
*For correspondence: Jean-

Baptiste.Raina@uts.edu.au

†Deceased

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 14

Received: 05 November 2016

Accepted: 02 March 2017

Published: 04 April 2017

Reviewing editor: Paul G

Falkowski, Rutgers University,

United States

Copyright Raina et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Subcellular tracking reveals the location
of dimethylsulfoniopropionate in
microalgae and visualises its uptake by
marine bacteria
Jean-Baptiste Raina1,2,3,4,5*, Peta L Clode6,7, Soshan Cheong8, Jeremy Bougoure6,9,
Matt R Kilburn6, Anthony Reeder6, Sylvain Forêt4,10†, Michael Stat11,
Victor Beltran2, Peter Thomas-Hall2, Dianne Tapiolas2, Cherie M Motti1,2,
Bill Gong8, Mathieu Pernice3, Christopher E Marjo8, Justin R Seymour3,
Bette L Willis1,4,5, David G Bourne2,5

1AIMS@JCU, James Cook University, Townsville, Australia; 2Australian Institute of
Marine Science, Townsville, Australia; 3Climate Change Cluster, University of
Technology Sydney, Sydney, Australia; 4ARC Centre of Excellence for Coral Reef
Studies, James Cook University, Townsville, Australia; 5College of Science and
Engineering, James Cook University, Townsville, Australia; 6The Centre for
Microscopy Characterisation and Analysis, The University of Western Australia,
Crawley, Australia; 7Oceans Institute, The University of Western Australia, Crawley,
Australia; 8Mark Wainwright Analytical Centre, University of New South Wales,
Kensington, Australia; 9School of Earth and Environment, The University of Western
Australia, Crawley, Australia; 10Research School of Biology, Australian National
University, Canberra, Australia; 11Trace and Environmental DNA Laboratory,
Department of Environment and Agriculture, Curtin University, Perth, Australia

Abstract Phytoplankton-bacteria interactions drive the surface ocean sulfur cycle and local

climatic processes through the production and exchange of a key compound:

dimethylsulfoniopropionate (DMSP). Despite their large-scale implications, these interactions

remain unquantified at the cellular-scale. Here we use secondary-ion mass spectrometry to provide

the first visualization of DMSP at sub-cellular levels, tracking the fate of a stable sulfur isotope (34S)

from its incorporation by microalgae as inorganic sulfate to its biosynthesis and exudation as

DMSP, and finally its uptake and degradation by bacteria. Our results identify for the first time the

storage locations of DMSP in microalgae, with high enrichments present in vacuoles, cytoplasm and

chloroplasts. In addition, we quantify DMSP incorporation at the single-cell level, with DMSP-

degrading bacteria containing seven times more 34S than the control strain. This study provides an

unprecedented methodology to label, retain, and image small diffusible molecules, which can be

transposable to other symbiotic systems.

DOI: 10.7554/eLife.23008.001

Introduction
Interactions between marine phytoplankton and bacteria constitute an important ecological linkage

in the oceans (Cole, 1982), controlling chemical cycling and energy transfer to higher trophic levels

(Azam and Malfatti, 2007; Falkowski et al., 2008). The cycling of sulfur, an essential element for

living organisms, depends on the metabolic interactions between these two Kingdoms
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(Sievert et al., 2007). A striking example is the production of the sulfur compound dimethylsulfonio-

propionate (DMSP) by phytoplankton and its degradation by marine bacteria (and phytoplankton

themselves) into the climate-active gas dimethylsulfide (DMS) (Alcolombri et al., 2015; Ayers and

Gras, 1991; Howard et al., 2006; Todd et al., 2007). The subsequent release of DMS into the

atmosphere contributes 90% of biogenic sulfur emissions and initiates the formation and growth of

aerosols, thereby enhancing cloud formation and sunlight scattering (Ayers and Gras, 1991). This

highlights how chemical interactions occurring between marine microorganisms across micrometre-

scales can ultimately have large-scale impacts on climate (Sievert et al., 2007; Simó, 2001). How-

ever, direct measurements of these metabolic interactions, critical to the global sulfur cycling, have

not previously been possible at the scale where they occur, the sub-cellular level.

In the surface ocean, the largest quantities of sulfur are present as dissolved sulfate, which consti-

tutes the main sulfur source for phytoplankton (Sievert et al., 2007; Stefels, 2000). Most of the sul-

fur derived from sulfate uptake is converted by these organisms into sulfur-based amino acids, and a

fraction is ultimately used to synthesise DMSP (Stefels, 2000) (Figure 1). Globally, more than a bil-

lion tons of DMSP are produced every year, which has been estimated to represent up to 10% of

the amount of carbon fixed by phytoplankton (Archer et al., 2001; Simó et al., 2002). However,

despite the central role played by DMSP in the marine sulfur cycle, a mechanistic understanding of

the biochemistry at the heart of DMSP cycling is currently lacking. Previous studies in higher plants

provided strong evidence that DMSP biosynthesis starts in the cytosol and ends in the chloroplast

(Trossat et al., 1996, 1998). However, DMSP biosynthesis occur through a different route in phyto-

plankton (Stefels, 2000), and we still do not know: (1) where this compound is produced and stored

in phytoplankton cells; (2) what are its functions; and (3) how efficiently it is transferred from phyto-

plankton producers to bacterial degraders.

We used the dinoflagellate Symbiodinium, a taxon that includes some of the most prodigious

DMSP producers on the planet (Caruana and Malin, 2014; Saltzman and Cooper, 1989). Symbiodi-

nium cells can be free-living in the water column, but are primarily known for the endosymbiotic

associations they form with tropical cnidarians that fuel the extremely high productivity of coral reef

ecosystems (Dubinsky, 1990). Populations of reef-building corals are major DMSP production hot-

spots (Broadbent et al., 2002; Raina et al., 2013) and their contribution to the marine sulfur cycle is

disproportionately large given their relatively restricted distributions (Raina et al., 2013;

Fischer and Jones, 2012). In this ecosystem, DMSP constitutes an important source of carbon and

eLife digest Sulfur is an essential element for many organisms and environmental processes.

Every year, organisms including microalgae produce more than one billion tons of a sulfur-

containing compound called DMSP. Some of this DMSP is released into seawater, where it acts as a

key nutrient for microscopic organisms and as a foraging cue to attract fish. DMSP is also the

precursor of a gas that helps to form clouds.

Despite DMSP’s potential large-scale effects, it is still not clear what role it plays in the organisms

that produce it, or how it is transferred from the microalgae that produce it to the bacteria that use

it. It is thought that DMSP could potentially protect the cells from sudden changes in the amount of

salt in the seawater (salinity) or from other damage, such as oxidative stress – a build-up of harmful

chemicals inside cells.

In a controlled setting using artificial seawater, Raina et al. used high-resolution imaging and

chemical analysis to track the journey of DMSP from microalgae to recipient bacteria. The results

show that similar to land plants, algae store DMSP in the compartments that regulate cell pressure

and photosynthesis. The presence of DMSP in these locations also supports its proposed role in

protecting cells from changes in salinity or oxidative damage.

A future step will be to identify the genes involved in producing DMSP in microalgae. This

knowledge could be used to create mutants that are either incapable of producing this molecule or

that overproduce it. In combination with the high-resolution imaging techniques described here, this

will allow researchers to fully understand the role that DMSP plays in these organisms.

DOI: 10.7554/eLife.23008.002
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Figure 1. DMSP biosynthetic pathway targeted in this study. Sulfate (SO4
2-) taken up from seawater by Symbiodinium is converted to sulfite (SO3

2-),

sulfur-based amino acids and finally DMSP. Some DMSP molecules are then exuded from Symbiodinium cells and can be degraded by a variety of

marine bacteria (sulfur atoms (S) and bacterial cells that have taken up sulfur are in red). The biosynthetic pathway presented here is simplified, for more

details see Stefels (Stefels, 2000).

Figure 1 continued on next page
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sulfur for the diverse and highly abundant bacterial communities harboured by corals (Raina et al.,

2010). Here we tracked and quantified the incorporation of a stable isotope of sulfur into Symbiodi-

nium and its subsequent transfer to associated bacteria. To provide the first sub-cellular imaging

and quantification of DMSP, we used a unique suite of analytical techniques, taking advantage of: (i)

the spatial resolution afforded by nano-scale secondary ion mass spectrometry (NanoSIMS), (ii) the

molecular characterization enabled by Time-of-Fight secondary ion mass spectrometry (ToF-SIMS),

and (iii) the precise quantification allowed by nuclear magnetic resonance (NMR) and liquid chroma-

tography-mass spectrometry (LC-MS).

Results and discussion
We used the rare isotope 34S as a tracer to follow the exchange of sulfur between marine micro-

organisms at the single-cell level. Symbiodinium cells were incubated for 18 days in artificial seawa-

ter containing 34S-labelled sulfate as the sole sulfur source (34S-ASW; Figure 1—figure supplement

1). We relied exclusively on the Symbiodinium cellular machinery to biosynthesise and exude 34S-

labelled DMSP following incubation with the 34S-sulfate precursor. To prevent direct uptake of 34S-

sulfate by bacteria, all Symbiodinium cultures were rinsed thoroughly and re-inoculated into ASW

containing sulfate in natural isotopic abundance (natS-ASW) before addition of bacterial cells. Two

different bacterial strains were added to the rinsed cultures and co-incubated for six hours: (i) Pseu-

dovibrio sp. P12, a DMSP-degrading bacterium isolated from healthy corals (Raina et al., 2016),

selected because of its worldwide distribution in coastal waters (Shieh et al., 2004) and its abun-

dance in benthic invertebrate communities (Bondarev et al., 2013); and (ii) a control, Escherichia

coli W (ATCC 9637), a widely studied and fully sequenced strain, able to grow in seawater and not

capable of degrading DMSP. To precisely localise bacterial cells, both strains were pre-grown in a

medium enriched in the rare stable isotope 15N (in amino-acids and ammonium form). The cellular

incorporation of the stable isotope tracers (34S and 15N) was identified by an increase in the sulfur

(34S/32S) and/or nitrogen (15N/14N) ratio above their natural abundance values (0.043 and 0.0037,

respectively).

Symbiodinium cell numbers doubled during the incubation period in the medium containing 34S-

labelled sulfate, reaching approximately 2.9 million cells ml�1 after 18 days (Figure 1—figure sup-

plement 2). LC-MS analyses carried out at the end of the experiment on extracted Symbiodinium

cells confirmed that all cultures initially incubated with 34S-sulfate were highly enriched in 34S-DMSP,

which represented up to 46% of the DMSP molecules present in samples analysed (Figure 2, Fig-

ure 2—source data 1). This result confirms that sulfur atoms used by dinoflagellates to synthesise

DMSP can originate from the uptake of inorganic sulfate derived from seawater (Stefels, 2000). In

addition to 34S-DMSP, unexpectedly high levels of 32S-DMSP (ranging from 54% to 66% of total

DMSP) were recorded in Symbiodinium cultures (Figure 2—source data 1). The presence of these

high levels of 32S-DMSP can be explained by a combination of two factors: (i) Symbiodinium cells

density only doubled during the incubation phase in 34S-ASW, retaining a large fraction of the natu-

ral pool of 32S initially present in the starting culture prior to the incubation; (ii) new 32S-DMSP might

have been synthesised during the six hours immediately preceding sampling, when Symbiodinium

cells were incubated in natS-ASW medium. Although high concentrations of DMSP were present in

the methanolic Symbiodinium cells extract (Figure 2—source data 1), sulfur containing amino acids

(methionine and cysteine) were not detected by LC-MS or 1H NMR.

Figure 1 continued

DOI: 10.7554/eLife.23008.003

The following source data and figure supplements are available for figure 1:

Source data 1. ASP-8A supplement composition used for Symbiodinium cultures modified from Blank (1987).

DOI: 10.7554/eLife.23008.004

Figure supplement 1. Sampling design showing the four different culture treatments.

DOI: 10.7554/eLife.23008.005

Figure supplement 2. Growth kinetics of Symbiodinium cells (strain C1; mean ± SE; n = 8) incubated at 27˚C in artificial seawater containing either
34SO4

2- (red) or natSO4
2- (green) as the sole sulfur source.

DOI: 10.7554/eLife.23008.006
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Up to 10% of the carbon fixed by photosynthetic algae is used for the production of DMSP

(Sievert et al., 2007; Archer et al., 2001; Simó et al., 2002), which represents a major energy

investment for these organisms and strongly suggests that this compound plays a central function in

algal cells. To understand more precisely the functional role of DMSP, we used two SIMS approaches

to infer its location within cells. To effectively prevent the loss of DMSP from the cells, the entire

sampling procedure leading to SIMS analyses had to be water-free, with all steps performed under

strict anhydrous conditions. For this, we used cryopreservation techniques followed by freeze
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Figure 2. Representative HPLC-MS spectra showing the presence and relative abundance of 32S-DMSP (green peak) and 34S-DMSP (red peak) in

methanol extracts derived from Symbiodinium culture (particulate fraction). (a) incubated with natS (treatment 4, see Figure 1—figure supplement 1);

(b) incubated with 34S (treatment 3, see Figure 1—figure supplement 1). For more detailed spectra, see Figure 2—figure supplement 2; for absolute

DMSP abundance, see Figure 2—source data 1. (c) Positive-ion ToF-SIMS spectrum of Symbiodinium incubated with 34S (treatment 3, see Figure 1—

figure supplement 1) after resin embedding (34S-DMSP represented 46% of total DMSP counts). For comparison between treatment and control

spectra, see Figure 2—figure supplement 1; (d) Negative-ion ToF-SIMS images showing the distribution of CN-, HS- and 34S- species over a

Symbiodinium cell (treatment 3, see Figure 1—figure supplement 1) enriched in 34S. Field of view is 20 � 20 mm2 (lateral resolution is ~300 nm).

DOI: 10.7554/eLife.23008.007

The following source data and figure supplements are available for figure 2:

Source data 1. DMSP in methanol extracts derived from the four different Symbiodinium culture treatments (particulate fraction), as measured by quan-

titative NMR (n = 3 biological replicates for cultures inoculated with Pseudovibrio sp.) and HPLC-MS (32S-DMSP and 34S-DMSP fractions, n = 3).

DOI: 10.7554/eLife.23008.008

Figure supplement 1. Representative positive-ion spectra of (a) Araldite 502 resin, and Symbiodinium (b) incubated with natS (treatment 4) and (c)

incubated with 34S (treatment 3) after resin embedding.

DOI: 10.7554/eLife.23008.009

Figure supplement 2. Representative HPLC-MS spectra showing the presence and relative abundance of 32S-DMSP (mass 135.04) and 34S-DMSP (mass

137.04) in methanol extracts: (a) DMSP standard containing natural abundance of 34S-DMSP; (b) Symbiodinium cells incubated with natS (treatment 4);

(c) Symbiodinium cells incubated with 34S (treatment 3).

DOI: 10.7554/eLife.23008.010
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substitution in an acrolein-ether mixture. This method has routinely been used to successfully pre-

serve cellular ions and compounds in a variety of systems (Altus and Canny, 1985; Ashford et al.,

1999; Kaiser et al., 2015; Marshall et al., 2007; Mostaert et al., 1996), with the acrolein stabilizing

and preserving cellular proteins, nucleic and fatty acids through cross linking, while the low tempera-

ture, anhydrous conditions ensure preservation and retention of diffusible ions and water-soluble

molecules (such as DMSP). The inclusion of acrolein ensures excellent cell structural preservation at

a low temperature, which is required for high resolution NanoSIMS analyses (Kaiser et al., 2015;

Marshall, 1980).

ToF-SIMS revealed that 34S-DMSP was present and abundant in the preserved cells following

resin embedding, with a ratio of 34S-DMSP/32S-DMSP matching the bulk analyses carried out with

LC-MS prior to embedding (Figure 2c–d, Figure 2—figure supplement 2). NanoSIMS analysis

revealed that Symbiodinium exposed to 34S-labelled sulfate were nine times more enriched in 34S

than the cells in the control (34S/32S ratio in 34S-ASW treatments: 0.391 ± 0.046, compared to natS-

ASW controls 0.044 ± 0.001 [Figure 4—figure supplement 1]). Furthermore, substantial spatial vari-

ability in 34S enrichment was detected within Symbiodinium cells. Relatively low level of enrichments

were detected in the nucleus (34S/32S: 0.087 ± 0.004) which might correspond to the presence of
34S-labelled amino-acids in the histone-like proteins that condense Symbiodinium DNA into chromo-

somes (Shoguchi et al., 2013) (Figure 3). Much higher enrichment levels were detected in vacuoles

(34S/32S: 0.337 ± 0.011), chloroplasts (34S/32S: 0.384 ± 0.020) and cytoplasm (34S/32S: 0.451 ± 0.025);

which means that the enrichment in these cellular structures was 7.7, 8.8 and 10.3 times over the nat-

ural abundance levels (Figure 3). However, the largest 34S enrichment was observed in small hot-

spots often observed near the Symbiodinium cell periphery (34S/32S: 0.971 ± 0.059; Figure 3),

reaching more than 22 times the natural abundance level. Based on their small size and their high
34S enrichment, these hotpots are likely storage droplets containing sulfolipids, a group of sulfur

compounds known to accumulate in Symbiodinium (Garrett et al., 2013; Yuyama et al., 2016).

Lipid droplets of similar sizes and locations can be observed in these cells using electron microscopy

(Figure 3—figure supplement 1). We were not able to detect methionine or cysteine using LC-MS

or ToF-SIMS, which suggest that the intracellular concentration of these sulfur based amino-acids

was relatively low. In contrast, DMSP is known to be by far the most abundant organic sulfur com-

pound present in dinoflagellate cells (Matrai and Keller, 1994), representing more than 50% of the

total organic sulfur in these organisms (Matrai and Keller, 1994). DMSP was the only organic sulfur

compound we were able to detect in the Symbiodinium cells (through LC-MS, 1H NMR and ToF-

SIMS), suggesting that most of the remaining 34S signal measured in Symbiodinium cells with Nano-

SIMS is highly likely originating from DMSP.

DMSP is an effective scavenger of reactive oxygen species (ROS), particularly hydroxyl radicals

(.OH) (Sunda et al., 2002). The in vivo half-life of .OH is 10�9 seconds (Sies, 1993), which implies

that these highly reactive molecules can damage lipids, nucleic acids, amino-acids or carbohydrates

present in their direct vicinity. To be an effective antioxidant, a molecule needs not only to be able

to scavenge ROS, but also to be located close to their source. Although the capacity of DMSP to

detoxify ROS is established (Sunda et al., 2002), it has not been previously possible to ascertain its

specific cellular function because its location is still unknown. If some DMSP is located in the cyto-

plasm, as suggested by our NanoSIMS data, it will be ideally localised to act as an osmolyte

(Kiene et al., 1996). Furthermore, the presence of strong 34S signals in and around chloroplasts,

where ROS are formed, support its role as an antioxidant (Sunda et al., 2002).

Following synthesis by phytoplankton, DMSP constitutes an important carbon and sulfur source

for heterotrophic marine bacteria, which can either demethylate the compound and incorporate its

sulfur into proteins or cleave it to produce DMS (Curson et al., 2011). At the termination of the

experiment, total DMSP concentrations in Symbiodinium cells inoculated with the DMSP-degrading

bacterium Pseudovibrio sp. P12 were 31% lower relative to those containing no bacteria or bacteria

unable to degrade DMSP (Figure 2—source data 1). As Symbiodinium abundance did not differ

between the treatments (Figure 1—figure supplement 2), the lower DMSP concentrations recorded

are likely a consequence of the presence of Pseudovibrio cells able to degrade this compound. We

sequenced the genome of Pseudovibrio sp. P12, revealing that this bacterium harbours a complete

DMSP cleavage pathway, including a DMSP acyl-CoA transferase (encoded by dddD), a DMSP trans-

porter (dddT) and the downstream catabolic enzymes (dddB-C) (Todd et al., 2007; Raina et al.,

2016). Further analyses using NMR revealed that this DMSP degradation pathway was functional,
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Figure 3. Representative NanoSIMS ion images of Symbiodinium cells showing the sub-cellular distribution of 34S. (a and b) 12C14N/12C2 mass images

showing cellular structures. (c and d) 34S/32S ratio images of the same cells, shown as Hue Saturation Intensity (HSI) images where the colour scale

indicates the value of the 34S/32S ratio, with natural abundance in blue, changing to pink with increasing 34S levels. (e) Isotope ratio of 34S/32S in

different cellular regions (nucleus n = 10; vacuole n = 3; chloroplast n = 35; cytoplasm n = 12; hotspot n = 20; error bar: SE; source data available:

Figure 3—source data 1). The dashed blue line represents the natural 34S abundance recorded in the control samples. nu: nucleus; ch: chloroplast; py:

pyrenoid; ua: uric acid storage; v: vacuole; cy: cytoplasm; li: sulfolipids. Scale bars: 1 mm.

DOI: 10.7554/eLife.23008.011

Figure 3 continued on next page
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enabling this strain to convert high concentrations of DMSP into DMS (Raina et al., 2016). In addi-

tion, Pseudovibrio sp. P12 harbours homologues of genes involved in the demethylation pathway

(dmdA-B-C-D), though these genes have a relatively low sequence identity (24%, 30%, 43% and

32%, respectively) (Raina et al., 2016) to the genes originally identified in Ruegeria pomeroyi DSS-3

(Reisch et al., 2011).

Bacteria-sized 15N hotspots localised outside Symbiodinium cells in NanoSIMS images were accu-

rately identified as inoculated bacterial cells based on their unique nitrogen isotopic signatures

(1151-fold increase on average over natural abundance, n = 79, Figure 4—figure supplement 1).

Notably, within the Pseudovibrio treatment, the position of these 15N hotspots correlated exactly

with 34S hotspots (Figure 4), which were characterised by a 3.3-fold increase in the 34S/32S ratio over

natural abundance (n = 60, Figure 4h). These observations confirmed that Pseudovibrio cells assimi-

lated 34S-labelled Symbiodinium-derived metabolites. A 34% increase was also recorded in the

mean 34S/32S ratio of E. coli cells (0.058 ± 0.002; n = 19), which are unable to degrade DMSP (com-

pared to controls: 0.0438, Figure 4h). This enrichment, significantly higher than the expected natural

abundance levels (t-Test, n = 19, t = 9.227, *p<0.001), can be explained by: (i) the capacity of E. coli

to uptake small quantities of DMSP through betaine transporters to use as an osmoprotectant

(Cosquer et al., 1999); (ii) the exudation of small quantities of other sulfur-containing substrates by

Symbiodinium, such as methionine, which occur at a ratio of 8.2 ± 2.6 per 1000 amino acid residues

in these dinoflagellates (Markell and Trench, 1993). In contrast, the high 34S enrichment recorded in

Pseudovibrio cells, together with the significant decrease of particulate DMSP recorded in Pseudovi-

brio-inoculated treatments (Figure 4i), are likely due to the incorporation and degradation of DMSP.

A comparison of 34S uptake between the two bacterial strains further highlights differences in their

capacity to metabolise DMSP; Pseudovibrio incorporated seven times more sulfur than E. coli during

the six-hours incubation (Pseudovibrio: specific uptake of 6.4 ± 0.3 ng S mg�1 of dry weight, n = 60;

E. coli: 0.9 ± 0.1 ng S mg�1 of dry weight, n = 19). However, enzymatic cleavage of 34S-DMSP into

volatile 34S-DMS, which diffuses out of Pseudovibrio cells and is therefore not captured by our Nano-

SIMS measurements, are likely to have caused an underestimation of the amount of sulfur cycled by

this bacterium.

The marine sulfur cycle is a fundamental driver of atmospheric chemistry and climatic processes,

yet its global influence is the product of unquantified cellular interactions between microorganisms.

Here we used two SIMS approaches to directly visualise the accumulation and subsequent transfer

of DMSP between marine microalgae and bacteria with unprecedented sub-cellular resolution. We

applied a method that enables the preservation of water-soluble compounds, such as DMSP, in sam-

ples. This procedure, applicable to any system, may serve as a template to study the sub-cellular

localization and identification of other small and highly diffusible molecules. In addition, similarly to

other recent stable isotope approaches (Stefels et al., 2009), our method may be used to quantify

the production rate of DMSP at the single cell level. We confirmed that 34S-DMSP was the main

organic sulfur compound within the algal cells and we subsequently localised large quantities of the

sulfur tracer 34S in algal vacuole, cytoplasm and chloroplasts. This strongly indicates that the relative

concentrations of DMSP are higher in these key cellular locations, providing corroborative evidence

for its functional role in mitigating both osmotic and oxidative stresses. Taken together, we have

demonstrated that it is possible to image and quantify DMSP in phytoplankton and their associated

bacteria at the sub-cellular scale. These methods open the way to further studies resolving the role

of DMSP in phytoplankton and its contribution to phytoplankton-bacteria interactions.

Figure 3 continued

The following source data and figure supplement are available for figure 3:

Source data 1. 32S and 34S measured in the different cellular region depicted in Figure 3e.

DOI: 10.7554/eLife.23008.012

Figure supplement 1. Representative electron micrographs of Symbiodinium cells after OsO4 staining showing the position and size of intracellular

lipid droplets.

DOI: 10.7554/eLife.23008.013
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Figure 4. Representative NanoSIMS ion images of Symbiodinium cells exposed to 34S- or natS-artificial seawater (ASW) for 18 days and subsequently

inoculated with two different bacterial strains for six hours. (a) Timeline of the experiment. (b, c and d) 12C15N/12C14N mass images showing the

presence of 15N enriched bacterial cells. (e, f and g) 34S/32S ratio image of the same regions. These mass images are shown as HSI images where the

colour scale indicates the value of the stable isotope ratios, with natural abundance in blue, changing to pink with increasing 15N or 34S levels. (b, c, e

and f) Symbiodinium cultures were inoculated with the DMSP-degrading bacterium Pseudovibrio sp. P12 (treatment 1). (d and g) Symbiodinium cultures

were inoculated with Escherichia coli (treatment 2). White arrows indicate bacteria. (h) Isotope ratio of 34S/32S in bacteria, Pseudovibrio cells were

significantly more enriched than E. coli (t-Test, n = 60, t = 9.021, *p<0.001, error bars: SE). The dashed blue line represents the natural 34S abundance

recorded in the control samples. (i) Total particulate DMSP concentration in Symbiodinium inoculated with Pseudovibrio sp. or E. coli (t-Test, n = 3,

t = 9.908, *p<0.001, error bar: SE). Source data available: Figure 4—source data 1. Note: two regions of interest were merged to create Figure 4c due

to stage-shifting errors during sequential acquisition of N and S data. Scale bars = 3 mm.

DOI: 10.7554/eLife.23008.014

The following source data and figure supplement are available for figure 4:

Source data 1. 12C15N, 12C14N, 32S and 34S measured in the different organisms and treatments depicted in Figure 4h and Figure 4—figure supple-

ment 1.

DOI: 10.7554/eLife.23008.015

Figure supplement 1. Isotope ratio of (a) 15N/14N and (b) 34S/32S in Symbiodinium and bacteria cells measured by NanoSIMS in the different

treatments (values were extracted from the images).

DOI: 10.7554/eLife.23008.016
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Materials and methods

Isolation of Symbiodinium and bacteria
Cells of Symbiodinium type C1 (confirmed by sequencing of the ITS1 gene) used in this study were

isolated from air-brushed tissues of the coral Acropora tenuis, which had been collected from Mag-

netic Island, Great Barrier Reef, Australia (latitude 19˚10’S; longitude 146˚50’E). Cells were sequen-

tially washed three times (5 min at 1600 g) with 0.2 mm filtered seawater. Clean Symbiodinium cells

were inoculated into 24 well plates with sterile IMK medium (Wako Chemicals, Richmond, VA, USA)

with the antibiotics penicillin (100 mg ml�1), neomycin (100 mg ml�1), streptomycin (100 mg ml�1),

nystatin (100 mg ml�1), amphotericin (2.5 mg ml�1), and Germanium dioxide (50 mM)) for 15 days at

27˚C, 50 mE and 14:10 light:dark cycle. After this initial incubation, cells from uncontaminated wells

were pooled and re-inoculated in new 24-well plates with IMK medium plus antibiotics as above,

and incubated for 20 days at the same temperature and lighting conditions. Finally, uncontaminated

cells were pooled and inoculated into 25 mL of sterile IMK without antibiotics until the start of the

experiment (Santos et al., 2011). Cultures were genotyped by single-strand conformation polymor-

phism (SSCP) of the ITS1 region (van Oppen et al., 2001).

A coral-associated bacterium, Pseudovibrio sp. P12, was isolated from healthy colonies of the

reef-building coral Pocillopora damicornis. This bacterial strain is commonly associated with reef-

building corals (Bondarev et al., 2013; Nissimov et al., 2009; Radjasa et al., 2008; Ritchie, 2006;

Rypien et al., 2010; Sulistiyani et al., 2010) and capable of metabolizing DMSP as a sole carbon

source (Garren et al., 2014). Coral colonies were collected from Davies Reef, Great Barrier Reef,

Australia (latitude 18˚51’S; longitude 147˚41’E) and maintained in aquaria at the Australian Institute

of Marine Science (Townsville, Queensland, Australia) prior to strain isolation. A dilution series of

coral tissue slurries was inoculated on minimal marine agar plates (1% bacteriological agar; 0.3%

casamino acids; 0.4% glucose; in 1 litre of artificial seawater) (Hjelm et al., 2004). After 2 days of

incubation at 28˚C, single colonies were transferred into Marine Broth (Difco) and grown overnight.

Liquid cultures were re-plated on minimal marine agar and the procedure was repeated iteratively

until pure cultures were obtained. A laboratory strain of Escherichia coli (E. coli W (ATCC 9637)) was

chosen as a control strain based on its ability to grow in the artificial seawater used in this study (see

medium composition below), and its lack of DMSP degradation and subsequent sulfur assimilation

pathways (unlike many marine or coral bacterial isolates [Raina et al., 2010; Howard et al., 2008]).

Bacterial genomic analysis
High molecular weight DNA from a pure culture of the Pseudovibrio sp. P12 strain was obtained

using a miniprep phenol/chloroform based DNA extraction (Ausubel et al., 1987). A paired-end

library was prepared using the Illumina Truseq protocol (Illimina, San Diego, CA, USA), with an insert

size of 169 bp and a read size of 150 bp. The library was sequenced on an Illumina MiSeq instrument

at Monash University (Melbourne, Australia). The genome was assembled with the SPAdes assem-

bler (v2.4.0) (Bankevich et al., 2012) and annotated with the Prokka software (v1.5.2) (See-

mann, 2014), providing a draft genome assembly of Pseudovibrio sp. P12. The presence of the

genes involved in DMSP metabolism was investigated by searching for homologs of the correspond-

ing genes using reciprocal best BLAST hits.

Synthesis of labelled magnesium sulfate (Mg34SO4)
Magnesium sulfate (Mg34SO4) was synthesised from pure sulfur 34S (purity >99%, Cambridge Iso-

tope, MA) following a two-step reaction:

1. 6HNO3 +
34S fi H2

34SO4 +6NO2 + 2H2O
2. H2

34SO4 + MgCO3 fi Mg34SO4 +H2O + CO2

Elemental sulfur 34S (0.1069 g) was ground into a fine powder and transferred to a pear-shaped

flask. Nitric acid (65%, 4 ml) was added to the flask, heated to 80˚C and refluxed for 5 hr. The tem-

perature was subsequently raised to 130˚C and refluxed for an additional 24 hr in order to

completely oxidise remaining nitric acid. The resulting sulfuric acid (H2
34SO4) was then converted to

Mg34SO4 by the addition of magnesium carbonate (MgCO3) (0.2643 g), giving a yield of 0.3780 g.

The solution was subsequently heated to 100˚C until all water had completely evaporated. Elemental
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analysis of the dried crystals was carried out with an electron probe microanalyser (EPMA, Jeol

JXA8200), equipped with an energy dispersive spectrometer (EDS), to confirm the synthesis of

Mg34SO4.

Symbiodinium growth and experimental conditions
Symbiodinium C1 cells were inoculated into artificial seawater (ASW; starting density: 1.5 � 106 cells

ml�1) and incubated at 27˚C for 18 days (based on results from a pilot study). LED lights were

mounted above the culture, providing an average light intensity of 50 mE over a 14:10 hr light/dark

cycle (AI Super Blue LED module 1003, IA, USA). Temperature and light intensities were monitored

every 2 min for the duration of the experiment (using a HOBO UA-002-64, 64K temperature/light

data logger).

The ASW contained 24.72 g of NaCl, 0.67 g of KCl, 1.36 g of CaCl2�2H2O, 4.66 g of MgCl2�6H2O,

0.18 g of NaHCO3, and 3.8 ml of modified ASP-8A solution (Figure 1—source data 1) in 1 litre of

MilliQ water. Magnesium sulfate (MgSO4�7H2O, 6.29 g L�1) was used as the sole sulfur source, with

either 34S (99% 34S, hereafter called 34S-ASW) or natural abundance of sulfur (95% 32S, 0.7% 33S,

4.2% 34S; hereafter called natS-ASW). Symbiodinium cells were incubated in 34S-ASW, whereas a

batch incubated only in natS-ASW acted as a control. Both growth media were replaced every 5 days

in order to actively remove dead and floating cells from the cultures. Symbiodinium cell numbers

were monitored every 3 days for both 34S-ASW and natS-ASW treatments, using a light microscope

and haemocytometer (depth 0.1 mm; eight replicates were averaged per time point) and cell mortal-

ity assessed using a 0.05% (w/v) Evans Blue solution (Morera and Villanueva, 2009).

After 18 days, the medium in both 34S-ASW and natS-ASW Symbiodinium cultures, was decanted

and discarded. The Symbiodinium cells were thoroughly rinsed three times with natS-ASW and subse-

quently resuspended in natS-ASW (5 mins) prior to the addition of bacteria (Figure 1—figure supple-

ment 1). This medium exchange (from 34S-ASW to natS-ASW) was carried out in order to prevent any

potential direct bacterial uptake of 34SO4
2-.

Bacterial growth and inoculation
The two bacterial strains (Pseudovibrio sp. P12 and E. coli W) were grown overnight at 28˚C in ASW

medium enriched with 15N (in the form of amino-acids and NH4
+; Celtone Base Powder; Cambridge

Isotope Laboratories, Tewksburry, MA). The bacterial cells were subsequently washed three times in

ASW before inoculation. Symbiodinium cells in treatment 1 were subsequently inoculated with the

DMSP-degrading bacterium Pseudovibrio sp. P12; treatment 2 with E. coli; treatment 3 acted as a

control without bacteria added; and treatment 4, which had no contact with 34S, acted as negative

control for sulfur isotope incorporation (Figure 1—figure supplement 1). The two bacterial strains

were inoculated at a density of 106 cells ml�1 and all samples were collected six hours after bacterial

inoculation (based on results from a pilot study).

Sample preparation for NanoSIMS, electron microscopy and ToF-SIMS
We used high-pressure freezing (Smart et al., 2010), followed by a water-free embedding proce-

dure to effectively prevent the loss of highly soluble compounds such as DMSP from our samples.

This method does retain elements in solution (Altus and Canny, 1985; Ashford et al., 1999;

Kaiser et al., 2015; Marshall et al., 2007; Mostaert et al., 1996) by effectively replacing the ‘solu-

tion’ with resin, without displacing the ions and osmolytes. Symbiodinium cultures pre-incubated

with bacteria (20 ml) were dropped onto Thermanox strips (Thermo Fisher Scientific, Waltham, MA,

USA, 4 � 18 mm) and then placed in humidified chambers. After 15 min, the cells settled onto the

strips and the excess medium was carefully removed with filter paper before being frozen by immer-

sion into liquid nitrogen slush (liquid nitrogen placed under low-vacuum in order to lower its temper-

ature). Samples for structural imaging by electron microscopy (2 ml) were also collected. These were

deposited in a gold planchet and high-pressure frozen using an EMPACT2 high-pressure freezer

(Leica Microsystems, Wetzlar, Germany). Both sample types were stored in liquid nitrogen until

required.

Frozen samples for NanoSIMS were freeze-substituted in anhydrous 10% acrolein in diethyl ether,

and warmed progressively to room temperature over three weeks in an EM AFS2 automatic freeze-

substitution unit (Leica Microsystems, Wetzlar, Germany) based upon the original method of
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Marshall (Marshall, 1980), and as described recently in step-by-step detail by Kilburn and Clode

(Kilburn and Clode, 2014). The samples were subsequently infiltrated and embedded in anhydrous

Araldite 502 resin, after which the Thermanox strip was removed and the sample re-embedded and

stored in a desiccator. Although it is possible that not 100% of cellular DMSP may be preserved by

this procedure, any losses would affect all samples equally; not impacting the validity of our compar-

isons between treatments. Furthermore, as 15N was only used as a tag to visualise the bacteria, dilu-

tion by processing and resin embedding (Musat et al., 2014) is of no concern here. For 34S

analyses, dilution can be expected to be negligible as there is no sulfur contained in processing or

resin components. Resin sections (1 mm thick) of embedded Symbiodinium cells were cut dry using a

Diatome-Histo diamond knife on an EM UC6 Ultramicrotome (Leica Microsystems, Wetzlar, Ger-

many), mounted on a silicon wafer and coated with 5 nm of gold.

NanoSIMS analysis
The NanoSIMS-50 (Cameca, Gennevilliers, France) at the Centre for Microscopy, Characterisation

and Analysis (CMCA) at The University of Western Australia was used for all subsequent analyses.

The NanoSIMS-50 allows simultaneous collection and counting of multiple isotopic species, which

enables the determination of 15N/14N and 34S/32S ratios. Enrichments of the rare isotopes 34S and
15N were confirmed by an increase in the sulfur (34S/32S) and/or nitrogen (15N/14N) ratio above natu-

ral abundance values recorded in controls (equal to 0.0438 and 0.00367, respectively).

NanoSIMS analysis was undertaken by rastering a 2 pA Cs+ beam (~100 nm diameter) across

defined 20 mm2 sample areas (256 � 256 pixels). The NanoSIMS-50 was tuned to achieve mass reso-

lution at levels where the isobaric species 12C15N and 13C14N could be separated. The isotope ratio

values are represented hereafter using a colour-coded transform (hue saturation intensity (HSI))

showing natural abundance levels in blue, and grading to high enrichment in pink. Images were

processed and analysed using Fiji (http://fiji.sc/Fiji) (Schindelin et al., 2012) with the Open-MIMS

plug-in (http://nrims.harvard.edu/software). All images were dead-time corrected (Hillion et al.,

2008). Quantitative data were extracted from the mass images through manually drawn regions of

interest. Ratio data were tested for QSA (quasi-simultaneous arrivals) by applying different beta val-

ues from 0.5 to 162. No differences in the data were observed, indicating that the secondary ion

count rates were too low to be affected by QSA.

Time-of-flight secondary ion mass spectrometry (ToF-SIMS)
During ToF-SIMS analysis the sample surface is sputtered with a focused primary ion beam to pro-

duce ionic species (secondary ions) of the atoms, molecules and molecular fragments from the

uppermost monolayers of the surface. The secondary ions are extracted into a flight column (time-

of-flight analyser) and their masses determined by the exact time at which they arrive at the detec-

tor. The data collected can provide: (i) mass spectral information in the form of an accumulated mass

spectrum, and (ii) image information in the XY dimensions showing the intensity distribution of the

specific secondary ions from the area analysed.

The mass resolution of the ToF-SIMS analysis is determined by the temporal pulse width of the

primary ions hitting the sample surface; whereas the spatial resolution is determined by the spot size

of the primary ion beam. ToF-SIMS analyses are conducted with the instruments optimised either for

high mass resolution or for high spatial resolution, as achieving both short pulses (for mass resolu-

tion) and narrow focus (for spatial resolution) simultaneously will greatly reduce the primary ion cur-

rent density.

In this study, ToF-SIMS analyses were conducted using the TOF.SIMS five instrument (ION-TOF

GmbH, Münster, Germany) at the Mark Wainwright Analytical Centre (MWAC), University of New

South Wales. The instrument is equipped with a bismuth liquid metal cluster ion gun for analysis and

an electron flood gun for charge compensation. Analysis was performed using a 30 keV Bi3
+ cluster

ion beam on resin sections (1 mm thick) mounted on silicon wafers. The ‘spectrometry’ mode was

used to acquire high-mass resolution spectra (m/4m > 4000) and ‘fast-imaging’ mode was used to

acquire high spatial resolution images (lateral resolution ~300 nm, m/Dm ~ 200).

In a typical analysis, a positive ion spectrum was acquired over a defined area of 20 � 20 mm2 or

50 � 50 mm2. The area of interest was identified by negative ion images acquired over areas of

20 � 20 mm2 (64 � 64 pixels) to 200 � 200 mm2 (128 � 128 pixels), where maps of CN- (m/z 26), S-
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(m/z 32), HS- (m/z 33) and 34S- (m/z 34) were generated to locate the position of cells and the pres-

ence of sulfur-containing compounds within the sample. Care was taken to ensure the ion dose den-

sity was kept below the static SIMS limit (1012–1013 primary ions per cm2) (Lindgren et al., 2014)

when acquiring imaging data, e.g. no more than 5–10 scans over areas of 20 � 20 mm2. Keeping the

static limit in the imaging mode prevents any significant damage to the sample structure or chemis-

try (Vickerman and Briggs, 2013), and enables further analyses of the same area in the positive

polarity in this case. In the positive spectrum, the molecular ion [M + H]+ peak of both the 32S-and
34S-containing DMSP molecules (C5H11

32SO2
+ and C5H11

34SO2
+, respectively) are closely spaced

with peaks arise from the resin (Figure 2—figure supplement 2). To maximise signal-to-noise ratio,

data acquisition over a relatively small area encompassing the cell was desired, allowing unambigu-

ous identification of the C5H11
32SO2

+ and C5H11
34SO2

+ peaks. High mass resolution positive spectra

were calibrated using the masses of CH2
+, C2H4

+, C4H8
+ and C6H12

+ molecules. Data processing

and evaluation were conducted using the SurfaceLab six software package (ION-TOF GmbH, Mün-

ster, Germany).

Prior to the analyses of the resin sections, the mass spectrum of dimethyl-b-propiothetin standard

(Research Plus Inc., USA) was recorded to provide spectral information of DMSP generated by ToF-

SIMS analysis. The molecular ion [M + H]+ peak (C5H11SO2+, m/z 135.05) was observed to be the

most intense peak in the spectrum, and was used as the mass peak position when determining the

presence of DMSP molecules in the samples. The mass spectrum of a mixture of methionine and cys-

teine (Sigma-Aldrich, USA) was also acquired to serve as a reference standard. Both methionine and

cysteine were not detected or the amounts were below the detection limit of the instrument (ppm

range).

Transmission electron microscopy (TEM)
High-pressure frozen samples for structural imaging were freeze-substituted in 1% OsO4 in acetone

over two days and similarly infiltrated and embedded as described above. Sections 90 nm thick

were cut on water using a diamond knife, collected on copper grids and imaged unstained at 120 kV

in a JEOL 2100 TEM (Tokyo, Japan) fitted with a Gatan ORIUS camera (California, USA). Please note:

the high solubility of DMSP in water prevented the coupling of NanoSIMS with TEM images

(Clode et al., 2009) to identify the location of small organelles such as mitochondria, as ultrathin

sections cannot be prepared without exposing the samples to water.

High pressure liquid chromatography-mass spectrometry (HPLC-MS)
After samples were collected for NanoSIMS analysis, all Symbiodinium cultures were centrifuged

(3000 g) for 5 min, the medium was discarded and pelleted cells were extracted with 5 mL of HPLC-

grade methanol. Crude methanol extracts were then analysed by reverse-phase (RP18) HPLC-MS in

triplicate along with pure DMSP and amino acid standards.

A 10 mL aliquot of the methanol extract was diluted with an equal volume of acetonitrile and chro-

matographed using a Waters Alliance 2695 HPLC system comprising a quaternary pump, autosam-

pler and photodiode array detector (200–400 nm) coupled to a Waters Micromass LCT Premier

orthogonal acceleration time-of-flight (oa-TOF) mass spectrometer. Separation was achieved on an

Alltima HP HILIC column (250 � 4.6 mm with a particle size of 5 mm) at 27˚C and a flow rate of 0.75

ml min-1. The gradient was: acetonitrile (90%):0.1% formic acid (10%) at 0 min; acetonitrile

(60%):0.1% formic acid (40%) at 0.4 min; acetonitrile (10%):0.1% formic acid (90%) at 12 min; acetoni-

trile (90%):0.1% formic acid (10%) at 12.25 min.

TOF-MS accurate mass measurements (scan-range m/z 100–1000 at 4 GHz, resolution = 9500)

were acquired using an electrospray ionization (ESI) source in W positive mode with the following

operation parameters: capillary voltage: 3000 V; cone voltage: 80V; ion source temperature: 80˚C;
desolvation temperature: 350˚C; cone gas flow: 10 l hr�1; desolvation gas flow: 750 l hr�1; ion

energy: 33 V; acceleration voltage: 100 V. MassLynx software (version 4.1, Waters) was used for

operating the HPLC-MS, as well as for data acquisition and processing. Leucine Enkephalin was used

as the external reference.
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Quantitative nuclear magnetic resonance (qNMR)
The MeOH extracts remaining after HPLC-MS analysis was dried using a vacuum-centrifuge and dis-

solved in a mixture of deuterium oxide (D2O, D 99.8%, 250 ml) and deuterated methanol (CD3OD, D

99.8%, 750 ml) (Cambridge Isotope Laboratories, Andover, MA, USA). A 700 ml aliquot of the particu-

late-free extract was transferred into a 5 mm Norell 509-UP-7 NMR tube (Norell Inc., Landisville, NJ,

USA) and analysed immediately by 1H NMR.
1H NMR spectra were recorded on a Bruker Avance 600 MHz NMR spectrometer with TXI 5 mm

probe and quantification performed using the ERETIC method (Tapiolas et al., 2013). This tech-

nique generates an internal electronic reference signal, calibrated using stock solutions of DMSP.

Sulfur uptake
Bacterial strains and Symbiodinium were counted (Becton Dickinson LSR II flow cytometer (BD Bio-

sciences, Franklin Lakes, NJ, USA), and pellets were subsequently freeze-dried and weighed in order

to determine their total sulfur content (equal to 5390 ng S mg�1). Samples were analysed on a

Thermo Scientific FLASH 2000 Series (Thermo Scientific, Waltham, MA, USA). The sulfur uptake per

mg of bacterial cells (r) was expressed in ng S mg�1 and was calculated by normalizing the 34S-incor-

poration measured using NanoSIMS to the average sulfur content (% of dry mass) according to the

equation of Dugdale and Wilkerson (1986), presented in Pernice et al. (2012).:

r = ((Smes - Snat)/(Senr - Snat)) � Scontent �103

Where:

Smes:
34S/32S measured in labelled samples by NanoSIMS

Snat: natural abundance of 34S/32S measured in unlabelled samples by NanoSIMS

Senr:
34S-enrichment of the Symbiodinium cells measured by NanoSIMS

Scontent: average sulfur content (%) measured by Thermo Scientific FLASH 2000 Series.

The calculated uptake (in nmol S mg�1) was then converted into an estimate uptake rate per day

(nmol S l�1 day�1), based on: the bacterial exposure to 34S (6 hr), and the bacterial cell density for a

given dry weight (acquired through flow cytometry; equal to 7.12 � 10�7 g for 5 � 105 bacterial

cells).
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Lindgren J, Sjövall P, Carney RM, Uvdal P, Gren JA, Dyke G, Schultz BP, Shawkey MD, Barnes KR, Polcyn MJ.
2014. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506:484–
488. doi: 10.1038/nature12899, PMID: 24402224

Markell DA, Trench RK. 1993. Macromolecules exuded by symbiotic dinoflagellates in culture: amino acid and
sugar composition1. Journal of Phycology 29:64–68. doi: 10.1111/j.1529-8817.1993.tb00280.x

Marshall AT, Clode PL, Russell R, Prince K, Stern R. 2007. Electron and ion microprobe analysis of calcium
distribution and transport in coral tissues. Journal of Experimental Biology 210:2453–2463. doi: 10.1242/jeb.
003343, PMID: 17601949

Marshall AT. 1980. Freeze-substitution as a preparation technique for biological X-ray microanalysis. Scanning
Electron Microscopy 2:395–408. PMID: 7423124

Matrai PA, Keller MD. 1994. Total organic sulfur and dimethylsulfoniopropionate in marine phytoplankton:
intracellular variations. Marine Biology 119:61–68. doi: 10.1007/BF00350107

Morera C, Villanueva MA. 2009. Heat treatment and viability assessment by Evans blue in cultured Symbiodinium
kawagutii cells. World Journal of Microbiology and Biotechnology 25:1125–1128. doi: 10.1007/s11274-009-
9987-4

Mostaert AS, Orlovich DA, King RJ. 1996. Ion compartmentation in the red alga Caloglossa leprieurii in response
to salinity changes: freeze-substitution and X-ray microanalysis. New Phytologist 132:513–519. doi: 10.1111/j.
1469-8137.1996.tb01871.x, PMID: 26763647

Musat N, Stryhanyuk H, Bombach P, Adrian L, Audinot JN, Richnow HH. 2014. The effect of FISH and CARD-
FISH on the isotopic composition of (13)C- and (15)N-labeled Pseudomonas putida cells measured by
nanoSIMS. Systematic and Applied Microbiology 37:267–276. doi: 10.1016/j.syapm.2014.02.002, PMID: 24702
905

Nissimov J, Rosenberg E, Munn CB. 2009. Antimicrobial properties of resident coral mucus bacteria of Oculina
patagonica. FEMS Microbiology Letters 292:210–215. doi: 10.1111/j.1574-6968.2009.01490.x, PMID: 19191871

Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O, Dove S. 2012. A
single-cell view of ammonium assimilation in coral-dinoflagellate symbiosis. The ISME Journal 6:1314–1324.
doi: 10.1038/ismej.2011.196, PMID: 22222466

Radjasa OK, Wiese J, Sabdono A, Imhoff JF. 2008. Coral as source of Bacteria with antimicrobial activity. Journal
of Coastal Development 11:121–130.

Raina JB, Dinsdale EA, Willis BL, Bourne DG. 2010. Do the organic sulfur compounds DMSP and DMS drive coral
microbial associations? Trends in Microbiology 18:101–108. doi: 10.1016/j.tim.2009.12.002, PMID: 20045332

Raina JB, Tapiolas D, Motti CA, Foret S, Seemann T, Tebben J, Willis BL, Bourne DG. 2016. Isolation of an
antimicrobial compound produced by Bacteria associated with reef-building corals. PeerJ 4:e2275. doi: 10.
7717/peerj.2275, PMID: 27602265

Raina JB, Tapiolas DM, Forêt S, Lutz A, Abrego D, Ceh J, Seneca FO, Clode PL, Bourne DG, Willis BL, Motti CA.
2013. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 502:677–680.
doi: 10.1038/nature12677, PMID: 24153189

Reisch CR, Stoudemayer MJ, Varaljay VA, Amster IJ, Moran MA, Whitman WB. 2011. Novel pathway for
assimilation of dimethylsulphoniopropionate widespread in marine bacteria.. Nature 473:208–211. doi: 10.
1038/nature10078, PMID: 21562561

Ritchie KB. 2006. Regulation of microbial populations by coral surface mucus and mucus-associated Bacteria.
Marine Ecology Progress Series 322:1–14. doi: 10.3354/meps322001

Raina et al. eLife 2017;6:e23008. DOI: 10.7554/eLife.23008 16 of 17

Short report Ecology Microbiology and Infectious Disease

http://dx.doi.org/10.1038/ismej.2013.210
http://www.ncbi.nlm.nih.gov/pubmed/24335830
http://dx.doi.org/10.1371/journal.pone.0057975
http://www.ncbi.nlm.nih.gov/pubmed/23483956
http://dx.doi.org/10.1078/0723-2020-00256
http://www.ncbi.nlm.nih.gov/pubmed/15214642
http://dx.doi.org/10.1126/science.1130657
http://www.ncbi.nlm.nih.gov/pubmed/17068264
http://dx.doi.org/10.1111/j.1462-2920.2008.01665.x
http://www.ncbi.nlm.nih.gov/pubmed/18510552
http://dx.doi.org/10.1111/nph.13138
http://www.ncbi.nlm.nih.gov/pubmed/25382456
http://dx.doi.org/10.1038/nature12899
http://www.ncbi.nlm.nih.gov/pubmed/24402224
http://dx.doi.org/10.1111/j.1529-8817.1993.tb00280.x
http://dx.doi.org/10.1242/jeb.003343
http://dx.doi.org/10.1242/jeb.003343
http://www.ncbi.nlm.nih.gov/pubmed/17601949
http://www.ncbi.nlm.nih.gov/pubmed/7423124
http://dx.doi.org/10.1007/BF00350107
http://dx.doi.org/10.1007/s11274-009-9987-4
http://dx.doi.org/10.1007/s11274-009-9987-4
http://dx.doi.org/10.1111/j.1469-8137.1996.tb01871.x
http://dx.doi.org/10.1111/j.1469-8137.1996.tb01871.x
http://www.ncbi.nlm.nih.gov/pubmed/26763647
http://dx.doi.org/10.1016/j.syapm.2014.02.002
http://www.ncbi.nlm.nih.gov/pubmed/24702905
http://www.ncbi.nlm.nih.gov/pubmed/24702905
http://dx.doi.org/10.1111/j.1574-6968.2009.01490.x
http://www.ncbi.nlm.nih.gov/pubmed/19191871
http://dx.doi.org/10.1038/ismej.2011.196
http://www.ncbi.nlm.nih.gov/pubmed/22222466
http://dx.doi.org/10.1016/j.tim.2009.12.002
http://www.ncbi.nlm.nih.gov/pubmed/20045332
http://dx.doi.org/10.7717/peerj.2275
http://dx.doi.org/10.7717/peerj.2275
http://www.ncbi.nlm.nih.gov/pubmed/27602265
http://dx.doi.org/10.1038/nature12677
http://www.ncbi.nlm.nih.gov/pubmed/24153189
http://dx.doi.org/10.1038/nature10078
http://dx.doi.org/10.1038/nature10078
http://www.ncbi.nlm.nih.gov/pubmed/21562561
http://dx.doi.org/10.3354/meps322001
http://dx.doi.org/10.7554/eLife.23008


Rypien KL, Ward JR, Azam F. 2010. Antagonistic interactions among coral-associated bacteria. Environmental
Microbiology 12:28–39. doi: 10.1111/j.1462-2920.2009.02027.x, PMID: 19691500

Saltzman ES, Cooper JC. 1989. Biogenic Sulphur in the Environment. American Chemical Society. p. 167–182.
Santos EO, Alves N, Dias GM, Mazotto AM, Vermelho A, Vora GJ, Wilson B, Beltran VH, Bourne DG, Le Roux F,
Thompson FL. 2011. Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a
diverse virulence repertoire. The ISME Journal 5:1471–1483. doi: 10.1038/ismej.2011.19, PMID: 21451583

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source
platform for biological-image analysis. Nature Methods 9:676–682. doi: 10.1038/nmeth.2019, PMID: 22743772

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi: 10.1093/
bioinformatics/btu153, PMID: 24642063

Shieh WY, Lin YT, Jean WD. 2004. Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively
anaerobic, fermentative bacterium capable of denitrification. International Journal of Systematic and
Evolutionary Microbiology 54:2307–2312. doi: 10.1099/ijs.0.63107-0, PMID: 15545476

Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, Takeuchi T, Hisata K, Tanaka M,
Fujiwara M, Hamada M, Seidi A, Fujie M, Usami T, Goto H, Yamasaki S, Arakaki N, Suzuki Y, Sugano S, Toyoda
A, et al. 2013. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene
structure. Current Biology 23:1399–1408. doi: 10.1016/j.cub.2013.05.062, PMID: 23850284

Sies H. 1993. Strategies of antioxidant defense. European Journal of Biochemistry 215:213–219. doi: 10.1111/j.
1432-1033.1993.tb18025.x, PMID: 7688300

Sievert S, Kiene R, Schulz-Vogt H. 2007. The sulfur cycle. Oceanography 20:117–123. doi: 10.5670/oceanog.
2007.55
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