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Brief Report

Background: The minimum mortality temperature from J- or 
U-shaped curves varies across cities with different climates. This 
variation conveys information on adaptation, but ability to character-
ize is limited by the absence of a method to describe uncertainty in 
estimated minimum mortality temperatures.
Methods: We propose an approximate parametric bootstrap esti-
mator of confidence interval (CI) and standard error (SE) for the 
minimum mortality temperature from a temperature–mortality shape 
estimated by splines.
Results: The coverage of the estimated CIs was close to nominal 
value (95%) in the datasets simulated, although SEs were slightly 
high. Applying the method to 52 Spanish provincial capital cities 
showed larger minimum mortality temperatures in hotter cities, ris-
ing almost exactly at the same rate as annual mean temperature.
Conclusions: The method proposed for computing CIs and SEs for 
minimums from spline curves allows comparing minimum mortality 
temperatures in different cities and investigating their associations 
with climate properly, allowing for estimation uncertainty.

(Epidemiology 2017;28: 72–76)

The temperature–mortality relationship has been described 
as a J- or U-shaped curve, with a temperature at which risk 

of mortality is at a minimum.1 Minimum mortality tempera-
ture is found at different temperature levels, varying greatly 
across countries and regions possibly due to acclimatization.2,3 
The value of the minimum mortality temperature and in par-
ticular how it varies across places with different climates4 and 
over time5 has been investigated, as this is relevant to adapta-
tion to climate. However, such comparison of minimum mor-
tality temperatures, formal or informal, has been limited by 
the absence of a method to describe uncertainty in estimation 
of minimum mortality temperature. Temperature–mortality 
curves frequently do not identify clearly the point within the 
long bottom of the J or U shape where the minimum mortality 
temperature is, suggesting its estimation is imprecise.

This article presents a method to obtain an estimate, 
confidence interval (CI), and standard error (SE) for the mini-
mum mortality temperature based on the temperature–mortal-
ity shape estimated by splines, and in particular distributed lag 
nonlinear models. We apply this method to investigate the pat-
terns of minimum mortality temperature in the 52 provincial 
capital cities in Spain and explore the climatic determinants of 
variation in the city-specific minimum mortality temperature.

METHODS

Temperature–Mortality Relationship
We collected daily counts of all-natural cause mortality 

(International Classification of Diseases-9th revision: 1–799) 
and daily mean temperature for the 52 provincial capital cit-
ies in Spain for the study period 1990–2010 (data provided by 
the Spain National Institute of Statistics and the Spain National 
Meteorology Agency, respectively). For each city, we applied a 
standard time-series quasi-Poisson regression, including a natu-
ral cubic spline of time with 10 degrees of freedom per year to 
control for seasonal and long-term trends and an indicator of 
day of the week. We modeled the association with temperature 
using distributed lag nonlinear models.6,7 This class of mod-
els can describe the complex nonlinear and lagged dependen-
cies typically found for temperature and mortality through 
the combination of two functions that define the conventional 
exposure–response relationship and the additional lag–response 
relationship, respectively. The latter is applied to model the delay 
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between the exposure occurrence and the associated increase in 
risk. We specifically modeled the exposure–response curves 
with a natural cubic spline with three internal knots placed at 
the 10th, 75th, and 90th centiles of location-specific temperature 
distributions. We did so because the temperature–mortality asso-
ciation is typically more curved toward the tails, in particular the 
right tail for heat, than across the milder, more central range, and 
the lag–response curve with a natural cubic with three internal 
knots placed at equally spaced values in the log scale.8 The lag 
period is extended to 21 days to capture the long delay in the 
effects of cold and account for short-term harvesting.8 We tested 
these modeling choices further in sensitivity analyses.

Point of Minimum Temperature Mortality
Identifying a minimum mortality temperature from any 

estimated function associating temperature to mortality is 
straightforward. One merely needs to scan through the function 
to find the value of t that minimizes it. Finding a SE and CI is 
not so simple. We propose the following algorithm, which can 
be described as an approximate parametric bootstrap estimate:

	1.	 Simulate a large number (we used N = 10,000) of paramet-
ric bootstrap splines from the estimated spline coefficients 
and their covariance matrix.

2.	 For each simulated spline, identify the minimum mortality 
temperature.

3.	 From the N estimated minimum mortality temperature of 
the simulated bootstrap splines, use the 2.5th and 97.5th 
centiles and the SD to estimate the 95% CI and SE, 
respectively.

A detailed algorithm to find SE and CI for the minimum 
mortality temperature of the temperature-mortality spline and 
R code for the estimation process, jointly with examples of 
use and simulations, are given in eAppendix 1 (http://links.
lww.com/EDE/B116).

We used the estimates and SEs obtained by the above 
procedure to describe the distribution of the 52 minimum 
mortality temperatures and explore their association with the 
cities’ climates, summarized by the mean annual temperature, 
allowing for the estimation precision using random effects 
meta-analysis and meta-regression, estimating the between-
city component of variance by the method of moments.9

RESULTS
We first tested the coverage of the CI and bias in the 

standard error estimated from this method by applying splines 
simulated from an underlying association with known mini-
mum mortality temperature. Coverage of the 95% CI (from 
1,000 simulations) was 96.4%. Mean of estimated SEs were 
higher (+41%) but median just slightly lower (−4%) than the 
SD of minimum mortality temperatures in the datasets simu-
lated. Estimates did not change when using a negative bino-
mial rather than a Poisson distribution (eAppendix 1 Table; 
http://links.lww.com/EDE/B116).

The city-specific temperature–mortality curves are 
shown in eAppendix 2 (http://links.lww.com/EDE/B117). 
Most cities exhibited J or U shapes, showing evidence of 
increased mortality at temperatures higher and lower than the 
minimum mortality temperatures. However, we noticed that 
in some smaller cities, the minimum mortality temperature 
was at or close to one of the imprecisely estimated tails of 
the curve. To avoid what were likely spuriously high or low 
estimated minimum mortality temperatures, the point esti-
mate was therefore constrained to the 1st–99th centile range, 
although we allowed the bootstrap minimum mortality tem-
peratures, and hence CIs fall outside that range.

Figure 1 shows the curves for six cities selected to illus-
trate issues in estimating minimum mortality temperature and 
its CI. The top three cities in Figure 1 are typical in having 
convex (broadly U shaped) temperature–mortality curves, 
although for all except Barcelona the CIs widths suggest con-
siderable uncertainty in the minimum mortality temperature. 
Also the uncertainty is notably asymmetric. The long, flat bot-
tom of the curve for Madrid suggests the possibility of mini-
mum mortality temperature range, a possible extension of the 
minimum mortality temperature concept. Each of the bot-
tom three cities illustrates the main problems that can occur 
in smaller cities. In Tenerife and Cáceres, the unconstrained 
estimated minimum mortality temperatures are at the mini-
mum and maximum of their temperature ranges, respectively, 
although each city also has a local, more central minimum, 
which is the estimate of minimum mortality temperature if 
the minimum mortality temperature is constrained to be in 
the 1st–99th percentile range. But again the CI widths sug-
gest considerable uncertainty in the minimum mortality tem-
perature, especially in Caceres where includes the entire range 
of temperature. In Teruel, the temperature–mortality curve is 
monotonic increasing, so the 1st–99th percentile constraint 
merely increases the minimum mortality temperature esti-
mate from the minimum to the 1st percentile. The eAppendix 
3 (http://links.lww.com/EDE/B118) shows unconstrained and 
constrained estimates of minimum mortality temperatures for 
the cities for which the constraint was applies, and also for 
three others that would be constrained if 5th–95th or 10th–
90th percentile range constraints had been adopted.

The city-specific minimum mortality temperatures 
ranged from −2°C, in a small Northern city (Teruel) up to 
26°C in the Southern Mediterranean region (Tarragona and 
Castellόn), with random effects meta-analysis mean of 19.7°C 
(95% CI = 18.1°C, 21.4°C). In terms of the percentile scale 
minimum mortality temperatures ranged from the 1st to 93rd 
percentiles of the city-specific distribution of daily mean 
temperature (mean 15.5°C, ranged from 10.6°C to 21.6°C). 
Many of the minimum mortality temperatures are estimated 
imprecisely (mean standard error of 7.2°C), and the overlap 
of CIs suggests caution in comparing them between individ-
ual cities. Estimated underlying heterogeneity as a propor-
tion of total variation is moderate (I2 = 24%), but there is a 
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discernible pattern of higher thresholds in cities with higher 
annual mean temperatures (Figure 2). A random effects meta-
regression model confirmed this, estimating that the minimum 
mortality temperature increased on average 1°C for a mean 
rise of 1°C of the mean annual temperature (b = 1.09°C, 95%  
CI = 0.56°C, 1.63°C), with almost no residual heterogeneity 

(I2 = 2.8%). The patterns were broadly robust to alternative 
model assumptions. The use knots placed at the quartiles 
provided somewhat larger heterogeneity between-city esti-
mates, while lag periods at 14 and 28 days provided slightly 
lower and upper pooled estimates, respectively (eAppendix 4; 
http://links.lww.com/EDE/B119).

FIGURE 1.  Temperature–mortality associations for six provincial capital cities in Spain (with 95% CI shaded grey) selected to illus-
trate issues in estimating minimum mortality temperatures. The top three cities show unconstrained minimum mortality tempera-
tures and the bottom three constrained minimum mortality temperatures to the 1st–99th percentile range of mean temperature. 
Solid vertical lines are minimum mortality temperature and dashed vertical lines (as well as solid bottom-horizontal lines) are its 
95% confidence interval. RR indicates relative risk.
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DISCUSSION
By deriving and applying a method for computing CIs 

and SEs for minimums from spline curves, we were able to 
properly compare minimum mortality temperatures in differ-
ent cities and investigate associations of them with climate 
allowing for estimation uncertainty, which we found often to 
be large. The method is applicable to describing uncertainty in 
any minimum or maximum of a fitted spline curve.

The principle difficulty was handling minimum mortal-
ity temperatures that were apparently at minimum or maxi-
mum temperatures, where spline curves are imprecise, mainly 
in smaller cities. We believe that our somewhat ad hoc proce-
dure of constraining estimates to exclude temperatures in the 
extreme tails worked well in this data. However, it would seem 
sensible to review these procedures in future applications. It 
is possible for true minimum mortality temperatures to fall 
at or close to the minimum or maximum observed tempera-
tures, where spline curves are imprecise. Large cities showing 
empirical minimum mortality temperatures at extreme tem-
perature might give stronger evidence for this than the small 
cities with extreme minimum mortality temperatures seen in 
Spain. The use of minimum mortality temperatures from, for 
example, an empirical Bayes best linear unbiased tempera-
ture–mortality curves approach8 could be a more measured 
way to combine uncertain evidence from a city with prior 
expectations, but at the cost of complexity. Using the mean 
of the bootstrap simulated minimum mortality temperatures 

(as given in eAppendix 1; http://links.lww.com/EDE/B116) 
or natural cubic splines, which limit curvature of splines at 
tails,1,10 helps simplify problem cases more simply.

The availability of standard errors should make meta-
analysis of minimum mortality temperatures more pow-
erful and robust, but given often asymmetric confidence 
intervals, some caution is needed. Meta-analytic methods 
making minimum distributional assumptions to estimate the 
between-study component of variance, such as the DerSi-
monian and Laird approach,9 may have some advantages in 
this context.

Applying the method to 52 Spanish cities confirmed 
the previously observed pattern of higher minimum mortality 
temperatures in hotter cities2,3 and was able to quantify this, 
with minimum mortality temperatures rising almost exactly 
at the same rate as annual mean temperature (1°C/°C). This 
suggests that Spanish communities had broadly adapted 
to their local climate to the same extent. We hope that the 
method proposed will be useful in clarifying to what extent 
this is also true elsewhere and where climate varies over time, 
as found to some extent in France using similar analyses that, 
however, did not account for minimum mortality temperature 
uncertainty.5
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