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Abstract

Background and Purpose—No studies have determined the effect of differences in pial 

collateral extent (number and diameter), independent of differences in environmental factors and 

unknown genetic factors, on severity of stroke. We examined ischemic tissue evolution during 

acute stroke, as measured by magnetic resonance imaging (MRI) and histology, by comparing 2 

congenic (CNG) mouse strains with otherwise identical genetic backgrounds but with different 

alleles of the Determinant of collateral extent-1 (Dce1) genetic locus. We also optimized magnetic 

resonance (MR) perfusion and diffusion deficit thresholds by using histological measures of 

ischemic tissue.

Methods—Perfusion, diffusion, and T2-weighted MRI were performed on collateral-poor (CNG-

Bc) and collateral-rich (CNG-B6) mice at 1, 5 and 24h after permanent middle cerebral artery 

occlusion (pMCAo). MRI-derived penumbra and ischemic core volumes were confirmed by 

histology in a subset of mice at 5 and 24h after pMCAo.
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Results—Although perfusion deficit volumes were similar between strains 1h after pMCAo, 

diffusion deficit volumes were 32% smaller in collateral-rich mice. At 5h, collateral-rich mice had 

markedly restored perfusion patterns showing reduced perfusion deficit volumes, smaller infarct 

volumes, and smaller perfusion-diffusion mismatch volumes compared with the collateral-poor 

mice (p<0.05). At 24h, collateral-rich mice had 45% smaller T2-weighted lesion volumes 

(p<0.005) than collateral-poor mice, with no difference in perfusion-diffusion mismatch volumes 

because of penumbral death occurring 5 to 24h after pMCAo in collateral-poor mice.

Conclusions—Variation in collateral extent significantly alters infarct volume expansion, 

transiently affects perfusion and diffusion MRI signatures, and impacts salvage of ischemic 

penumbra after stroke onset.
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Introduction

Collateral vessels are anastomoses that connect adjacent arterial trees and reroute perfusion 

around obstructed arteries or veins. Variation among individuals in the extent of native 

collaterals (i.e., number and/or diameter) may serve as a prognostic determinant of stroke 

severity and improve clinical risk-benefit decisions for treatment options.1, 2 Angiographic 

studies grading collateral circulation in patients with acute stroke have found that final 

infarct size3, 4 and functional outcome deficit vary inversely with collateral flow.5–7 Patients 

with robust collateral circulation also have improved outcomes after tissue-type plasminogen 

activator (tPA) administration4 (including reduced risk of hemorrhaging8) and/or intra-

arterial revascularization,9–11 suggesting that collateral extent significantly impacts the 

success of therapeutic interventions for acute ischemic stroke.

Imaging of perfusion in acute stroke patients using computed tomography (CT) or magnetic 

resonance imaging (MRI) is routine for accurate diagnosis and volumetric assessments of 

ischemic tissue. Contrast-enhanced CT,3 MRI12 and arterial spin-labeled perfusion 

MRI13, 14 are also used clinically to differentiate hemorrhagic stroke and assess collateral 

status. Ischemic stroke registries that centrally store these data have been used 

retrospectively to examine how collateral circulation alters lesion evolution.3, 7, 12, 15, 16 

Such analyses consider many outcome-modifying variables (e.g., age, sex, co-morbidities, 

vascular risk factors, type/time of therapeutic intervention). However, they cannot account 

for all variables that contribute to acute stroke heterogeneity, resulting in conclusions based 

on correlation rather than causation. Recently, a novel mouse model has been developed that 

permits examination of the contribution of variation in collateral extent on variation in lesion 

progression, because genetic and environmental differences are controlled.17 Two congenic 

(CNG) mouse lines were constructed that are isogenic except at a discrete locus on 
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chromosome 7, Determinant of collateral extent-1 (Dce1), whose allelic variants determine 

85% of the wide variation in collateral extent present in different inbred mouse strains: 

CNG-Bc are congenic wild-type BALB/cByJ (Bc) mice with sparse, small-diameter pial 

collaterals, while CNG-B6 are congenic Bc mice that harbor the C57BL/6J (B6) allele of 

Dce1, resulting in abundant, large-diameter collaterals. Because these mice differ only in 

collateral extent, they provide a unique opportunity to examine the role of collaterals, per se, 

on stroke progression.

In this study, congenic mice were subjected to pMCAo to determine how differences in 

collateral extent affect ischemic tissue evolution. We used perfusion, diffusion, and T2-

weighted MRI techniques that are commonly used to characterize ischemic core and 

estimate penumbra.18–21 To more specifically assess the role of collaterals and exclude 

confounding reperfusion factors, we used MRI at 1, 5, and 24h after pMCAo. To corroborate 

the MR findings, we performed cleaved caspase-3 (CC3) and heme oxygenase-1 (HO-1) 

immunohistochemistry in a subset of animals to quantify ischemic core and penumbra, 

respectively. Additionally, we also used this unique dataset to derive specific MR apparent 

diffusion coefficient (ADC) and cerebral blood flow (CBF) deficit thresholds that best 

approximate histological ground truth. Compared with collateral-poor CNG-Bc mice, the 

collateral-rich CNG-B6 mice showed significantly smaller ADC deficit volume, CBF deficit 

volume, and more rescued penumbral tissue. Our data demonstrate that collateral extent is a 

key determinant of infarct evolution in mice and, if confirmed in humans, should be 

considered as an outcome-modifying variable in stroke clinical trials.

Materials and Methods

Animal Preparation

Two congenic mouse strains on the Bc background with distinct pial collateral extent 

profiles (Figure 1, see Introduction) were studied (n=22/strain, male, 3–4 months-age).17 

Following an overnight fast, mice were anesthetized with 1.5–2% isoflurane and their 

respective rectal temperature, blood O2 saturation, and pulse/respiration rates were 

monitored using a MouseOx Plus (STARR Life Science Corp., Oakmont, PA) and 

maintained at 37±0.5°C, >97%, 380±10 bpm/100±10 bpm during surgery and scanning. A 2 

mm aseptic craniotomy was performed and pMCAo was performed by cauterization at the 

M2-MCA level.22 The craniotomy was closed with gelfoam (Pfizer Inc, 0009-0396-05, New 

York, NY) and dental cement to avoid susceptibility artifact during MR scans. After pMCAo 

mice were maintained in the scanner under 0.75–1% isoflurane delivered in 25% O2 at a 

flowrate of 1 L/min. A subset of mice were scanned only once at either 1h (n=9/congenic 

strain), 5h or 24h (n=4/ congenic strain) after pMCAo for histological assessment. The 

remaining subjects underwent longitudinal scans. All studies were approved by the 

Institutional Animal Care and Use Committee of the University of North Carolina at Chapel 

Hill.

Magnetic Resonance Imaging Acquisition

MRI data were acquired using a Bruker BioSpec 9.4 Tesla system with a BGA-9S gradient 

insert (Bruker Corp., Billerica, MA). A home-made surface coil (with an internal diameter 
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of 0.8 cm) was used for brain imaging. For CBF measurement, an additional actively 

decoupled heart coil was used for continuous cardiac spin labeling (CSL).23 This was 

achieved by a two-shot gradient-echo echo-planar imaging (EPI) sequence with 

bandwidth=300 kHz, TR/TE=3000/5 ms, labeling duration=2.524 s, post-labeling delay=300 

ms, matrix=64x64, FOV=1.6x1.6 cm, 10 slices and slice thickness=0.75 mm. Diffusion-

weighted images were acquired with the same geometry using two-shot spin-echo EPI with 

bandwidth=300 kHz, TR/TE=3000/22 ms, δ/Δ=4/12 ms, number of B0=5, number of 

directions=30 and b-value=1200 s/mm2. T2-weighted anatomic images were acquired using 

a RARE sequence with spectral width=47 kHz, TR/TE=2500/44 ms, matrix=144x144, 

RARE factor=8, number of averages=20, FOV=1.44x1.44 cm, 10 slices and slice 

thickness=0.75 mm.

Histological Confirmation of the Ischemic Lesion

Because no reliable histological biomarker can delineate the border zone between penumbra 

and ischemic core within the first hour of stroke, stereological morphometric analysis was 

performed on a subset of mice at 5 and 24h after pMCAo (n=5/congenic strain/end point). 

Mice were euthanized by Euthasol overdose (100 mg/kg, i.p.) and transcardially perfused 

with 25 mL of 1x PBS (pH 7.2) followed by 25 mL of 4% PFA. Extracted brains were 

postfixed in 4% PFA overnight, followed by 30% sucrose until they sank and frozen to a 

chilled sliding microtome. Serial 30 μm-thick coronal sections were sliced between +2.2 mm 

anterior and −4.5 mm posterior of Bregma (as determined by atlas-derived landmarks), 

collecting only one of every 10 sections (21–23 sections/mouse/marker) for free floating 

immunohistochemistry. Sections were initially incubated in a MOM kit (PK-2200 Vector 

Laboratories, Burlingame, CA) according to the manufacturer’s protocol or blocking 

solution (1% Bovine Serum Albumin, 0.4%Triton X-100 and 4% Normal Goat Serum in 

PBS) for 20 minutes to block non-specific binding. Sections were immunostained overnight 

at 4°C with either the penumbral marker mouse monoclonal antibody against heme 

oxygenase-1 (HO-1; 1:50, Enzo Life Science, ADI-OSA-110, Farmingdale, NY) or the 

ischemic core marker rabbit polyclonal antibody against cleaved caspase-3 (CC3; 1:100, 

Cell Signaling, 9661, Danvers, MA) and visualized with Alexa Fluor secondary antibodies 

(1:800; Molecular Probes, Carlsbad, CA). Volumes of ischemic core, penumbra and non-

immunoreactive tissue were quantified stereologically using the Cavalieri estimator method 

on Stereo Investigator (v7.5; MBF Bioscience, Microbrightfield, Inc., Williston, VT) and 

corrected for dehydration-related shrinkage in slice thickness and edema using the ‘indirect 

method’.24 Systematic random samples were unbiasedly counted in 50 μm2 frames within 

manually defined boundaries of each hemisphere using a 10 μm optical dissector with 2 μm 

upper and lower guard zones. Stereological imaging was performed with an Olympus BX50 

microscope using a 60x 1.4 NA oil-immersion objective with a calculated coefficient of 

error of intra-animal variation of less than 0.1.

Data Processing and Analysis

Image analysis was performed using Statistical Parametric Mapping (SPM) in a custom-

written Matlab (MathWorks Inc., Natick, MA) script.25 Images were skull-stripped, co-

registered across subjects and analyzed using established protocols that we published 
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previously.26, 27 Specifically, CBF was calculated from CSL data using , 

where SC and SL are the MR signal intensities from the control and labeled images, 

respectively. λ is the water brain-blood partition coefficient, T1 is that of tissue, and α is the 

arterial spin-labeling efficiency. For λ, T1, and α we used 0.9, 1.9, and 0.7s, respectively.28 

Apparent diffusion coefficient (ADC) maps were calculated from the diffusion weighted 

images using , where S1 is the signal intensity obtained at b1 (1200 s/mm2) 

and S0 is the signal intensity obtained at b0 (0 s/mm2). Group-averaged CBF, ADC, and T2-

weighted images for each experimental group and time-point were presented.

To better identify a specific ADC or CBF threshold reflecting histological measure, a range 

of ADC (0.45–0.6 mm2/s) and CBF (0.175–0.35 ml/g/min) thresholds was used to compute 

their respective deficit volumes that underwent best-fit correlations with respect to 

histologically-defined volumes using an established method.29 ADC and CBF deficit 

thresholds were calculated using Euclidean distances between true histologically-defined 

and threshold-dependent MRI volumes. Polynomial curves up to a degree of 4 were fitted to 

predict distances at unmeasured threshold values and the curve that best balanced over- and 

under-fitting the two volumes were selected as the optimal threshold cut-off for ADC and 

CBF deficits.

The values in the ipsilesional hemisphere were calculated based on the MR perfusion and 

diffusion deficits that delineated with our histologically guided thresholds, while the values 

in the contralesional hemisphere were measured with size-matched mirror-ROIs. T2-

weighted lesion volumes were quantified by thresholding hyper-intense signals (≥2 SD of 

contralateral normal cortical tissue) as described previously.26 The ratio of MR-derived 

penumbral loss was defined as the difference in ADC deficit volumes between two time 

points divided by the mismatch volume at 1h.15 The ratio of infarct growth was defined as 

the difference in ADC deficit volumes between the two time points divided by the T2-

weighted lesion volume at 24h.15

Statistical analysis was performed using SPSS software (IBM SPSS statistics 21, IBM 

Corp., Armonk, NY). To compare the difference in the deficit volumes between two 

congenic strains at multiple time points, unpaired two-way ANOVA followed by Tukey’s 

HSD and Scheffe post hoc test was performed for data-passing and not-passing homogeneity 

test, respectively. Significant difference in ADC or CBF value, the ratio of penumbra tissue 

loss and the ratio of infarct growth between the two congenic strains at a particular time-

point was assessed by a two-tailed independent t-test. All data in text are presented as mean

±SEM.

Results

Physiological parameters remained consistent throughout the MRI scans at 1, 5 and 24h 

after pMCAo. Beause no significant difference in CBF and ADC intensities or volumes were 

observed 24h after pMCAo within congenic mice that either received a single scan (n=4 per 

strain) or longitudinal scans (n=5 per strain in the cohort for 5h and 24h multiple scans), data 

collected for each time-point were compiled together for analysis. One CNG-Bc mouse was 
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excluded from the data because of a negative mismatch volume detected 5h after pMCAo, 

likely because of artifact during imaging acquisition. Figure 2 shows group-averaged CBF, 

ADC, and T2-weighted images for each time-point in CNG-B6 (n=9 per time-point) and 

CNG-Bc mice (n=9 at 1 and 24h, n=8 at 5h) after pMCAo. By using a within-subject 

comparison with histological data, we identified ADC and CBF deficit thresholds of 0.541 

mm2/s and 0.255 ml/g/min after pMCAo best approximated the tissue deficit volume defined 

by CC3 (necrotic / apoptotic cells) and CC3+HO-1 (necrotic / apoptotic cells + penumbra) 

expression, respectively (Figure 3A,B). These thresholds were used for subsequent analyses. 

With these optimized thresholds, we also found significant correlations between ADC deficit 

and CC3 lesion volumes (Figure 3C) and also CBF deficit and CC3+HO-1 lesion volumes 

(Figure 3D).

At 1h after pMCAO we observed marked reductions in CBF values in the lesion side 

compared with the contralesional (normal) hemisphere as expected (Figure 4A). We 

observed no significant differences in the MR-derived CBF deficit volume at this time-point 

(Figure 5A). The mean ADC values were not different between the two groups, but ADC 

deficit volumes were significantly smaller in CNG-B6 (15.957±1.305 mm3) than CNG-Bc 

(23.325±4.592 mm3; p<0.005; Figure 5B). No significant difference in perfusion-diffusion 

mismatch volumes was found at 1h (16.562±6.817 mm3 for CNG-B6 and 14.370±7.372 

mm3 for CNG-Bc; p>0.05; Figure 5C). Additionally, no differences were observed between 

congenic strains in T2-weighted infarct volume at 1h (Figure 5C,D), likely because of the 

low sensitivity of this method to detect ischemic tissue during the hyperacute phase of 

pMCAo.

At 5h after pMCAo CBF deficit volumes were significantly reduced in collateral-rich CNG-

B6 (19.692±5.208 mm3) compared with collateral-poor CNG-Bc mice (32.425±8.213 mm3; 

p<0.005; Figure 5A), suggesting significant restoration of tissue perfusion by collaterals. 

The mean ADC values were not different between the two groups, but ADC deficit volumes 

were significantly smaller in CNG-B6 (16.165±3.212 mm3) than CNG-Bc (24.481±4.777; 

p<0.005; Figures 5B). A significantly smaller perfusion-diffusion mismatch in CNG-B6 was 

observed (3.528±2.596 mm3 compared with 10.758±7.661 mm3 in CNG-Bc; p<0.05; Figure 

5C). The infarct volume defined by T2-weighted images in CNG-B6 (9.876±1.883 mm3) 

was also significantly smaller than CNG-Bc (16.327±3.516 mm3; p<0.005; Figure 5D). No 

significant difference in the loss of perfusion-diffusion mismatch tissue (1.257±6.854 mm3 

for CNG-B6 and 8.047±11.754 mm3 for CNG-Bc; p>0.05; Figure 6A), as well as the growth 

of T2-weighted lesion volume (1.149±2.939 mm3 for CNG-B6 and 3.484±5.089 mm3 for 

CNG-Bc; p>0.05; Figure 6B), were found from 1 to 5h.

At 5h after pMCAo the CBF deficit volumes remained significantly reduced in collateral-

rich CNG-B6 (19.370±5.179 mm3) compared with those in collateral-poor CNG-Bc mice 

(32.021±8.957 mm3; p<0.005; Figures 5A). The mean ADC values were not different 

between the two groups, but ADC deficit volumes were significantly smaller in CNG-B6 

(17.379±5.945 mm3) than CNG-Bc (28.713±3.6826 mm3; p<0.005; Figures 5B). No 

significant difference in perfusion-diffusion mismatch volumes was found (1.473±1.245 

mm3 for CNG-B6 and 3.331±2.648 mm3 for CNG-Bc; p>0.05; Figure 5C). The infarct 

volume defined by T2-weighted images in CNG-B6 (18.133±4.231 mm3) was significantly 

Kao et al. Page 6

Stroke. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



smaller than CNG-Bc (33.527±3.829 mm3; p<0.005; Figure 5D). In addition, loss of 

perfusion-diffusion mismatch tissue (approximate penumbra) from 5 to 24h became 

significantly different between CNG-B6 (6.532±7.697%) and CNG-Bc (36.376±8.289%). 

The growth of T2-weighted lesion volume also differed between CNG-B6 (6.137±3.225%) 

and CNG-Bc (15.076±2.229%) (both p<0.05; Figures 6A,B).

Discussion

The present study sought to differentiate the contribution of variation in pial collateral 

circulation to the evolving perfusion and diffusion MRI signals within the first 24h after 

acute stroke. Using congenic mouse strains that differ solely in their collateral extent, we 

report that: (1) Genetic specification of “poor” versus “good” collaterals alters the initial 

ADC deficit volumes and the ability to salvage ‘at-risk’ tissue within 5h after stroke. (2) 

Although CBF deficit volume does not differ between the two congenic strains at 1h after 

pMCAo, collateral perfusion in collateral-rich mice is higher and sufficient to restrict 

expansion of initial ADC deficit volume. (3) Within 5h after pMCAo, collateral-rich mice 

display small CBF deficit volume, resulting in significant rescue of penumbra; while 

collateral-poor mice experience a larger area that remains at-risk, demonstrating that 

collateral extent plays a major role in altering the outcome of the second wave of cell death 

during permanent focal ischemia. (4) The imaging protocols and ADC/CBF thresholds 

established herein in mice demonstrate sufficient sensitivity and specificity to detect 

ischemic tissue evolution and thus offer a technical foundation for future studies 

investigating the efficacy of “collateral therapeutics”.

Wide variation in collateral extent among 21 inbred mouse strains is found to be tightly 

correlated with similarly wide variation in infarct volume after pMCAo and links to variants 

of the Dce1 locus in these strains,22, 30 suggesting that genetic polymorphisms underlying 

differences in collateral extent may be important risk factors for poor stroke outcome. 

However, other gene variants not associated with differences in collateral extent can also 

alter stroke severity, including the expression and activity of proteins that could affect infarct 

progression post-stroke. In addition, uncontrollable physiological differences between wild-

type mouse trains, for instance, mean arterial pressure and immune response, might 

contribute to lesion evolution. The use of congenic mice with genetic variability restricted to 

a single locus shown to be the major determinant of anatomic variation in collaterals in mice 

allowed us to test for causation between collateral extent and the severity of the ischemic 

lesion and its evolution. To our knowledge, this is the first study to dissect the causal role of 

collateral extent, per se, in ischemic lesion evolution during the hyperacute, acute and early-

chronic phases after pMCAo. Permanent MCAo in mice immediately reduces averaged CBF 

in the MCA territory by 50%,31 and irreversibly results in necrotic death within minutes in 

regions where perfusion drops by ≥80%.32 Permanent MCAo in both congenic lines resulted 

in significant reductions in CBF, yet mean CBF within perfusion deficit volumes were 

significantly greater in collateral-rich compared with collateral-poor mice 1h after stroke 

onset (40.69±4.31% and 38.23±2.05%, respectively) and reduced the initial ischemic core 

volume by 31.50% as defined by ADC deficit thresholds. This immediate retrograde 

collateral perfusion of the MCA territory is established within seconds after occlusion 

because of the large increase in cerebral perfusion pressure (CPP) across the collateral 
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network.33, 34 Although mathematical models have predicted that pial collaterals can 

continue to maintain 15% of overall MCA baseline CBF immediately after pMCAo,35 

retrograde collateral perfusion to the proximal MCA territory is insufficient to preserve 

cellular function during this hyperacute phase, resulting in death for most cells in this region 

if CBF is not sufficiently restored.

At 5h after pMCAo, a significantly smaller CBF deficit volume was found in collateral-rich 

CNG-B6 mice compared with their collateral-poor counterparts. Studies in mice have shown 

that during the first few hours of collateral perfusion, presumed fluid shear stress-mediated 

dilation results in a 26% increase in collateral diameter after major vessel occlusion. 

Collaterals subsequently undergo outward remodeling of lumen diameter that requires 3–6 

days, depending on genetic background, to achieve maximal remodeling (~2-to-4-fold 

increase in anatomic lumen diameter).22 Changes in smooth muscle tone, plus the initial 

driving force of CPP across the collateral network induced by occlusion, are the primary 

determinants of collateral blood flow during the acute phase of pMCAo. However, further 

changes in collateral flow induced by alterations in CPP, such as those produced by 

downstream collapse of the venous network from insufficient inflow, will also impact 

delivery of oxygen to the territory at risk.33, 36 The lack of change in ADC threshold 

volumes between 1 and 5h after pMCAo in collateral-rich mice, coupled with a significant 

reduction in perfusion-diffusion mismatch volume, indicates that collateral circulation can 

rescue penumbral tissue from death. On the other hand, in the collateral-poor mice, 

collateral flow is insufficient to prevent the second wave of cellular death resulting from an 

inability to restore adequate circulation to the entire MCA penumbral territory. Using the 

oxidative stress marker HO-1 expressed in penumbral tissue after pMCAo,37 we found that 

mismatch of perfusion deficit volumes below 0.255 ml/g/min and diffusion deficit volumes 

below 0.541 mm2/s accurately estimate penumbral volume in both congenic strains.

Infarct volume at 24h after pMCAo, as confirmed by ADC deficit volumes and T2-weighted 

imaging, was significantly smaller in collateral-rich mice. The perfusion-diffusion mismatch 

volumes of both congenic strains were found to be less than 5 mm3, which is consistent with 

the small penumbral volumes delineated by suppressed cerebral protein synthesis with 

preserved ATP production 8h after pMCAo in mice.38 Our detection of a significant 

divergence of ADC and CBF deficit volumes between congenic strains demonstrates that 

collateral circulation dictates initial infarct size, infarct expansion, and whether penumbral 

tissue will be rescued. Multimodal MRI techniques are improving the efficiency of clinical 

stroke diagnosis and allow rapid estimation of penumbral tissue volume as early as the acute 

phase of ischemic stroke, which is important in balancing the risk versus benefit of 

reperfusion therapy.39, 40 The controversy surrounding the use of perfusion-diffusion 

mismatch to indicate penumbra and the course of stroke treatment is in part attributed to the 

lack of consistency in defining deficit thresholds, overestimation of the tissue at risk, 

assumption of the irreversible diffusion lesions, and differences in the parameters used 

during acquisition.40–42 Furthermore, the dynamic nature and heterogeneous distribution of 

the penumbra can cause significant fluctuations in perfusion and diffusion deficit volumes 

during acute stroke43, 44—variation that is only accentuated when collateral extent varies 

among subjects.6, 7, 45 Our findings suggest caution to be taken when referring to the 

“penumbra” or “perfusion-diffusion mismatch volume” at a fixed time-point as a prognostic 
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or treatment criteria, without carefully considering the role of collateral circulation and the 

consequent temporal evolution of ischemic penumbra.

Mouse perfusion and diffusion MRI have many challenges, including strong susceptibility 

artifacts and lack of commercially available hardware for high-quality two-coil ASL.23, 46, 47 

More importantly, no “gold-standard” ADC and CBF thresholds exist for probing ischemic 

tissue in rodents. We addressed these problems herein by optimizing our thresholds against 

histologically-defined volumes, leading to a strategy for mapping the evolution of ischemic 

tissue in mice. One limitation of our study is that T1 relaxation times increase after stroke 

and may result in decreased CBF signals.48, 49 Thus, even though mismatch volumes in our 

study may better approximate penumbra volumes in mice with different collateral extents, 

they may not represent the absolute size of ischemic penumbra.

Conclusions

In summary, we performed quantitative perfusion and diffusion MRI in congenic mice 

differing in collateral extent to investigate the relationship between the ischemic penumbra 

and the vigor of the collateral circulation. Our findings using mice with identical genetic 

background but with congenically specified “good” versus “poor” collaterals demonstrate 

that the presence of good collaterals results in penumbral salvage within the first 5h of 

pMCAo followed by reduced perfusion-diffusion mismatch tissue loss during the 5–24h 

period. The results demonstrate the utility of this mouse model to explore the development 

of therapeutic strategies to enhance collateral perfusion post-stroke onset.50 Additional 

studies combining this genetic mouse model with transient MCAo followed by post-labeling 

delays, will allow investigation of how reperfusion interacts with inherent differences in 

collateral circulation among individuals to determine the dynamic behavior of the ischemic 

penumbra.
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Figure 1. Genetic model of abundant versus sparse collaterals: congenic-B6 and congenic-Bc 
mice
Maximally dilated pre-capillary vessels filled with Microfil shows larger collateral number 

in congenic (CNG)-B6 compared to CNG5-Bc. Stars, MCA-to-ACA collaterals. Inset, 

higher magnification showing presence and absence of pial collaterals in watershed zone. 

CNG-Bc, congenic-line5 wildtype BALB/cByJ mice (2±1 MCA-to-ACA collaterals of 

12±13 μm lumen diameter); CNG-B6, congenic-line5 wildtype BALB/cByJ mice with 

C57BL/6J Dce1 genetic locus introgressed into genome (14±1 MCA-to-ACA collaterals of 

20±2 μm diameter).17
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Figure 2. Perfusion and diffusion MRI and T2-weighted images in CNG-B6 and CNG-Bc mice 
after permanent MCAo (pMCAo)
Group-averaged CBF map (A), ADC map (B), and T2-weighted images (C) at 1, 5 and 24 h 

after pMCAo. Hypoperfused area was observed in the entire ipsilesional cortex at 1 h in both 

CNG-B6 and CNG-Bc mice. After 24 h, larger CBF, ADC deficit and final infarct area 

evident in anterior and posterior cortical regions in CNG-Bc.
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Figure 3. Lesion volumes defined by histological staining and comparison with MRI (C,D)
Optimal threshold of ADC- (A) and CBF-derived (B) lesion volumes based on the curve 

fitting. Histological staining: cleaved caspace3 (CC3), heme oxygenase-1 (HO-1).
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Figure 4. CBF and ADC values in CNG-B6 and CNG-Bc mice
(A) CBF and (B) ADC values in corresponding lesion volume at 1, 5 and 24 h after pMCAo. 

No significant change in CBF or ADC in contralesional hemisphere in both strains. 

Significantly higher CBF present in lesion area in CNG-B6 1h after pMCAo. Mean±SEM; 

*p<0.05 versus CNG-Bc.
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Figure 5. CNG-B6 mice shows smaller CBF deficit, ADC deficit, mismatch and T2-weighted 
lesion volumes after pMCAo
Mean±SEM; *,**p<0.05,<0.005 versus CNG-Bc; #,##p<0.05,<0.005 versus time.
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Figure 6. CNG-B6 shows smaller perfusion-diffusion mismatch tissue loss and T2-weighted 
lesion volume growth after pMCAo
Mean±SEM; *p<0.05 versus CNG-Bc.

Kao et al. Page 18

Stroke. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and Methods
	Animal Preparation
	Magnetic Resonance Imaging Acquisition
	Histological Confirmation of the Ischemic Lesion
	Data Processing and Analysis

	Results
	Discussion
	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

