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Abstract

The landscape for early phase cancer clinical trials is changing dramatically due to the advent of 

targeted therapy. Increasingly, new drugs are designed to work against a target such as the 

presence of a specific tumor mutation. Since typically only a small proportion of cancer patients 

will possess the mutational target, but the mutation is present in many different cancers, a new 

class of basket trials is emerging, whereby the drug is tested simultaneously in different baskets, 

i.e., sub-groups of different tumor types. Investigators not only desire to test whether the drug 

works, but also to determine which types of tumors are sensitive to the drug. A natural strategy is 

to conduct parallel trials, with the drug’s effectiveness being tested separately, using for example, 

the popular Simon two-stage design independently in each basket. The work presented is 

motivated by the premise that the efficiency of this strategy can be improved by assessing the 

homogeneity of the baskets’ response rates at an interim analysis and aggregating the baskets in 

the second stage if the results suggest the drug might be effective in all or most baskets. Via 

simulations we assess the relative efficiencies of the two strategies. Since the operating 

characteristics depend on how many tumor types are sensitive to the drug, there is no uniformly 

efficient strategy. However, our investigation demonstrates substantial efficiencies are possible if 

the drug works in most or all baskets, at the cost of modest losses of power if the drug works in 

only a single basket.
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1. Introduction

Historically, cancer is a disease that has been organized and investigated separately based on 

the anatomic location of the primary tumor. Thus, we have breast cancer, lung cancer and so 

forth. This applies not only to the reporting of the disease in cancer registries, but also to the 

way it is treated, both surgically and medically. In fact, new drugs are usually tested and 

approved by the U.S. Food and Drug Administration (FDA) for use in specific disease sites, 

with prescription for other types of cancer considered “off-label”. However, the current drug 

development landscape is dominated by efforts to develop and test drugs that are designed to 

work against tumors that possess specific somatic mutations. Since these specific mutational 
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targets typically occur in only a small proportion of tumors but also tend to be present in 

many tumor types, investigators increasingly are interested in evaluating the efficacy of the 

new drug in different groups of patients whose tumors possess the mutation. However, they 

simultaneously need to collect evidence about whether the drug is efficacious across all or 

only in some tumor sites. This has led to a new type of early phase clinical trial, variously 

termed “basket” trial or “bucket” trial, whereby the drug is tested simultaneously in the 

different baskets. The term “basket” trial has been used to refer to different contexts, 

depending on the drug’s mechanism of action and the molecular selection of patients [1]. 

For our paper when refering to a “basket” trial, we consider one target mutation and one 

drug targeting that mutation being tested in several tumor types. Here, investigators wish to 

know, not only if the drug is active, but also the specific tumor sites in which it is active. Due 

to the complex nature of these trials and the small sample sizes, these trials are considered 

discovery trials and promising efficacious results should be further evaluated in subsequent 

trials if possible.

There are two very prominent examples of such basket trials. In 2006, imatinib mesylate 

(Novartis) was approved by the FDA for 5 different types of cancer on the basis of a single 

phase II trial. In this study, 186 patients with 40 different non-gastrointestinal stromal tumor 

malignancies with KIT mutations were evaluated. The number of different malignancies, or 

baskets, and the number of patients per basket were not pre-specified, as this study was 

intended to be a proof-of-concept about the activity of imatinib to warrant future trials. 

Consequently, no inferential methods were used and power analyses did not contribute to 

sample size considerations. Each basket was permitted to enroll up to 10 patients, with the 

possibility of enrolling additional patients in baskets suggesting clinical efficacy [2]. While 

this study showed promising activity of imatinib in 6 malignancies, 40 different tumor 

subtypes were included and 24 indications (subgroups) were evaluated. There was no control 

of the false positive error rate, since no hypothesis testing was performed (or planned).

More recently, vemurafenib has been approved for patients with BRAF V600 positive-

mutations in two types of nonmelanoma cancers, based on an on-going phase II trial. In this 

study, investigators defined 6 disease-specific baskets and an all-others basket, enrolling 

patients with any BRAF V600 mutation-positive, non-melanoma cancer. A total of 122 

patients were enrolled with 27 patients with colorectal cancer receiving combination therapy, 

after observing futile results using monotherapy of vemurafenib. An adaptive two-stage 

design was planned for each disease-specific basket [3]. The all-others basket was purely 

exploratory with no inferential methods planned; however, investigators added the flexibility 

to create a disease-specific basket, should enrollment be large enough [4]. This trial 

explicitly stated response rate thresholds for what is considered promising and not promising 

and the design quantified the false positive error rate and power within each basket.

Conventional testing of a new drug addresses one question of overriding interest. Does the 

drug work? In the setting of testing targeted agents, investigators also need to know whether 

the drug works uniformly in all cancer sites with the mutation of interest or whether the 

activity is site-dependent. The basket design, in which patients are recruited purposefully to 

gain knowledge of the drug’s efficacy in distinct cancer sites, or baskets, is a natural design 

strategy to address these questions. A logical analytic strategy is to regard each basket as a 
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separate, independent study of the drug’s efficacy. Thus one can, for example, perform 

separate two-stage study designs in each basket. Indeed this strategy of parallel, independent 

designs has been performed in at least one prominent trial [4], as well as in some other 

categories of basket trials [5, 6]. Such an approach can, of course, lead to a substantially 

inflated false positive error rate in the context of the question “does the drug work?” but this 

can be easily remedied by adjusting the significance levels in the individual trials to account 

for multiple comparisons.

There are numerous statistical methods for phase II trials with multiple strata proposed in 

the literature. Several methods have been developed specifically to identify promising 

biomarkers and are not easily generalizable to other settings [7, 8, 9]. Some of the proposals 

in the literature originally developed for phase II trials with multiple subtypes are candidates 

for use in basket trials [10, 11, 12]. The design by London and Chang [11] is primarily 

concerned with obtaining stratified estimates and tests, and does not address the question of 

“does the drug work?”. The design of Thall et al. [10] is more applicable but requires 

accepting hierarchical modeling and is more computationally demanding. The design of 

Leblanc et al. [12] is the closest to a basket trial among the three, evaluating individual and 

overall response rates simultaneously, however it does not offer protection against FWER. 

To the best of our knowledge, very few alternative designs appropriate for addressing the 

primary goals of basket trials, while controlling the false positive error rate, have been 

proposed in the literature. Berry et al. used Bayesian hierarchical modeling to evaluate the 

overall and basket-specific response rates, while sharing information across baskets to 

improve power [13]. More recently, Simon et al. used Bayesian model averaging to 

simulataneously model the baskets as homogeneous and heterogeneous, with an additional 

model parameter to represent the homogeneity of treatment effects across baskets [14]. 

Neuenschwander et al. used Bayesian hierarchical modeling and proposed an 

exchangeability-nonexchangeability approach to improve robustness for more heterogeneous 

populations [15]. A common theme among the basket trial designs proposed so far is the use 

of a Bayesian framework.

In this article we explore whether we can modify the approach of using independent Simon 

designs for each basket to improve the efficiency of the trial overall. Our fundamental 

premise is that efficiencies are possible by aggregating the information from separate baskets 

for which we believe, based on an interim analysis, the drug has similar efficacy. This 

potential aggregation allows us, in the second stage of the trial, to employ a much smaller 

sample size to obtain the necessary power to demonstrate clinical efficacy overall. However 

the relative trade-offs are complex, since such aggregation diminishes the power of the study 

to distinguish effects in different baskets. Furthermore, the relative efficiencies and 

classification accuracies depend on the true configuration of effects, i.e. the actual number of 

baskets in which the drug is efficacious. As a result there is no uniformly most powerful 

design strategy. Nonetheless we endeavor to demonstrate that our aggregation strategy has a 

large payoff in efficiency when the drug is effective in all or most baskets, at the cost of 

modestly reduced power when the efficacy of the drug is limited to a single or very few 

baskets.
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2. Methods

2.1. Study Design Overview

We evaluate an adaptive study design that makes use of an interim assessment of the 

heterogeneity of treatment effects across baskets. We assume that the first stage of the study 

is similar to a parallel, independent two-stage Simon design, which is used for our reference 

design further detailed in Section 2.5. After the first stage when each basket has accrued a 

modest number of participants we evaluate the heterogeneity of response rates across 

baskets. On the basis of this, we make several key decisions. First, we determine whether the 

results support the premise that the drug’s effect is similar across baskets. If the answer to 

this question is yes, then we either terminate the trial for futility if the overall response rate 

is low or continue to the second stage, in which patients are accrued from all baskets and 

analyzed for a unitary effectiveness at the end of the trial. If, on the other hand, the evidence 

suggests heterogeneity of efficacy across baskets, then we continue the trial only for baskets 

with interim evidence of efficacy and analyze these continuing baskets separately at the end 

of the trial. The decision points are outlined schematically in Figure 1.

2.2. Decision Rules and Design Parameters

We assume that there are K baskets under consideration and that in each basket the true 

response rate θk for k = 1, …, K is either at a null value θ0 or at an effective value θa. The 

decision nodes in all admissible designs are created (via a computational search) to possess 

an overall false positive rate of ε. That is ε represents the probability that at least one basket 

will be declared effective when in fact the drug possesses no efficacy for any of the baskets 

considered, i.e., θk = θ0 ∀k. For our notation, we use an upper case N to refer to the total 

number of patients across all baskets and we use a lower case n to refer to the number of 

patients in an individual basket. We define N1 to be the total number of patients across all 

baskets in stage 1 and we define n1k to be the stage 1 sample size for basket k, so that 

. Similarly, we define N2 to be the total number of patients across all baskets 

in stage 2 in the homogeneous track and define n2k to be the stage 2 sample size for basket k 
in the heterogeneous track.

The first decision node we reach in our design is the interim assessment of heterogeneity, 

depicted as (a) in Figure 1. Here, based on our assessment we will select a design path that 

treats baskets as either homogeneous or heterogeneous. The design parameter used to select 

the most appropriate path is the critical value for an exact test of a K × 2 contingency table. 

We define the design parameter for decision node (a) as γ and explore our design for γ on 

the domain of (0,1). Here, γ essentially functions as a tuning parameter optimized over its 

domain to achieve desired operating characteristics, further discussed in the Supplementary 

Materials. We note that for larger values of γ our design is more likely to pursue the 

heterogeneous design path. We also note that we do not interpret this as a stand-alone test of 

homogeneity, but rather we see it as a tool to better inform the decision regarding which 

design path to select based on the current data.

Within the homogeneous and heterogeneous design paths, there are two more decision 

nodes. For the heterogeneous design path, the next decision node we encounter is the basket-
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specific stopping rule for futility, depicted as (b) in Figure 1. In this design path, we have 

determined the response rates between baskets are different enough that we should evaluate 

baskets independently. For each individual basket, we decide if we should stop the trial for 

that basket due to lack of responsiveness to the drug or continue to stage 2. The design 

parameter necessary for decision node (b) is rS, defining the minimum number of responses 

(in a single basket) needed in stage 1 to warrant enrolling additional patients in stage 2. Let 

us define K* as the subset of baskets continuing to stage 2. For baskets that display 

encouraging response rates, we enroll and treat n2k patients in stage 2, for all k ∈ K*. At 

study completion, we have our final decision node to evaluate the drug’s activity for each 

remaining basket, depicted as (d) in Figure 1. We evaluate the remaining baskets’ response 

rates separately using one-sided Binomial exact tests, with a correction for multiple 

comparisons. At node (d), our design parameter is the significance level for each individual 

test, defined as αS/K*.

For the homogeneous design path, the decision node following our heterogeneity assessment 

(a) is again a futility rule. However, this rule applies to all baskets collectively, depicted as 

(c) in Figure 1. Our design parameter for decision node (c) is the critical value for the one-

sided Binomial exact test, defined as rC (i.e., the minimum number of responses needed 

across all baskets combined in stage 1 to warrant enrolling additional patients in stage 2 to 

all baskets). We select rC based on the stage 1 sample size N1 and the null response rate θ0, 

further detailed in Section 3.1. If we determine that stage 1 results appear futile, we stop the 

trial in all baskets and the study is complete. However, if we determine that stage 1 results 

appear encouraging, we enroll and treat an additional total of N2 patients sampled from all 

baskets. At study completion, we have our final decision node to evaluate the drug’s activity 

overall, depicted as (e) in Figure 1. We evaluate the overall response rate using a one-sided 

Binomial exact test and all available data. At node (e), our design parameter is the 

significance level for the one-sample test for efficacy using all combined baskets, defined as 

αC. Note that in this path we either declare that the drug is active in all baskets or that it is 

active in none. We provide a glossary of all of the described design parameters for quick 

reference in Table 1.

2.3. Operating Characteristics

In the setting of multiple baskets there is no clear analog of the conventional type 1 and type 

2 error rates. We can consider the null scenario as being the case when the drug does not 

work in any of the baskets. However, there is a composite of alternative scenarios that must 

be considered simultaneously, such as that the drug may only work in 1 basket, or that it 

works in 2 baskets, and so on. The following three metrics are used to construct our 

proposed design and evaluate its performance under various scenarios: family wise error rate 

(FWER), marginal power (Pk), and expected trial sample size (EN). The family wise error 
rate (FWER) is defined as the probability of incorrectly declaring activity in one or more 

baskets when in fact the drug does not work in any basket, previously defined as ε. The 

marginal power (Pk) for basket k is defined as the probability of correctly declaring activity 

in basket k when in fact the drug works in basket k. The marginal power differs depending 

on the true alternative, i.e. the number of baskets in which the drug actually works. Our 

approach involves first electing all candidate designs for which both the FWER and the 
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marginal power for a specific alternative conform to desired levels, then choosing from these 

candidates the design that optimizes a utility function that trades off power and expected 

sample size across all alternative hypotheses (see Supplementary Material for more details). 

In evaluating operating characteristics, we examine marginal power and expected sample 

size for each possible alternative, and compare these with a reference design that employs 

independent Simon designs in each basket. Other metrics we consider for comparing the 

operating characteristics are the expected trial duration (ET) and average trial sensitivity and 

specificity, defined as the sensitivity and specificity of the K decisions made for all baskets 

in a trial, averaged over all simulations.

2.4. Optimization

In our proposed design, there are 8 unknown design parameters: N1, n2k, N2, γ, rS, rC, αS, 

αC that are selected to optimize the utility function based on marginal power and expected 

sample size. Due to computational issues and practical limits on design parameters, we 

elected to fix four of the design parameters: N1, N2, rS, rC, using logical arguments and 

preliminary simulations. For example, rS (the number of responders in an individual basket 

needed in stage 1 to continue to stage 2) must be defined on the space [0,n1k]. We explore 

the sensitivity of these design parameters in the Supplementary Materials.

We chose a modest value for N1, the total number of patients in stage 1, to best reflect 

common practice. We fix N2, the total number of stage 2 patients for the homogeneous 

design track, to be smaller than ∑k∈K* n2k for K* containing more than 1 basket, since the 

homogeneous design track uses a pooled analysis and thus can achieve higher power using 

fewer patients per basket. We further reduce the dimensionality of the design parameters by 

fixing the heterogeneous and homogeneous design tracks’ stopping rules. These stopping 

rules satisfy clinical investigators’ desire to both avoid erroneously missing an active basket 

while at the same time minimizing patients exposure to an ineffective drug. In the 

heterogeneous design track we opted for a rule in which a basket should continue to stage 2 

if there is any evidence of response (rS ≥ 1) in the first n1k patients for each basket k = 1, …, 

K. We thus declare futility for individual baskets with no responders in stage 1. Similarly, 

we fix the homogeneous design path’s stopping rule to be rC = K, which equivalently 

requires around 1 responder per basket in order to continue all baskets to stage 2. After 

fixing these four design parameters, we determine the remaining four design parameters that 

optimize the power and sample size and declare the corresponding design as optimal. This 

optimization is restricted to designs that are calibrated to achieve the same FWER (i.e., ε) as 

the reference design when the drug is active in A = 0 baskets (see Section 2.5 below) and the 

same power (i.e., 1 − β) when the drug is active specifically in A = 2 baskets, while ensuring 

that the power achieves a minimum target level when the drug is active in only a single 

basket (A = 1), where A is the number of baskets in which the drug truly works. These 

restrictions are suitable when there are K = 5 baskets. Other calibration strategies are more 

suitable for trials with larger numbers of baskets. Further details describing the optimization 

of the remaining four design parameters can be found in the Supplementary Materials. We 

can potentially increase the number of optimal parameters, while reducing the computational 

time by considering simulated annealing with a well-constructed objective function. This is 

of interest for future work.
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We calculate the expected trial sample size (EN) as:

To account for different accrual rates across baskets in practice, we assume patients from 

basket k enter the trial according to a Poisson distribution with rate parameter λk, so that the 

inter-patient arrival times in basket k follow an exponential distribution with rate parameter 

1/λk. Define T to be the trial duration (in months) for a single trial, calculated as:

The expected trial duration ET is then the average trial duration over all simulated trials.

2.5. Reference Design

For our reference design, we assume parallel, independent optimal Simon two-stage designs 

are planned and carried out for each basket [16]. For each individual basket, we assume a 

type 1 error rate of α = ε/K, so that the FWER is controlled at ε for K baskets; we assume a 

type 2 error rate of β, so that the desired (marginal) power per basket is 1 − β. With these 

specifications, each basket will enroll and treat n1R patients in stage 1 and if r1k responders 

are observed, enroll and treat n2R patients in stage 2.We declare the drug works in basket k if 

there are at least rk responders in the kth basket. Specific details can be found in Section 3.1. 

We use the function ph2simon from the R package clinfun to calculate the appropriate 

design parameters [17].

3. Simulation Study

In the following, we compare the operating characteristics of the proposed design with the 

reference design, based on the setting in which there are K = 5 baskets.

3.1. Trial Details

In our simulation study, we used parameter values that are informed by the discussions we 

had with investigators during the course of designing similar trials. We also made an effort 

to make our specific example to resemble the Hyman et al. basket trial, discussed in Section 

1. We provide in Section 4 general suggestions for choosing parameters for those who want 

to use our software to design a basket trial. We assume that in each basket the true response 

rate θk for k = 1, …, K is either at a null value θ0 = 0.15 or at an effective value θa = 0.45 

and we focus on the setting where K = 5. Consequently, we set the total stage 1 sample size 

to be N1 = 35 patients, so that with equal accrual rates each basket should accrue on average 

n1k = 7 patients in the first stage, for k = 1, …, K. Furthermore, we set the total stage 2 

sample size for the homogeneous design path to be N2 = 20 patients, so that with equal 

accrual rates each basket should accrue on average 4 patients in the second stage. With these 

specifications, the minimum required number of responders in stage 1 for the homogeneous 
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design path, in order to continue all baskets to stage 2 is set to be rC ≥ K(= 5) patients. For 

the heterogeneous design path, the minimum required number of responders in stage 1 in 

order to continue an individual basket to stage 2 is set to be rS ≥ 1 responders in the first n1k 

= 7 patients. In simulation studies, we explored using n1k = 6, 7, 8, 9 patients per basket (or 

N1 = 30, 35, 40, 45) and N2 = 20, 25, 30 but we elected to use n1k = 7 and N2 = 20.We note 

that increases in N2 display larger increases in the expected trial sample size (EN) with 

negligible gains in marginal power (Pk), where Pk is the power to detect activity in the kth 

basket, and where lower numbered baskets are the active ones. Thus when A = 1, basket k = 

1 is active and baskets k = 2, …, 5 are inactive; when A = 2, baskets k = 1, 2 are active and 

baskets k = 3, 4, 5 are inactive; etc.

For the reference design, assuming α = 1% and β = 20% correspond to requiring r1k ≥ 3 

responders in the first n1R = 9 patients to continue to stage 2; and requiring rk ≥ 9 responders 

over all 27 patients, to declare the drug works in the kth basket at study completion. We 

assume α = 1% in order to control the FWER at ε = 5%. We calibrate our proposed design 

against the reference design such that ε = 5% in both when there are A = 0 baskets in which 

the drug is truly active and the power is 1 − β = 80% in both the reference and proposed 

design when there are A = 2 baskets in which the drug is truly active. We note the two 

designs were not calibrated to have comparable trial durations.

We explored calibrating our design for other values of A, such as A = 1 or 3 truly active 

baskets, but found that calibrating under the A = 2 active setting produced desirable and 

robust operating characteristics for the other alternative scenarios. Due to the pooling in our 

proposed design, the marginal power is an increasing function of the number of baskets in 

which the drug is truly active, with the maximum power achieved when A = 5. Since we 

calibrate to achieve 1 − β power for the setting of A = 2, the marginal power is less than 1 − 

β when the drug is active in only one basket (A = 1). To address this issue we use the 

concept of minimum acceptable (marginal) power: (1 − β)min and restrict candidate designs 

to those for which the marginal power is ≥ (1 − β)min, for the case when the drug only works 

in a single basket (A = 1). We have assumed that (1 − β)min = 70% marginal power is 

acceptable when A = 1. To construct and calibrate our design, we assume equal accrual rates 

for all baskets, i.e., λk = 2 for k = 1, …, K, corresponding to an average enrollment of 2 

patients per month for each basket.

Frequently investigators can expect unequal accrual rates across baskets. This is especially 

important to consider in our design at the interim assessment of heterogeneity. Stopping and 

waiting for all baskets to accrue an equal number of patients in stage 1 is not ideal and can 

be impractical if the mutation is rare in some diseases. Therefore, we propose guidelines to 

avoid such pitfalls. We assumed that the heterogeneity assessment is completed after N1 

patients have been treated with a minimum of 3 patients per basket. With the small sample 

sizes in stage 1, the heterogeneity assessment can be sensitive to the response rates of 

baskets with larger sample sizes. Therefore, we suggest a maximum sample size per basket 

as well. For K = 5 baskets with N1 = 35 patients over all baskets, we assume a maximum of 

10 patients in any individual basket in stage 1. Similarly, for the homogeneous design track, 

we suggest the one-sample test for efficacy should be performed after N2 = 20 patients have 

been treated and a minimum of 1 patient per basket; we assumed a maximum of 6 patients 
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per basket to avoid a single basket dominating the overall response rate. These minimum and 

maximum patient requirements can be tailored in consideration of the numbers of patients in 

stage 1 and 2 and expected accrual rates.

We used 1000 simulated trials both to construct our design and also to evaluate and compare 

the optimal and reference designs’ operating characteristics. With the preceding 

requirements and using the approach detailed in the Supplementary Materials, we found the 

optimal design in the setting of 5 baskets with null and active response rates of 15% and 

45%, respectively, leads to n2k = 15 patients, γ = 0.52, αS = 0.07, and αC = 0.05. Thus, the 

optimal design sets the following parameters: N1 = 35, γ = 0.52, n2k = 15, rS = 1, αS = 0.07, 

rC = 5, N2 = 20, and αC = 0.05. In the next section, we compare the operating characteristics 

of the reference and proposed designs.

We acknowledge the first stage of the reference design is larger than the first stage of our 

proposed design, however, this is because we calibrate the two designs to have comparable 

FWER when A = 0 and power when A = 2 in order to evaluate the efficiencies gained in the 

total sample size.

3.2. Results

We present 6 scenarios: the null scenario in which the drug does not work (15% response 

rate) in any basket, i.e., “0 Active” (A = 0), and five alternative scenarios, i.e., “1 Active”, 

…, “5 Active”, where without loss of generality Basket 1 is the active basket (45% response 

rate) when A = 1, Baskets 1 and 2 are the active baskets when A = 2, and so forth. The A = 0 

and A = 5 scenarios capture the homogeneous design configuration; and the A = 1, 2, 3, and 

4 scenarios capture the heterogeneous design configuration. Our proposed design controls 

the FWER weakly. That is, FWER ≤ ε = 5% under the null scenario, i.e., no active baskets 

(A = 0).

3.2.1. Equal Accrual Rates—Initially, we assume equal accrual rates, i.e., λk = 2, for k = 

1, …, K. This specification of λ corresponds to an average accrual of 2 patients per month 

for each basket. The corresponding results for the proposed and reference designs are 

displayed in Table 2. In Table 2, under the null scenario when the drug does not work in any 

of the baskets, we see our empirical family wise error rate is controlled at the nominal level, 

ε = 5%. In this scenario, our proposed design requires an average of 58 patients and 7.0 

months to complete (last two columns). For the reference design under the null scenario in 

Table 2, we see the empirical family wise error rate is also controlled at the nominal level, ε 
= 5%. Under the null scenario, the reference design requires an average of 58 patients and 

10.4 months to complete. We see the reference design’s false positive rates in each basket 

are controlled at 1% (the nominal ε/K level). For our proposed design, the false positive 

rates in each basket are slightly higher (2%) when the drug is inactive (A = 0).

For the setting in which the drug works in only one basket, i.e., A = 1, we see our empirical 

marginal power in Basket 1 (P1 = 70%) achieves the nominal minimum power level 70%. In 

this scenario, our proposed design requires an average 74 patients and 9.5 months to 

complete. Alternatively, for the reference design, we see its empirical marginal power for 

Basket 1 is 80% and the design would require an average 69 patients and 13.3 months to 
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complete. This is a difficult scenario for any design that considers aggregating baskets, since 

a majority of the baskets display homogeneous futile results. Our ideal design path for this 

scenario is to use separate analyses. Next in Table 2, we see our proposed design is properly 

calibrated under the A = 2 active scenario, displaying 80% marginal power for Baskets 1 and 

2. In this scenario, our proposed design requires an average of 83 patients and 10.4 months 

to complete. The reference design displays 81–82% marginal power for Baskets 1 and 2 and 

requires an average of 83 patients and 14.8 months to complete. When the drug truly works 

in 3 baskets, i.e., A = 3, we see a 3–4% increase in marginal power (across all active baskets: 

Baskets 1, 2, and 3) using 10% fewer patients in our proposed design compared to the 

reference design. When A = 4, we see a 1–6% increase in marginal power (across all active 

baskets) using 19% fewer patients in our proposed design compared to the reference design. 

Lastly, when the drug truly works in all 5 baskets, we see a 6–9% increase in marginal 

power (across all baskets) using 36% fewer patients in our proposed design compared to the 

reference design. While the reference design’s marginal power is set to be 80%, we note the 

empirical power varies between 79–84% due to simulated variability.

Table 3 displays the sensitivities and specificities characterizing the accuracies of classifying 

active versus inactive baskets in a trial. The reference design maintains 99% specificity and 

around 80% sensitivity over all scenarios. For our proposed design, we see comparable 

specificity under the null (98%). However, our specificity decreases as the number of active 

baskets increases, due to the possibility that active and inactive baskets are pooled. 

Conversely, we see the sensitivity of our proposed design increases as the number of baskets 

increases.

Due to the pooling in our proposed design, as the number of baskets in which the drug is 

truly active increases we see an increase in our ability to correctly identify these baskets at 

reduced sample sizes. Conversely, we see an increase in the number of false positives 

occurring in the few baskets where the drug does not work. We believe that these false 

positives would be identifiable in a secondary analysis. Furthermore, we believe this is 

concordant with our perception that the primary objective of investigators is to avoid missing 

active baskets. We note that an additional input parameter could be incorporated that defines 

the maximum false positive rate, i.e., αmax. Then, our design would be controlled strongly at 

αmax. Here, we would control the number of false positives at αmax when A = 4, since this is 

the scenario we are most likely to make false positive errors due to pooling.

3.2.2. Different Accrual Rates—A challenge to our proposed design is the adverse 

consequences of unequal accrual rates to baskets. To address this concern, we vary the 

accrual rates across baskets. We considered two extremes: (i) the setting when the inactive 

basket(s) have the fastest accrual rate(s), and conversely, (ii) the setting when the active 

basket(s) have the fastest accrual rate(s). For (i) we assume the following accrual rates: λ1 = 

1, λ2 = 1, λ3 = 1, λ4 = 2, λ5 = 3, for basket k = 1, 2, 3, 4, 5, respectively. For (ii) we 

assume: λ1 = 3, λ2 = 2, λ3 = 1, λ4 = 1, λ5 = 1, for basket k = 1, 2, 3, 4, 5, respectively. 

Results are displayed in Tables 4 and 5.

The most noticeable effect of variable accrual rates is a substantial increase in the trial 

duration. This occurs for both the proposed and reference design. However, the other trends 
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are largely preserved. The proposed design continues to deliver increased power with a 

reduced trial duration when A ≥ 3 at the expense of reduced power when A = 1. These 

trends are somewhat stronger when the fast accruing baskets are the ones in which the drug 

is active, i.e., setting (i) versus setting (ii).

4. Software and Implementation

We have developed and are making available R code to facilitate the calculation of optimal 

design parameters (currently available at https://www.mskcc.org/departments/epidemiology-

biostatistics/biostatistics/basket-trials). The input specifications are the number of baskets 

(K), the specified response rates representing absence of activity (θ0) and presence of 

activity (θa), the accrual rate(s) (we suggest using the minimum or average accrual rate 

across baskets), the family wise error rate (ε), the target power (1 − β), and the minimum 

acceptable power (1 − β)min. The code allows users to change the fixed design parameters: 

the stage 1 sample size for each basket (n1), the combined stage 2 sample size for the 

homogeneous track (N2), and the futility stopping rules (rS, rC); but will use the default 

arguments if not otherwise specified.

On the basis of these inputs the program will calculate the remaining parameters that define 

the optimal study design, namely the stage 2 sample size for the heterogeneous baskets that 

survive futility testing (n2k), the tuning parameter for the heterogeneity assessment (γ), and 

the critical values for the decision regarding efficacy for the single baskets (αS) and the 

combined baskets (αC). It will also provide projections of false positive and false negative 

error rates per basket and the expected sample size.

4.1. Choosing N1, N2, rS and rC

Our design has eight parameters. In principle, one can find an optimal design by maximizing 

all of these parameters over their permissible ranges. In practice, this is a daunting 

computational task. For this reason we chose to fix the values of N1, N2, rS and rC and 

optimize the remaining parameters. This has the disadvantage of requiring users to provide 

values for N1, N2, rS and rC to be used as input. We recommend choosing N1 first, the total 

number of stage 1 cases. We expect that this parameter will typically be limited by available 

resources to a narrow range. For example, funding agencies or sponsors may specify an 

amount of time for first-stage results to be available or an initial budget to be used in the 

first-stage of the trial. In the absence of any such restriction, a reasonable starting choice for 

N1 would be simply the first stage sample size of the reference design (n1) multiplied by the 

number of baskets, K. After N1 is chosen, rS and rC, the stopping criteria, can be selected 

with relative ease since the value of n1 limits considerably permissible values of rS. We 

believe that in most contemporary settings the observation of a single response in a modest 

first stage sample size will be sufficient for investigators to want to continue accrual to a 

basket, i.e., rS = 1. However, in general rS will be a very small integer. It seems reasonable to 

us to choose rC to be close to the selected value of rS multiplied by the number of baskets. 

N2, the second stage sample size in the aggregated setting, needs to be selected to deliver 

good power. However, in this path we will already have accrued a substantial aggregated 

stage 1 sample size, so N2 does not need to be especially large, and indeed should typically 
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be smaller than N1. In the aggregated arm, N2 should be in the range of second stage sample 

size of the corresponding Simon optimal design. We expect users to choose a few values for 

each of these parameters and explore the resulting options informally. In the Supplementary 

Materials (Section 3) we describe the preceding thought process using a worked example.

4.2. Calibrating Trials for Larger K

In our simulations, we focused on the case of K = 5 baskets. In this setting, we found that 

calibrating the design parameters such that the power is specified for the case where the drug 

is active in 2 baskets leads to a strategy that overall has much better properties than the 

reference design. If on the other hand one wishes to design a trial with, say, K = 10 baskets, 

our preliminary simulations (data not shown) indicated that calibration of the design for the 

setting in which the drug is active in 3 baskets is best suited. In short, the calibration strategy 

needs to be tuned to the total number of baskets in the trial. In the software this is controlled 

by a simple indicator variable, which will calibrate the design to achieve target power when 

either A = 2 or A = 3.

5. Discussion

The advent of targeted therapies in response to rapid developments of knowledge about the 

genomics of tumors has led to reconsideration of the design of early stage clinical trials. The 

merits of the old paradigm of testing new drugs separately in different tumor sites has been 

replaced by an impetus to test targeted agents in patients whose tumors possess the genomic 

target. Since typically the target is present in relatively small proportions of patients across 

multiple tumor sites, interest in using clinical trials that encompass patients with tumors in 

different sites has emerged, where the goal is both to test the efficacy of the drug and at the 

same time garner evidence about whether it works across the board or only in specific types 

of tumors. Early basket trials of this nature have striven to test the effect of the drug by 

testing efficacy in separate baskets, with the underlying assumption that proven efficacy in at 

least one basket is sufficient to demonstrate success. Our research was motivated by the 

premise that it is possible to answer the overall question “does the drug work?” more 

efficiently, using a design where an interim analysis informs us whether the drug effect 

appears to be homogeneous across baskets. If so, we continue the trial if we determine there 

is encouraging evidence that a subsequent aggregate analysis will demonstrate efficacy 

convincingly with a much smaller overall sample size. We believe that our simulations 

demonstrate that the power to address this question can be increased while at the same time 

the duration of the trial can be shortened considerably when the drug is either uniformly 

ineffective or effective in all or most of the baskets.

There are, of course, trade-offs. Our design is less accurate in answering the inevitably 

important secondary questions regarding the effectiveness of the drug in separate baskets. 

Essentially this is because the algorithm has the possibility of aggregating effective baskets 

with ineffective baskets. Despite this, we believe that the large potential gains in power for 

answering the primary question with substantially fewer patients makes this still an attractive 

design strategy in this complex clinical setting.
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We recognize that the design strategy we have advocated may not even be the most optimal 

one, in that we did not optimize across all design parameters. Because of the challenging 

computational problems of optimizing 8 decision criteria while simultaneously calibrating 

both power and family-wise error rates with the reference design we opted to fix a number 

of key design parameters and optimize the design over the remaining ones. For example, we 

arbitrarily selected both futility decision rules, largely based on our sense of what would be 

logically acceptable to investigators conducting these trials. It is entirely possible that a more 

expansive optimization might lead to even greater efficiencies. Also, our overall strategy is a 

strict frequentist one in which the parameter values in each basket are assumed to be either 

at the specified null value or at the pre-specified alternative, with corresponding statistical 

tests, false positive and false negative rates. In practice one could approach the problem in a 

more flexible random effects framework to make inferences about the individual effects in 

each basket. The trade-offs of such an approach are topics for further research. Nonetheless 

we believe that the current proposed design and analysis strategy represents a practical one 

that could be implemented immediately, and it is for this reason that we have made the 

software available.

In summary, we believe that considerable efficiencies are possible in the design of clinical 

trials in this new era of precision medicine. Our proposed design offers the possibility of 

faster drug evaluation and approval.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow chart of proposed design. See Section 2.2 for specific details.
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Table 1

Glossary of Terms

Notation Definition

θ0 Null response rate

θa Alternative response rate

K Total number of baskets

A Number of truly active baskets

ε Target family wise error rate when A = 0

(1 − β) Target marginal power when A = 2 (or 3 depending on K)

(1 − β)min Minimum acceptable power when A = 1

n1k Stage 1 sample size for basket k

N1 Total stage 1 sample size

n2k Stage 2 sample size for basket k, given heterogeneous design path

N2 Total stage 2 sample size, given homogeneous design path

γ Assessment of heterogeneity tuning parameter

rS Minimum required number of responses in stage 1 for an individual basket to continue to stage 2,
given heterogeneous design path

rC Minimum required number of responses in stage 1 across all baskets to continue all baskets to stage 2,
given homogeneous design path

αS Significance level for final separate analyses (before correction for multiple comparisons),
given heterogeneous design path

αC Significance level for final combined analysis, given homogeneous design path

FWER Empirical family wise error rate

Pk Empirical marginal power (%) for basket k = 1, …, K

EN Expected trial sample size

ET Expected trial duration (months)
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