex siblings, especially sisters, will increase
opportunities to marry relatives.

The Yanomamö. At the time these data were collected (Methods,
Data Collection), the Yanomamö were a sovereign, indigenous
tribal population living in the northern Amazon along the bor-
der between Brazil and Venezuela. Until the 1950s there is no
record of any sustained contact with a modern western society

(11). During the period of N.A.C.’s data collection (1964–1988)
the Yanomamö relied on gardens where they grew plantains,
bananas, and manioc (26) and also on hunting (27). It is esti-
mated that the Yanomamö numbered approximately 25,000 peo-
ple across 250 villages during this period (11). The Yanomamö
are in many ways an ideal society for answering questions about
human evolution because they share many traits that were likely
to have been common in ancestral human populations, includ-
ing polygyny (28), agnatic descent groups (14), patrilocality (29),
patrilineality (14) [in the standard cross-cultural sample (SCCS),
a widely used worldwide cross-cultural sample, 17% of societies
are matrilineal compared with 41% that were classified as patri-
lineal], lineage exogamy (14), and prescriptive bilateral cross-
cousin marriage (30, 31) arranged by older male kin (10). (For
primary source ethnographies on Yanomamö economic, social
and political life see refs. 2 and 32–35. For additional details
on Yanomamö social organization see Inbreeding, Yanomamö
Kinship and Politics.)

The Yanomamö practice prescriptive bilateral cross-cousin
marriage. This means that males are expected to marry their
female cross-cousins (i.e., the daughters of their parent’s
opposite-sex siblings). This practice is so embedded in the
Yanomamö culture that the words for female cross-cousin and
wife are both suaböya and, reciprocally, the words for male cross-
cousin and husband are both hearoya (36). If a cross-cousin is
not available, an individual is still required to marry someone
outside of his or her patrilineage. These rules are often manipu-
lated when it is difficult to find a wife, however, which sometimes
leads to conflict. Because prescriptive marriage rules among the
Yanomamö require that marriages are between individuals in
the same generation, it is common for a father to attempt to
manipulate genealogical relationships such as by reclassifying a
“niece” as a “sister” so that his sons may now marry her daugh-
ters (37). The Yanomamö are normatively patrilocal (the men
stay in their natal village and the women move to the village of
their husbands), but men who have been promised a wife may
have an obligation to perform bride service for their father-in-
law although the obligation is less for older males who become
polygynous. This bride service, which may last for several years,
consists primarily of hunting and providing meat to the house-
hold of his father-in-law (36).

Yanomamö marriages are typically arranged either by parents
or by the eldest adult male members of local patrilineal descent
groups (36). Fathers and brothers exert the most control over
the marriages of their respective daughters and sisters whom
they attempt to exchange for female cross-cousins (38). Girls are
first promised in marriage at a very young age—occasionally at
birth—and may be pledged to multiple individuals (2). Young
girls marry and begin living with their husbands before or soon
after reaching puberty. Members of allied villages are usually
reluctant to cede women to their partner villages due to concerns
that the latter might not reciprocate as promised (6). “Recipro-
cal” marriage exchanges are therefore fraught with nervousness
on both sides and the parties usually enter into these agreements
with caution (37). The marriage patterns observed in Yanomamö
villages appear to be the outcomes of strategies that seek to
ensure that men will receive brides back in return for the daugh-
ters and sisters that they give away. For additional details on
Yanomamö marriage see Inbreeding, Yanomamö Marriages.

Results
We measured fitness as (i) the total number of children ever born
(Table 1 and Tables S1 and S2), (ii) grandchildren (Table 1),
(iii) number of children who survived to age 15 y (Table S1),
and (iv) number of spouses (Table S2). Table 1 and Table S1
show the impact of spousal relatedness (three groups bracketed
by their coefficient of relatedness; Methods) (Fig. S1) on the
fitness outcomes of males and females for each of the follow-
ing relationships: (i) parent’s relatedness on offspring reproduc-
tion, (ii) spousal relatedness on the reproduction of their respec-
tive husbands or wives, (iii) offspring relatedness on parental
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Table 1. Fitness outcomes of marrying relatives across three generations

Consanguinity of marriage Male reproduction Female reproduction

Parents Son’s offspring Daughter’s offspring
Low to medium d̄ =−1.19 (0.36), t =−3.4, P < 0.001** d̄ =−0.75 (0.27), t =−2.8, P = 0.006*
Low to high d̄ =−1.3 (0.21), t =−6.1, P < 0.001** d̄ =−1.06 (0.15), t =−6.9, P < 0.001**
Medium to high d̄ =−0.11 (0.38), t =−0.3, P = 0.76 d̄ =−0.3 (0.29), t =−1.0, P = 0.30
Overall ANOVA2,1461 F = 21.6, P < 0.001** ANOVA2,1186 F = 25.0, P < 0.001**
Spouses Husband’s offspring Wife’s offspring
Low to medium d̄ = −1.1 (0.41), t = −2.7, P = 0.007* d̄ = −0.37 (0.23), t = −1.6, P = 0.10
Low to high d̄ = −0.76(0.34),t = −2.2, P = 0.02 d̄ = −0.64(0.18),t = −3.6, P < 0.001**
Medium to high d̄ = 0.33(0.44), t = 0.74, P = 0.46 d̄ = −0.27(0.24),t = −1.1, P = 0.24
Overall ANOVA2,767 F = 4.71,P = 0.009* ANOVA2,841 F = 6.81, P = 0.001*
Offspring Father’s grandchildren Mother’s grandchildren
Low to medium d̄ = 5.56 (2.1), t = 2.66, P = 0.008* d̄ = 4.27 (1.3), t = 3.3, P = 0.001**
Low to high d̄ = 8.61 (2.0), t = 4.2, P < 0.001** d̄ = 10.64 (1.2), t = 9.2, P < 0.001**
Medium to high d̄ = 3.05 (2.1), t = 1.4, P = 0.14 d̄ = 6.37 (1.5), t = 4.3, P < 0.001**
Overall ANOVA2,569 F = 10.21, P < 0.001** ANOVA2,683 F = 42.4, P < 0.001**
Brothers Brother’s offspring Sister’s offspring
Low to medium d̄ = 0.30 (0.23), t = −4.4, P < 0.001** d̄ = 0.27 (0.23), t = 1.2, P = 0.23
Low to high d̄ = −1.35(0.28),t=−4.8, P < 0.001** d̄ = 0.62 (0.20), t = 3.0, P = 0.002*
Medium to high d̄ = −0.02(0.23),t=−0.12, P = 0.91 d̄ = 0.35 (0.22), t = 1.6, P = 0.12
Overall ANOVA2,988 F = 15.3, P < 0.001** ANOVA2,754 F = 4.67, P = 0.01*
Sisters Brother’s offspring Sister’s offspring
Low to medium d̄ = −0.02(0.32),t = −0.1, P = 0.96 d̄ = 0.29 (0.20), t = 1.3, P = 0.18
Low to high d̄ = 1.1 (0.28), t = 4.0, P < 0.001** d̄ = −0.31(0.24),t = −1.3, P = 0.2
Medium to high d̄ = 1.12 (0.28), t = 4.0, P < 0.001** d̄ = −0.59(0.25),t = −2.9, P = 0.03
Overall ANOVA2,1049 F = 12.0, P < 0.001** ANOVA2,712 F = 1.96, P = 0.13

d̄ is the mean difference between the groups, t is the t statistic, *P < 0.01, **P < 0.001.

reproduction (measured in number of grandchildren produced),
and (iv) sibling relatedness on the reproduction of their brothers
and sisters.

P1: Parental Relatedness on Offspring Reproduction. Both sons and
daughters of parents who were more closely related had signif-
icantly fewer total offspring. Pairwise contrasts showed that the
children of the least-related parents had significantly more sur-
viving offspring than both the intermediate-related and most-
related groups but showed no significant difference between the
intermediate- and most-related groups (Table 1 and Fig. 1). The
children of parents who were more closely related also had sig-
nificantly fewer offspring who survived to age 15 y (Fig. S2 and
Table S1).

P2: Spousal Relatedness on the Reproduction of Husbands and Wives.
The fitness outcomes of husbands and wives who marry close
kin are more ambiguous. A husband’s relatedness to his wife sig-
nificantly predicted overall differences in reproduction between
groups. Pairwise contrasts revealed that husbands who were least
related to their wives had significantly fewer offspring than those
who were intermediately and most related to their wives but
showed no significant difference between the intermediate- and
most-related groups (Table 1 and Fig. 2). A wife’s relatedness to
her husband also had an overall significant effect on her repro-
duction. Pairwise contrasts revealed that women who were least
related to their husbands did not significantly differ from those
who were intermediately related but did show that they have
more children than women who were most related to their hus-
bands (Table 1 and Fig. 2). Meanwhile there were no detectable
differences between the intermediate- and most-related groups
of wives. The impact of marrying relatives on the survival of the
couple’s children to age 15 y was also analyzed and did not have
any detectable effect on the survival of the offspring of either
husbands or wives (Table S1 and Fig. S3).

P3: Offspring Relatedness on Their Parent’s Fitness. Males have sig-
nificantly more grandchildren when their children marry more

closely related relatives. Pairwise contrasts between the low-
and intermediate-relatedness groups and the low- and high-
relatedness groups were both significant but the differences
between the intermediate- and high-relatedness groups were not
(Table 1 and Fig. 3). These fitness benefits do not seem to depend
on whether their daughters (ANOVA2,445 F = 4.48, P = 0.012)
or their sons (F2,340 = 4.36, P = 0.014) (Fig. S4A) marry rela-
tives. Females also have more grandchildren when their children
marry more closely related relatives (Fig. 3) but seem to bene-
fit more when their daughters marry relatives (ANOVA2,525 F =
18.2, P< 0.001) than when their sons do (ANOVA2,413 F = 9.88,
P< 0.001) (Fig. S4B).

Fig. 1. The effect of inbreeding on total fertility. Both sons and daughters
of more-related parents have fewer offspring than those whose parents are
less related. y axis: residuals (Methods) for total number of children (Fig. S2
shows residuals for survival to age 15 y). x axis: coefficient of relatedness
between one’s parents. Error bars: 95% confidence interval (CI).
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Fig. 2. The effect of marrying a relative on total fertility. Relatedness to
one’s wife or husband slightly reduces one’s total number of children, espe-
cially for females. y axis: residuals (Methods) for total number of children
(Fig. S2 shows residual for offspring survival to age 15 y). x axis: mean relat-
edness to one’s spouse. Error bars: 95% CI.

P4: Sibling Relatedness on the Fitness Outcomes of Brothers
and Sisters. Brothers. Male reproduction is significantly lower
when their brothers marry relatives (Table 1 and Fig. 4A).
Pairwise contrasts between the low- and intermediate-relatedness
groups and the low- and high-relatedness groups were both sig-
nificant but the differences between the intermediate- and high-
relatedness groups were not. In contrast, males have signifi-
cantly higher reproduction when their sisters marry relatives
(Table 1 and Fig. 4B). A pairwise contrast between the low-
and intermediate-relatedness groups was not significant but dif-
ferences between the low- and high-relatedness groups and the
intermediate- and high-relatedness groups were.
Sisters. The fitness of females increases slightly when their broth-
ers marry relatives (Table 1 and Fig. 4A). Pairwise contrasts
between the low- and intermediate-relatedness groups and the
intermediate- and high-relateness groups were not significant but
the difference between the low- and high-relatedness groups was.
Meanwhile, females are largely unaffected by the relatedness of
their sisters to their spouses (Table 1 and Fig. 4B). Pairwise con-
trasts between the low- and intermediate-relatedness groups and
the low- and high-relatedness groups were not significant, but
the difference between the intermediate- and high-relatedness
groups was.

Discussion
To better understand the fitness consequences of consan-
guineous marriage, we examined the effects of marrying rela-
tives on the reproduction of members of the nuclear family:
offspring, spouses, parents, and siblings. We found that (i) chil-
dren suffer from inbreeding depression when their parents are
closely related, (ii) the reproduction of wives is slightly lower
whereas the effects on husbands are equivocal when they marry
close kin, (iii) parents have more grandchildren when their chil-
dren marry relatives, and (iv) brothers have more children when
their sisters marry relatives and fewer children when their broth-
ers do whereas sisters benefit slightly when their brothers marry
kin and are unaffected when their sisters do. These results sug-
gest that parents benefit from exchanging their daughters with
close relatives. Overall, the asymmetric fitness costs and bene-
fits reported here provide evidence of an evolutionary conflict
over mate choice between parents and their offspring and among
brothers.

Parent–Offspring Conflict over Marriage. Differences in optimal
fitness outcomes between parents and offspring are expected
to cause conflict over marriage preferences (15). The asymmet-

ric fitness costs and benefits of marrying relatives among the
Yanomamö support this prediction and suggest that parents
should prefer that their offspring marry more closely related
kin than the spouses themselves or the offspring would pre-
fer. But how exactly are parents benefiting? Because of high
male reproductive skew among the Yanomamö, it is possible
that fathers might actively desire to exchange their daughters for
wives for themselves—a particular risk in polygynous societies.
However, the Yanomamö have a generational rule that forbids
males from marrying females in the descending generation (36).
Although such marriages may occasionally occur, our results do
not indicate that individuals obtain more spouses when either
their daughters (Fig. S5A) or sons (Fig. S5B) marry relatives. If
fathers were preferentially exchanging daughters with relatives
to obtain additional spouses for themselves, we would expect to
see a positive association between their numbers of wives and the
relatedness of their daughters to their sons in-law. Instead, par-
ents appear to be exchanging their daughters for daughters in-
law. In other words, exchanging daughters with relatives enables
parents to obtain more brides for their sons, which in turn seems
to generate more grandchildren.

The Origins of Cross-Cousin Marriage. Preferentially exchanging
spouses with close relatives may be driven by contingent reci-
procity. One of the biggest problems that individuals face when
engaged in high-stakes exchanges, which are often separated by
extended time lags, is how to accurately assess the risk of defec-
tion by the other party (8). This is particularly important when
giving a daughter away in exchange for the mere promise of a
future bride who is either not yet born or very young. Therefore,
parents may attempt to hedge the risk of the other party defect-
ing by preferentially arranging marriage exchanges with close rel-
atives (7). From the parents’ point of view, kin marriages have
the additional benefit of strengthening kin networks (e.g., kin
marriages increase overall within-family relatedness) (15, 36).
Although these benefits may help to explain the frequency of
consanguineous marriages, they do not account for why cross-
cousin marriage (marriage between the offspring of opposite-sex
siblings), in particular, is so much more common than parallel-
cousin marriage (marriage between the offspring of same-sex sib-
lings) across cultures (14, 30).

Traditionally, hypotheses for cross-cousin marriage prescrip-
tions have fallen into two basic camps—inbreeding avoidance
and mate exchange. Alexander (39) was the first to suggest that
parallel-cousin marriages were often prohibited because of the
possibility that same-sex siblings might share (sexually) each

Fig. 3. The effect of one’s offspring marrying relatives on number of grand-
children produced. Both sexes have more grandchildren when their chil-
dren marry relatives (Fig. S5 A and B separates this relationship by sons and
daughters). y axis: residuals (Methods) for total number of grandchildren. x
axis: mean relatedness of all offspring to their spouses. Error bars: 95% CI.
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Fig. 4. (A) The effect of one’s brothers marrying relatives on total fertility.
Males have significantly fewer children when their brothers marry relatives
and females have slightly more children when their brothers marry rela-
tives. y axis: residuals (Methods) for total number of children. x axis: mean
relatedness of one’s brothers (maternal and paternal) to their spouses. Error
bars: 95% CI. (B) The effect of one’s sisters marrying relatives on total fertil-
ity. Males have more children when their sisters marry relatives and females
are largely unaffected by whom their sisters marry. y axis: residuals (Meth-
ods) for total number of children. x axis: mean relatedness of one’s sisters
(maternal and paternal) to their spouses. Error bars: 95% CI.

other’s spouse(s), which increases the risk that putative parallel
cousins are actually half siblings. In this interpretation parallel-
cousin marriage taboos function to lower the risks of inbreeding.
Meanwhile, Levi-Strauss (5) and others have argued that an
important function of marriage is to form alliances between
groups and that cross-cousins are usually from different lineages
(e.g., matrilines or patrilines). Proponents of this “mate exchange
hypothesis” argue that cross-cousin marriage promotes lineage
exogamy and functions to build alliances between descent groups
(40). More recently, however, Chapais (9) proposed a phylo-
genetic explanation of the mate exchange hypothesis in which
male philopatry and female dispersal (Inbreeding, Sex-Biased Dis-
persal) combined with the practice of exogamy created a struc-
tural bias for marrying cross-cousins. According to this hypothe-
sis, cross-cousin marriage is expected to naturally emerge in the
presence of pair bonding, patrilocality, exogamy, parental con-
trol of children, and daughter or sister exchange (9). Whereas
the mate exchange hypothesis provides a functional explanation
for cross-cousin marriage, “the phylogenetic hypothesis” invokes
evolutionary constraints and suggests that it was lineage exogamy
that promoted cross-cousin marriage rather than the other way
around.

Although our results are broadly consistent with both mate
exchange and a phylogenetic explanation, they also suggest that
mate competition and cooperation among siblings may play an
important role in the origin and frequency of cross-cousin mar-
riage systems cross-culturally. Patrilocality can foster mate com-
petition between brothers who often reside together in adult-
hood and mutually beneficial relationships between brothers and
sisters who usually do not live together as adults and there-
fore do not compete over resources. Meanwhile, polygyny can
exacerbate same-sex competition for mates such that the con-
ditions favoring the formation of male–male alliances may be
less common than those favoring alliances between sisters or
opposite-sex siblings (41). For example, social groups of polyg-
ynous mountain gorillas (Gorilla beringei beringei) often contain
sexually mature siblings of both sexes (42, 43) and brothers
have been observed to engage in more aggressive interactions
and fewer affiliative behaviors, compared with mixed-sex or sis-
ter dyads (44). Interestingly, these observations seem to suggest
that alliances between opposite-sex siblings and conflicts between
brothers could develop in the absence of parental control over
mate choice. However, when marriages are arranged by parents
(e.g., daughter exchange instead of sister exchange), the bond
between the parents of the spouses is the critical factor, and this
can generate cross-cousin marriage (i.e., the exchange of daugh-
ters between opposite-sex siblings). Although these results do not
mean that cross-cousin marriage prescriptions are the necessary
result of mate competition between brothers, they do suggest that
mate competition between brothers could generate strong biases
for cross-cousin marriage independently of patrilocality (Inbreed-
ing, Sex-Biased Dispersal) and lineage exogamy.

Among the Yanomamö, both males and females have more
children when their opposite-sex siblings marry close kin. Males,
on the other hand, endure reduced fitness whereas females
are largely unaffected by the consanguinity of their same-sex
siblings (Fig. 4 A and B). Because parents can influence the
marriages of their children, these competitive and cooperative
relationships can bleed into the next generation and eventu-
ally become embedded in the rules governing the marriage
exchange system. Chapais (9) has argued that these patterns,
which often begin as mere social regularities, can over time
acquire a formal status and ultimately become codified in the
culture as social norms prescribing that only the offspring of
opposite-sex siblings are permitted to marry. It should be noted
that these same patterns are also consistent with the phyloge-
netic hypothesis (9) although the causation is different. The
phylogenetic constraints interpretation of our results is that
cross-cousin marriage generates mate competition between sib-
lings, whereas the “local mate competition hypothesis” suggests
the opposite—sibling competition drives cross-cousin marriage
prescriptions.

If the local mate competition hypothesis is true and compe-
tition between siblings plays an important role in the origin of
cross-cousin marriage prescriptions, then we should expect to
see parallel-cousin marriages more often when mate competi-
tion between same-sex siblings is low. Almost all parallel-cousin
marriages noted in the cross-cultural record are exchanges of
offspring between brothers (i.e., patrilateral parallel-cousin mar-
riage) and most of these occur in or near the Middle East (30,
45). Bedouin men, for instance, are presumed to possess mari-
tal rights over the daughters of their paternal uncles (46). His-
torically, explanations for this type of arrangement have focused
on males inheriting resources in these societies and the impor-
tance of retaining property within families (40). Perhaps, how-
ever, these inheritance rules serve to strengthen bonds between
brothers and reduce mate competition, thereby enabling enough
trust to allow them to exchange their daughters. There may also
be something about challenging desert environments or pastoral-
ist societies (e.g., goat herding) in general that reduces mate
competition and cultivates alliances between brothers. For exam-
ple, camel raiding and the defense of herds among Bedouin
pastoralists has been seen as important in the formation and
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preservation of alliances and central to the preservation of the
culture of these kin-based societies (47). The need to defend
and tend to herds can increase the benefits of cooperation
between males. It is important to note, however, that a reduc-
tion in the intensity of mate competition between brothers in
parallel-cousin marriage systems does not address causation and
is compatible with both the “phylogenetic constraints” and local
mate competition hypotheses. Which sex disperses (Inbreed-
ing, Sex-Biased Dispersal) is also likely to affect mate com-
petition and resource competition among siblings (48), so we
should expect to see more competition between maternal kin
and less conflict between paternal kin (49) in matrilocal soci-
eties. Female philopatry and high male reproductive skew (e.g.,
polygyny) are expected to expected to impact mate competition
among siblings oppositely, however, so these interactions can be
complicated.

Conclusion
In summary, marriages between close kin (i) significantly reduce
the reproductive success of offspring that result from these
unions, (ii) impose a slightly negative effect on the reproduc-
tive success of husbands and wives, and (iii) provide a substan-
tial reproductive benefit to both parents and opposite-sex siblings.
Together, these results suggest an important role of both parent–
offspring conflict and sibling competition over mate choice among
the Yanomamö. These results have broad implications for under-
standing the prevalence and origins of marriage systems across
cultures. Our findings may also reveal new ways to understand
within-family conflicts over mate choice. Overall, the impor-
tant role that Yanomamö parents play in the marriages of their
children, combined with asymmetric fitness outcomes between
parents and children, suggests that individual mate preferences
(especially those of daughters) may be less important than those
of parents (2, 10, 50) in generating marriage prescriptions. In
the Yanomamö, at least, cross-cousin marriage may be a partial
resolution to mate competition between coresident brothers.

Methods
Data Collection. This study is based on data collected by Napoleon A.
Chagnon (N.A.C.) between 1964 and 1988, ranging over a period of 50 non-
consecutive months from interviews of almost 2,000 individuals in 60 vil-
lages. Information was obtained for 4,158 individuals and 1,507 marriages.
The genealogical data used in this study include data on all marriages,
including information on the spouses, their children, their siblings, and their
parents (2). There were approximately 25,000 Yanomamö living in this area
at the time these data were collected (11). The ways in which spouses were
related could often be traced through multiple common ancestors and these
complex relationships were determined using the KINDEMCOM program.
The relatedness values between the spouses are coefficients of relatedness
(r) (the probability that any two individuals share two alleles that are iden-
tical by descent from a common ancestor) (51) and were derived from the
genealogy.

The Yanomamö do not have a written language, so the genealogi-
cal data are reliant upon information gathered through oral interviews.
The genealogies range from a depth of 1 to as many as 10 generations.
The accuracy of the estimates of relatedness between spouses depends
on the number of generations ancestral to the couple that are known,
whereas the completeness of reproductive histories depends on the age of
the individuals at the time of the census. To improve the accuracy of the
analysis, we excluded individuals if either of their parents was not known
and because the youngest male to reproduce was 17 y old and the youngest
female was 14 y old, we excluded all males and females younger than these
ages. In the end there were 1,599 individuals (770 males and 829 females)
for which there was enough information to obtain reliable measures of
spousal relatedness and estimates of fitness. This project was approved on
April 28, 2016, by the University of Missouri Institutional Review Board
(project no. 2001639).

Analysis. We used R version 3.2.2 for all analyses. The dependent variables
used in this study were age and year of birth adjusted estimates of an indi-
vidual’s (i) number of children, (ii) number of grandchildren, (iii) number of
children who survived to age 15 y, and (iv) number of spouses. All of the

dependent variables showed signs of overdispersion and an excess of zeroes
so a zero-inflated negative binomial (ZINBI) generalized linear regression
model was used.

The sample was first divided into dead (N = 743) and living (N = 856)
individuals over the ages of 17 y and 13 y for males and females, respec-
tively. For individuals who were alive at the time of the last interview the
residuals for males and for females were obtained separately. This was done
because of the high reproductive skew and different life history patterns of
Yanomamö men and women: Male variance in reproduction σ = 10.34 (N =
2,268) is higher than female variance σ = 6.0 (N = 1,890). The age of the
oldest female to give birth was 52 y but 99.5% of all female births were
to mothers who were 45 y old or younger. Therefore, all females over 45 y
old were given the truncated age of 45 y so that all females in our sample
had adjusted ages that were between 14 y and 45 y old. The oldest male
to father a child was 81 y but 99.5% of births were to fathers who were
72 y of age or younger. Therefore, all males over the age of 72 y were given
the truncated age of 72 y so that all males in or sample had adjusted ages
between 17 y and 72 y old.

Using these adjusted ages, we then used a retrospective technique to esti-
mate the completion of these key fitness traits had these males and females
lived to senescence (52). Year of birth, age, and age squared were all found
to have strong effects on fitness consequences so we entered these three
variables into our model. Age squared was included to account for quadratic
relationships (e.g., fitness returns may decline beyond a certain age). Year
of birth was used to control for cohort effects (i.e., certain generations or
time periods when individuals reproduced more) and because it provided
an estimate of the maximum amount of time that any additional data (e.g.,
children, grandchildren, spouses, mean relatedness to spouses) could have
been collected on any particular individual. For example, an individual born
in 1950 and censused in 1974 may have been 24 y old the last time N.A.C.
actually saw and recorded data on him but life history or spousal related-
ness information on this individual may have been updated up until the last
census in 1988.

For males the model revealed a strong and positive impact of all
covariates—age, age squared, and year of birth—on an individual’s total
fertility (McFadden’s pseudo-R2 = 0.49, N = 403), offspring who survived to
age 15 y (McFadden’s pseudo-R2 = 0.49, N = 403), number of grandchildren
(McFadden’s pseudo-R2 = 0.69, N = 403), and number of spouses (McFadden’s
pseudo-R2 = 0.27, N = 403). For females the model also showed a strong and
positive impact of age, age squared, and year of birth on an individual’s total
fertility (McFadden’s pseudo-R2 = 0.50, N = 453), offspring who survived to
age 15 y (McFadden’s pseudo-R2 = 0.49, N = 453), number of grandchildren
(McFadden’s pseudo-R2 = 0.70, N = 453), and spouses (McFadden’s pseudo-R2 =
0.14, N = 453) for all individuals who were still alive at the time of the last
census. Using these three covariates also produced the lowest adjusted and
unadjusted Akaike’s information criterion scores for both males and females.
Therefore, a ZINBI generalized linear model was used to regress year of birth,
age, and age squared on each of the dependent variables and these resid-
uals were saved and used to estimate fitness for all individuals who were
alive at the time of the last interview for all subsequent analyses. Dead sub-
jects were presumed to have complete life histories, so their fitness (i.e.,
total number of children, children surviving to age 15 y, grandchildren, and
spouses) was fitted to a model in which year of birth was entered as a pre-
dictor to correct for birth cohort effects on fitness residuals. These residuals
for living and dead individuals were saved and were used as our estimate of
fitness.

Finally, individuals were categorized into three groups based on their mean
coefficient of relatedness to their spouse(s)—[Low] = 0–0.031, [Medium] =
0.032–0.062, and [High] = 0.063–1. These categories are meaningful as
composite categories of cousin relatedness in a society with high repro-
ductive skew and where half-cousin marriages are much more common
than full-cousin marriages. These categories roughly equate to third and
fourth cousins [Low], second cousins and half-first cousins [Medium], and
full first cousins [High] and have enough individuals in each group so that
meaningful statistical comparisons between all categories can be made
(Fig. S1).

Data Archival. The data used in all these analyses can be found in Dataset S1.
For queries on any of these results or analyses please contact Robert Lynch
at robertflynch@gmail.com.
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