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Abstract

Advanced imaging techniques including CT angiography, CT perfusion, MR angiography, MR 

with diffusion- and perfusion-weighted imaging, and, more recently, resting-state BOLD (Blood 

Oxygen Level Dependent) functional MRI (rs-fMRI) are increasingly used to evaluate patients 

with acute ischemic stroke. Advanced imaging allows for identification of patients with ischemic 

stroke and determination of the size of infarcted and potentially salvageable tissue, all of which 

yield crucial information for proper stroke management. The addition of rs-fMRI for ischemia 

adds information at the microvascular level, thereby improving the understanding of 

pathophysiologic mechanisms of impaired cerebral perfusion and tissue oxygenation beyond the 

known concepts at the macrovascular level. As such, it may further delineate functional and 

dysfunctional neuronal networks, guide stroke interventions, and improve prognosis and 

monitoring of patient outcomes.
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INTRODUCTION

Stroke is one of the leading causes of mortality and disability in the United States, and it 

accounts for 130,000 deaths annually, which will be augmented by shifting demographics in 

the U.S population [1]. The impact of stroke on the U.S. health care system is immense and 

is estimated to cost about $34 billion per year [2].

Recent randomized clinical trials have shown a strong benefit for endovascular mechanical 

thrombectomy of acute ischemic stroke caused by large vessel occlusion (LVO) [3–8]. The 

SWIFT PRIME and EXTEND-IA trials demonstrated that endovascular treatment guided by 

vascular and perfusion-weighted imaging leads to a three-fold increase in functional 
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independence. These trials underline the crucial role of advanced stroke imaging in the risk 

stratification and triage of patients to endovascular recanalization, despite the potential 

negative effect of adding delay to treatment of these patients. With advanced imaging, the 

time window for endovascular therapy may be extended so that more patients may benefit 

from early endovascular recanalization [9].

Many neuroimaging protocols exist for acute stroke patients, and these protocols vary 

between different centers. Advanced modalities used in acute stroke imaging include CT 

angiography (CTA), CT perfusion (CTP), MRI with diffusion-weighted imaging (DWI), MR 

angiography (MRA), gadolinium-based MR perfusion (MRP), and other non-contrast 

measures of cerebral perfusion such as arterial spin labeling (ASL) and resting-state 

functional MRI (rs-fMRI). Infarcted cerebral tissue (“core” infarction) is best detected on 

DWI and manifests as restricted diffusion. Blood flow to the brain may be measured with 

CTP, MRP, or ASL, and these techniques can identify underperfused but viable tissue 

(“penumbra”). The optimal endovascular stroke candidate has a relatively small core infarct 

with a large surrounding penumbra caused by an LVO; tissue at risk in these patients may be 

salvaged if the blocked artery is reopened [10]. Hence, advanced imaging is important 

because it can reliably identify patients who may significantly benefit from rapid 

endovascular treatment, specifically those with (1) a small core infarction, (2) tissue at risk 

for infarction, and (3) a LVO.

Despite the benefits of current advanced imaging techniques, there are specific limitations. 

For example, CT, CTA, and CTP all use ionizing radiation. CTP also uses cerebral blood 

flow (CBF) or cerebral blood volume to estimate the core infarction size; as such, the true 

extent of infarcted tissue may be under- or over- estimated when compared to diffusion-

weighted MRI. However, while MRI is most accurate in determining infarct burden, it is not 

available 24 hours a day at many centers, and it requires robust setup and troubleshooting for 

optimal diagnostic quality. In addition, both CTP and MRP use intravenous contrast agents 

(iodinated-based contrast for CT and gadolinium-based contrast for MRI), which may be 

contraindicated in patients with renal impairment or contrast allergy. Of note, the recent 

demonstration of gadolinium deposition in the brain raises concern for the long-term safety 

of MRI contrast agents [11–15] although the clinical significance of gadolinium deposition 

remains to be elucidated. Furthermore, all current perfusion techniques use indirect 

measures such as CBF to estimate neuronal viability rather than direct measures such as 

oxygen consumption or neuronal metabolism. Additional neuroimaging techniques are, 

therefore, needed to assess cerebral tissue viability and impaired blood flow.

While infarct size on MRI predicts patient outcome in some series [9], the variable 

functional recovery of patients after ischemic stroke suggest that other factors aside from the 

location, time, and size of injury may contribute to patient recovery. A study by Hakimelahi 

et al. found poor correlation between infarct volume and time after stroke onset, suggesting 

that there are factors more powerful than time in determining infarct size [16, 17]. Recently, 

more advanced imaging techniques, which may aid in the understanding of stroke pathology 

and guide therapeutic interventions as well as disease and therapy monitoring, have become 

feasible. In this article, we will review one of these advanced imaging techniques, resting-

state fMRI, which is based on blood oxygen level dependent (BOLD) contrast, and highlight 
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both the technical concepts and current and potential clinical applications for this technique, 

specifically in the arena of perfusion and ischemia.

THE BOLD PRINCIPLE

Neurons have poor metabolic reserve, and their metabolism depends on blood oxygen for 

aerobic glycolysis [18]. During neuronal activity, an increase in oxygen consumption and 

local blood flow can be observed. This mechanism is termed “neurovascular coupling.” The 

increase in blood flow exceeds the increase in oxygen consumption, leading to a relative 

increase in oxyhemoglobin concentration relative to deoxyhemoglobin concentration in 

regions of higher neuronal activity. The relatively decreased deoxyhemoglobin concentration 

in regions of high neuronal activity can be detected by MRI as a transient increase in T2*-

weighted signal [19], because deoxyhemoglobin is paramagnetic. This principle is called the 

BOLD principle. BOLD imaging is feasible with clinical 1.5 or 3 Tesla MR scanners. 

Requirements for BOLD sequences are high temporal resolution and sensitivity for T2* 

effects. Therefore, ultrafast echo-planar imaging (EPI) sequences are frequently applied. To 

accommodate for high temporal resolution, EPI sequences are usually obtained with small 

matrices, yielding a lower spatial resolution. The acquired BOLD contrast is relatively poor, 

as it accounts for only a low percentage of the signal variation. Parallel imaging techniques 

can be used to increase temporal resolution and reduce the artifacts in echo planar sequences 

by reducing the readout time. Limitations of BOLD technique are the distance between 

activated neurons and vascular variation in the oxyhemoglobin to deoxyhemoglobin ratio, 

which can cause imprecisions when locating the true zone of activation. Other limitations 

are motion artifacts caused by head motion, vessel pulsation, and breathing as well as 

magnetic susceptibility (e,g, signal loss at brain-bone interfaces and interfaces with 

intracranial hemorrhage, signal changes in post-operative patients).

CURRENT APPLICATIONS FOR BOLD MRI

Oxygenation Mapping

One application for BOLD MRI in stroke imaging is referred to as oxygen mapping. The 

concept is based on the theory that it is possible to estimate cerebral oxygen extraction 

fraction (OEF) with BOLD MRI. OEF is a critical marker for tissue viability and is, 

therefore, of particular interest in stroke imaging. In normal subjects, OEF is about 40%, but 

this can increase if CBF decreases in order to maintain oxygen supply to brain tissue. It is 

thought to be elevated in the penumbra, due to its decreased CBF [20]. The OEF is related to 

the deoxyhemoglobin concentration in venules and capillaries of the brain [21]. OEF can 

therefore be assessed with BOLD MRI based on the T2* signal changes resulting from 

change in the deoxyhemoglobin concentration. Different approaches of BOLD MRI have 

been used to extract data related to cerebral oxygenation; these include analysis of T2 data 

[22, 23], T2* data without [24, 25] and with oxygen breathing challenge [26, 27], and T2’ 

data [28, 29].

T2 imaging is relatively insensitive for changes in signal dropout related to the 

deoxyhemoglobin concentration and is markedly affected by vasogenic edema, which 

commonly occurs in evolving ischemic stroke. T2* imaging has better sensitivity for 
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deoxyhemoglobin detection but is also affected by vasogenic edema. Studies using T2* with 

oxygen breathing challenge demonstrated promising results [26, 27], but were limited 

because they did not account for potential changes in cerebral blood volume in ischemic 

stroke, which will affect correct oxygen map calculations. T2’ imaging eliminates spin-spin 

interactions and thus helps to reduce measurement errors from T2 signal prolongation such 

as vasogenic edema, but it is limited by image noise and processing artifacts as shown in two 

studies [28, 29].

An additional method based on BOLD imaging is to measure the cerebral metabolic rate of 

oxygen consumption (CMRO2). With this technique, a multi-echo sequence is performed, 

which allows for the derivation of OEF, based on R2’ and the venous blood volume fraction. 

After multiplying OEF with CBF from a separate MR perfusion sequence, it is possible to 

calculate CMRO2. The concept has shown to be feasible in both animal and clinical studies 

[30, 31], but clinical application is limited due to poor signal-to-noise ratios on applied MR 

sequences and due to the inaccuracies introduced by quantitative measurements from 

dynamic susceptibility contrast perfusion MRI.

Oxygenation mapping techniques yield promising results for penumbra imaging in 

experimental studies but have significant limitations, which prevent routine clinical use at 

this time. As mentioned before, these include T2 signal prolongation in edematous 

parenchyma, which may mask OEF-related changes, local changes in the cerebral blood 

volume occurring in ischemic stroke affecting the interpretation of the BOLD signal [32], 

and a low hematocrit in hypoperfused brain regions leading to overestimation of OEF [33].

Task-based fMRI

Currently, BOLD MRI techniques are often used for fMRI applications. The most common 

application of fMRI is so-called “task-based” fMRI, which involves using different tasks 

(“paradigms”) presented to the patient during imaging acquisition to extract neuronal 

activity in respective speech, language, or motor areas. The temporal coherence of the 

BOLD signal is then compared to the timing of the task to extract the location of voxels that 

are active during the performance of the task. fMRI has been used extensively to study 

motor, sensory, and language activation and is clinically used as a complementary imaging 

technique in neuropsychiatric and neurodegenerative diseases such as schizophrenia [34], 

attention deficit and hyperactivity syndrome [35], and depression [36]. It may also be used 

to determine hemispheric language dominance in the pre-operative setting (e.g., before 

temporal lobectomy or hemispherectomy in patients with medically refractory epilepsy) or 

for surgical planning in the setting of brain masses [37]. This non-invasive method to 

determine language dominance is often preferred to more invasive methods such WADA 

testing.

Resting-state BOLD MRI

In contrast to task-based fMRI, resting-state fMRI is acquired during a physiologic “resting 

state.” During resting state fMRI, the patient does not perform a task during imaging and is 

usually asked to keep their eyes open and think of nothing in particular. The goal is to 

simulate a functional state without specific or targeted neuronal activity. Such a paradigm is 
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advantageous in stroke patients as there is no particular demand for patient compliance. 

Resting-state fMRI uses the same physical concept of the BOLD principle as task-based 

fMRI.

Resting-state fMRI can be used as a measure of temporal coherence between brain regions. 

In the absence of a task, very small, low frequency (<0.1 Hz) amplitude modulations of the 

T2*-weighted signal intensity are observed (Fig. 1). These fluctuations were previously 

thought to represent noise and were removed on task-based fMRI [38]. However, it was 

eventually discovered that these fluctuations were not noise, but instead represented regions 

that show temporal correlation for regions that are anatomically connected [39]. For 

example, there is overlap of temporal curves from motor-related areas including the 

supplemental motor area and primary motor cortex, secondary somatosensory area, premotor 

cortex, putamen, thalamus, and contralateral cerebellum, all of which are interconnected to 

perform appropriate motor tasks.

It is currently hypothesized that even more of these anatomical correlations exist, but the 

detection of temporal correlation is limited by the relatively slow temporal resolution of 

fMRI, which leads to loss of high frequency signals. Studies with animal models and human 

subjects have proven a link between rs-fMRI connectivity and anatomical connections [39–

42]. Support for clinical value of this data is the observation that distributed spatiotemporal 

network organization is highly reproducible across subjects [43].

Connectivity studies with rs-fMRI in stroke patients have identified disruptions in the 

functional neuronal architecture, both in animal and human models [44, 45]. In a human 

study, it was shown that impaired sensorimotor function correlated with a loss of 

interhemispheric connectivity between sensorimotor regions, whereas recovery of function 

weeks after an ischemic insult correlated with normalization of interhemispheric 

connectivity [44].

Motor recovery imaging studies with rs-fMRI have been performed to study the effect of 

stroke on disrupted cerebral neuronal networks. In one study [46], investigators were able to 

explain why some stroke patients have better recovery after specific brain injury to the same 

region than others by analyzing the affected neuronal networks through rs-fMRI. They found 

that in stroke patients, changes in neuronal activity are closely associated with functional 

recovery. Increases in the rs-fMRI motor activity of the supplementary motor cortex, lateral 

premotor cortex, and superior parietal cortex in the first 14 days after infarct correlated with 

greater improvement of hand motor function during this period.

These findings of resting state neuronal activity question the traditional concepts of stroke 

pathology. The traditional theories assume a direct connection between a particular spatial 

lesion in the brain and an associated neurological deficit. For example, a patient who suffers 

ischemic injury to the inferior frontal lobe in the dominant hemisphere (e.g., Broca’s area) 

may lead to aphasia. These concepts are based on autopsy studies of ischemic brains and 

respective correlation with patients’ symptoms [47].

Resting-state BOLD MRI, however, is able to structurally and functionally test a new 

pathophysiological concept; the hypothesis is that in addition to injury to particular loci, 
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injury to the connecting white matter tracts also play a crucial role in the symptom–location 

correlation equation [48]. One example for this theory would be that the injury of the white 

matter tracts connecting the speech centers (e.g., medial longitudinal fasciculus) may lead to 

more pronounced, global aphasia than isolated injury to the speech centers themselves. 

There is evidence to believe that disconnectivity disorders may not be a complicating factor 

of ischemic injury but a major contributor to associated symptom complexes [49].

Resting-state BOLD Imaging for Perfusion

BOLD imaging is used to derive neuronal activity in functional MRI. As detailed in the 

previous paragraph, rs-fMRI assesses synchronous neuronal activity that occurs in the 

absence of dedicated paradigms [50, 51]. In addition to using temporal coherence to identify 

different neuronal networks, rs-fMRI can be used to extract data that allow derivation of 

temporal dynamics of low frequency fluctuations, which can indicate the effects of perfusion 

changes in the brain [52, 53]. One example is that a higher magnitude of BOLD fluctuations, 

which can be quantified as the normalized standard deviation of the low frequency 

fluctuations, is proportional to cerebral blood volume and venous oxygenation [54]. An easy 

way to understand this is that if a region of the brain has no blood in it, the BOLD 

fluctuations will disappear. Another surprising discovery is that by time-shifting temporal 

fluctuations in each voxel and comparing the correlation of the signal with a reference 

region (either whole brain or the superior sagittal sinus), it is possible to map arterial arrival 

delays that have traditionally been measured using time-based metrics such as the time-to-

peak of the residue function (Tmax) or mean transit time (Fig. 1) [54, 55]. In a sense, every 

fluctuation in blood flow (through every cardiac or breathing cycle) represents a bolus of 

oxygenated blood that can be measured with BOLD techniques. These measured 

fluctuations contain information about cerebral perfusion, oxygenation, and vascular 

reactivity [54, 56].

Fluctuations in the resting-state BOLD signal were used by Lv et al. to demonstrate a 

correlation between brain tissue exhibiting significant delay in BOLD signal and areas of 

hypoperfusion identified by dynamic susceptibility contrast-based perfusion MRI in patients 

with acute ischemic stroke [57]. In this study the maximum of correlation between the 

global signal averaged over the whole brain and the signal from tissues was delayed up to 

nine seconds in regions with concurrent prolonged mean transit time (MTT). Another 

similar study compared the perfusion characteristics derived from rs-fMRI to contrast bolus 

perfusion MRI data and showed excellent agreement between the modalities [58]. Christen 

et al. applied similar concepts to map arterial delays in patients with moyamoya disease, a 

chronic cerebrovascular disease characterized by proximal arterial stenoses and collateral 

formation. Imaging times of around 5 minutes or even less make rs-fMRI perfusion 

applicable for acute stroke cases [54, 57]. We present two clinical cases of patients 

presenting with acute ischemic infarcts, who underwent advanced imaging with rs-fMRI. In 

both cases, the rs-fMRI perfusion maps correlated well with the contrast DSC bolus 

perfusion imaging, demonstrating the feasibility of non-contrast based perfusion with rs-

fMRI in the clinical setting. In case 1 (Fig. 2), rs-fMRI correctly identified a completed late 

acute to early subacute ischemic infarction with no significant penumbra. Based on the 

imaging findings, the patient was treated with conservative medical therapy rather than with 
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endovascular intervention. Case 2 is an example of treatment monitoring. In this case, 

successful intravenous tPA treatment for a LVO with right hemispheric penumbra was 

performed, and subsequent MRI showed complete recanalization of the occluded vessel and 

reperfusion of tissue at risk (Fig. 3).

Resting-state fMRI has multiple advantages. It is feasible to assess brain perfusion without 

using contrast media, a concept that is helpful in patients with contraindications to contrast 

administration such a renal impairment or in complicated cases requiring multiple repeated 

imaging attempts. In addition, rs-fMRI may add information to the microvascular perfusion 

and oxygenation of brain tissue, whereas traditional contrast bolus perfusion techniques 

typically assess macrovascular perfusion. Finally, rs-fMRI perfusion data may be combined 

with connectivity analyses, which may enable the study of neuronal networks and their 

hemodynamic behavior simultaneously.

To date, there are several limitations of rs-fMRI in stroke imaging. While multiple 

experimental studies prove the validity of the concept in feasibility studies, there are no 

current studies assessing robustness in clinical routine. This is important because stroke 

patients may move more than most clinical patients, and rs-fMRI is known to be sensitive to 

patient motion. Repeatability of the tests also has to be validated under clinical conditions 

with larger trials.

CONCLUSIONS

Resting-state fMRI in stroke imaging is a promising advanced imaging technique that can 

help to further explain the underlying pathophysiology of ischemic stroke through 

delineation of functional or dysfunctional neuronal networks with connectivity studies. It 

may also serve as a non-contrast material dependent technique for brain perfusion imaging 

with the possibility of extracting additional valuable information such as cerebral blood 

volume and tissue oxygenation. The combination of connectivity and perfusion rs-fMRI data 

may open new options for ischemic stroke treatment guidance and monitoring and, 

potentially, help to predict the functional recovery and outcome of stroke patients.
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FIGURE 1. 
Resting-state fMRI connectivity map of the default network nodes are marked in blue, green, 

red and teal. The curves on the right show temporal coherence between the four regions 

during resting state, demonstrating the ability to functionally image connected neuronal 

networks at rest (Courtesy of Dr. William Shirer).
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FIGURE 2. 
MRI including diffusion, perfusion with dynamic susceptibility contrast (DSC), and resting-

state BOLD fMRI in a 37-year-old female patient who presented with acute right-sided 

headache as well as left-sided facial droop and weakness (NIH stroke scale 15). DWI (A) 

and FLAIR (D) MR images show abnormal signal in the right middle cerebral artery (MCA) 

territory, compatible with a late acute to early subacute infarction. DSC perfusion images 

demonstrate mildly decreased cerebral blood volume (CBV) (B) and prolonged Tmax (C) in 

the right MCA territory. The standard deviation of low frequency fluctuations (E) and delay 

correlation analysis (F) from resting-state fMRI show excellent correlation with the 

respective DSC bolus perfusion maps. The perfusion defect is matched with the diffusion 

abnormality and represents completed infarction without penumbra.
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FIGURE 3. 
MRI including diffusion, perfusion with dynamic susceptibility contrast (DSC), and resting-

state BOLD fMRI in a 66-year-old male patient with history of hypertension, 

hyperlipidemia, and diabetes, who presented with acute left hand tingling, left mouth 

numbness, and left visual field cut (NIH stroke scale 3). CT angiography, which was 

performed prior to the MRI, showed occlusion of the right posterior cerebral artery (not 

shown), after which intravenous tPA was administered. DWI (A) and FLAIR (D) MR 

images demonstrate no cortical signal abnormality to suggest the presence of acute 

infarction. DSC perfusion images demonstrate normal and symmetric cerebral blood volume 

(CBV) (B) and Tmax (C). The standard deviation of low frequency fluctuations (E) and 

delay correlation analysis (F) from resting-state fMRI demonstrate excellent correlation with 

the corresponding DSC perfusion maps. These findings indicate complete recanalization of 
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the occluded vessel without evidence of ischemia. Follow-up MR angiography confirmed 

resolution of the previously identified right posterior cerebral artery occlusion (not shown).
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